C4graphGraph forms for C4 [ 280, 30 ] = SDD(W(35,2))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 280, 30 ] = SDD(W(35,2)).

(I) Following is a form readable by MAGMA:

g:=Graph<280|{ {128, 197}, {138, 207}, {136, 205}, {130, 199}, {128, 198}, {137, 207}, {136, 206}, {129, 199}, {129, 198}, {137, 206}, {130, 200}, {135, 205}, {134, 204}, {131, 201}, {131, 200}, {135, 204}, {132, 201}, {134, 203}, {132, 202}, {133, 203}, {133, 202}, {138, 208}, {139, 209}, {139, 208}, {140, 209}, {140, 210}, {18, 146}, {20, 148}, {69, 197}, {16, 145}, {19, 146}, {70, 199}, {73, 200}, {17, 147}, {23, 149}, {17, 146}, {23, 148}, {10, 143}, {64, 197}, {22, 147}, {67, 198}, {76, 201}, {79, 202}, {9, 143}, {21, 147}, {66, 196}, {78, 200}, {8, 143}, {20, 147}, {6, 142}, {30, 150}, {4, 141}, {31, 150}, {28, 149}, {7, 142}, {5, 143}, {29, 151}, {5, 142}, {116, 255}, {112, 251}, {29, 150}, {1, 141}, {115, 255}, {114, 254}, {113, 253}, {112, 252}, {51, 191}, {26, 150}, {24, 148}, {75, 199}, {25, 148}, {115, 254}, {113, 252}, {3, 141}, {48, 190}, {27, 149}, {72, 198}, {1, 142}, {114, 253}, {26, 149}, {2, 141}, {45, 189}, {101, 245}, {99, 243}, {93, 205}, {46, 191}, {101, 244}, {98, 243}, {94, 207}, {96, 242}, {102, 244}, {97, 242}, {103, 244}, {108, 248}, {111, 251}, {110, 250}, {109, 249}, {40, 189}, {111, 250}, {109, 248}, {43, 190}, {88, 205}, {91, 206}, {42, 188}, {98, 244}, {90, 204}, {100, 243}, {110, 249}, {8, 144}, {56, 160}, {33, 185}, {81, 201}, {34, 187}, {37, 188}, {82, 203}, {85, 204}, {11, 145}, {59, 161}, {11, 144}, {108, 247}, {59, 160}, {12, 144}, {106, 246}, {105, 245}, {62, 162}, {60, 160}, {39, 187}, {14, 146}, {87, 203}, {13, 144}, {107, 246}, {106, 247}, {104, 245}, {61, 160}, {15, 145}, {104, 246}, {63, 161}, {36, 186}, {84, 202}, {14, 145}, {62, 161}, {21, 181}, {75, 235}, {77, 237}, {22, 183}, {25, 184}, {74, 235}, {77, 236}, {72, 234}, {78, 236}, {73, 234}, {79, 236}, {16, 181}, {58, 159}, {31, 186}, {28, 185}, {19, 182}, {18, 180}, {57, 159}, {30, 184}, {74, 236}, {86, 240}, {56, 159}, {64, 231}, {76, 235}, {54, 158}, {65, 233}, {89, 241}, {52, 157}, {55, 158}, {65, 232}, {89, 240}, {53, 159}, {66, 232}, {90, 240}, {53, 158}, {67, 232}, {91, 240}, {27, 183}, {99, 207}, {95, 243}, {50, 158}, {48, 156}, {69, 233}, {71, 235}, {93, 241}, {2, 175}, {95, 242}, {49, 156}, {68, 233}, {71, 234}, {92, 241}, {24, 182}, {96, 206}, {51, 157}, {68, 234}, {92, 242}, {50, 157}, {70, 233}, {94, 241}, {42, 154}, {44, 156}, {40, 153}, {97, 208}, {43, 154}, {3, 177}, {47, 157}, {41, 155}, {41, 154}, {47, 156}, {7, 178}, {103, 210}, {100, 209}, {46, 155}, {34, 151}, {6, 176}, {102, 208}, {45, 155}, {33, 151}, {32, 151}, {44, 155}, {88, 239}, {9, 177}, {105, 209}, {32, 152}, {87, 239}, {10, 179}, {107, 210}, {13, 180}, {86, 239}, {35, 153}, {127, 197}, {126, 196}, {123, 193}, {122, 192}, {84, 238}, {35, 152}, {127, 196}, {123, 192}, {85, 238}, {15, 179}, {38, 154}, {36, 152}, {81, 237}, {83, 239}, {37, 152}, {126, 195}, {124, 193}, {80, 237}, {83, 238}, {12, 178}, {125, 195}, {124, 194}, {39, 153}, {80, 238}, {38, 153}, {125, 194}, {82, 237}, {27, 219}, {29, 221}, {26, 219}, {29, 220}, {24, 218}, {30, 220}, {25, 218}, {31, 220}, {112, 181}, {122, 191}, {120, 189}, {114, 183}, {26, 220}, {121, 191}, {120, 190}, {113, 183}, {112, 182}, {105, 175}, {38, 224}, {16, 215}, {121, 190}, {113, 182}, {104, 175}, {28, 219}, {17, 217}, {102, 174}, {41, 225}, {17, 216}, {103, 174}, {100, 173}, {41, 224}, {18, 216}, {119, 189}, {118, 188}, {115, 185}, {114, 184}, {101, 175}, {42, 224}, {19, 216}, {119, 188}, {115, 184}, {101, 174}, {43, 224}, {21, 217}, {98, 174}, {96, 172}, {47, 227}, {45, 225}, {23, 219}, {20, 217}, {118, 187}, {116, 185}, {97, 172}, {47, 226}, {44, 225}, {23, 218}, {20, 218}, {117, 187}, {116, 186}, {99, 173}, {44, 226}, {22, 217}, {117, 186}, {98, 173}, {46, 225}, {3, 211}, {53, 229}, {51, 227}, {5, 213}, {2, 211}, {53, 228}, {50, 227}, {5, 212}, {1, 211}, {54, 228}, {48, 226}, {6, 212}, {7, 212}, {55, 228}, {49, 226}, {1, 212}, {4, 210}, {62, 232}, {50, 228}, {14, 216}, {4, 211}, {52, 227}, {15, 215}, {104, 176}, {63, 231}, {14, 215}, {62, 231}, {12, 214}, {111, 181}, {110, 180}, {106, 176}, {60, 230}, {13, 214}, {111, 180}, {107, 176}, {106, 177}, {61, 230}, {9, 213}, {59, 231}, {57, 229}, {11, 215}, {8, 213}, {110, 179}, {108, 177}, {59, 230}, {56, 229}, {11, 214}, {8, 214}, {109, 179}, {108, 178}, {56, 230}, {33, 255}, {10, 213}, {109, 178}, {58, 229}, {30, 254}, {66, 162}, {68, 164}, {64, 161}, {67, 162}, {65, 163}, {71, 165}, {28, 255}, {65, 162}, {71, 164}, {24, 252}, {70, 163}, {27, 253}, {69, 163}, {25, 254}, {68, 163}, {18, 250}, {78, 166}, {76, 165}, {79, 166}, {77, 167}, {16, 251}, {22, 253}, {77, 166}, {72, 164}, {74, 166}, {73, 164}, {21, 251}, {75, 165}, {19, 252}, {74, 165}, {6, 246}, {90, 170}, {92, 172}, {49, 192}, {88, 169}, {91, 170}, {89, 171}, {95, 173}, {10, 249}, {95, 172}, {89, 170}, {3, 247}, {12, 248}, {52, 193}, {55, 194}, {82, 167}, {94, 171}, {15, 249}, {54, 192}, {81, 167}, {93, 171}, {2, 245}, {40, 223}, {13, 250}, {80, 167}, {92, 171}, {39, 223}, {57, 193}, {80, 168}, {38, 223}, {61, 196}, {58, 195}, {36, 222}, {83, 169}, {37, 222}, {83, 168}, {33, 221}, {63, 195}, {35, 223}, {84, 168}, {86, 170}, {32, 221}, {35, 222}, {85, 168}, {9, 247}, {60, 194}, {32, 222}, {87, 169}, {7, 248}, {34, 221}, {86, 169}, {4, 280}, {31, 256}, {34, 257}, {36, 256}, {39, 257}, {37, 258}, {42, 258}, {40, 259}, {46, 261}, {45, 259}, {43, 260}, {54, 262}, {52, 263}, {58, 265}, {48, 260}, {60, 264}, {51, 261}, {63, 265}, {49, 262}, {61, 266}, {57, 263}, {55, 264}, {78, 270}, {76, 271}, {82, 273}, {72, 268}, {84, 272}, {75, 269}, {87, 273}, {73, 270}, {85, 274}, {66, 266}, {90, 274}, {64, 267}, {70, 269}, {88, 275}, {94, 277}, {69, 267}, {93, 275}, {67, 268}, {91, 276}, {81, 271}, {79, 272}, {102, 278}, {100, 279}, {107, 280}, {96, 276}, {127, 267}, {126, 266}, {125, 265}, {124, 264}, {119, 259}, {118, 258}, {117, 257}, {116, 256}, {117, 256}, {127, 266}, {125, 264}, {119, 258}, {99, 277}, {97, 278}, {126, 265}, {118, 257}, {120, 259}, {124, 263}, {120, 260}, {123, 263}, {122, 262}, {121, 261}, {121, 260}, {123, 262}, {105, 279}, {103, 280}, {122, 261}, {128, 267}, {132, 271}, {128, 268}, {131, 271}, {130, 270}, {129, 269}, {129, 268}, {131, 270}, {130, 269}, {132, 272}, {140, 280}, {135, 275}, {134, 274}, {133, 273}, {133, 272}, {135, 274}, {134, 273}, {136, 275}, {140, 279}, {136, 276}, {139, 279}, {138, 278}, {137, 277}, {137, 276}, {139, 278}, {138, 277} }>;

(II) A more general form is to represent the graph as the orbit of {128, 197} under the group generated by the following permutations:

a: (182, 252)
b: (183, 253)
c: (178, 248)
d: (38, 40)(41, 45)(42, 119)(43, 120)(154, 189)(224, 259)
e: (185, 255)
f: (68, 70)(71, 75)(72, 129)(73, 130)(164, 199)(234, 269)
g: (29, 31)(32, 36)(33, 116)(34, 117)(151, 186)(221, 256)
h: (59, 61)(62, 66)(63, 126)(64, 127)(161, 196)(231, 266)
m: (184, 254)
n1: (14, 16)(17, 21)(18, 111)(19, 112)(146, 181)(216, 251)
a1: (80, 82)(83, 87)(84, 133)(85, 134)(168, 203)(238, 273)
b1: (44, 46)(47, 51)(48, 121)(49, 122)(156, 191)(226, 261)
c1: (191, 261)
d1: (89, 91)(92, 96)(93, 136)(94, 137)(171, 206)(241, 276)
e1: (26, 28)(29, 33)(30, 115)(31, 116)(150, 185)(220, 255)
f1: (74, 76)(77, 81)(78, 131)(79, 132)(166, 201)(236, 271)
g1: (194, 264)
h1: (56, 58)(59, 63)(60, 125)(61, 126)(160, 195)(230, 265)
m1: (71, 73)(74, 78)(75, 130)(76, 131)(165, 200)(235, 270)
n2: (98, 100)(101, 105)(102, 139)(103, 140)(174, 209)(244, 279)
a2: (142, 212)
b2: (95, 97)(98, 102)(99, 138)(100, 139)(173, 208)(243, 278)
c2: (41, 43)(44, 48)(45, 120)(46, 121)(155, 190)(225, 260)
d2: (47, 49)(50, 54)(51, 122)(52, 123)(157, 192)(227, 262)
e2: (192, 262)
f2: (77, 79)(80, 84)(81, 132)(82, 133)(167, 202)(237, 272)
g2: (181, 251)
h2: (11, 13)(14, 18)(15, 110)(16, 111)(145, 180)(215, 250)
m2: (203, 273)
n3: (20, 22)(23, 27)(24, 113)(25, 114)(148, 183)(218, 253)
a3: (202, 272)
b3: (199, 269)
c3: (177, 247)
d3: (207, 277)
e3: (198, 268)
f3: (205, 275)
g3: (65, 67)(68, 72)(69, 128)(70, 129)(163, 198)(233, 268)
h3: (186, 256)
m3: (190, 260)
n4: (83, 85)(86, 90)(87, 134)(88, 135)(169, 204)(239, 274)
a4: (176, 246)
b4: (35, 37)(38, 42)(39, 118)(40, 119)(153, 188)(223, 258)
c4: (189, 259)
d4: (86, 88)(89, 93)(90, 135)(91, 136)(170, 205)(240, 275)
e4: (32, 34)(35, 39)(36, 117)(37, 118)(152, 187)(222, 257)
f4: (195, 265)
g4: (187, 257)
h4: (50, 52)(53, 57)(54, 123)(55, 124)(158, 193)(228, 263)
m4: (188, 258)
n5: (208, 278)
a5: (23, 25)(26, 30)(27, 114)(28, 115)(149, 184)(219, 254)
b5: (8, 10)(11, 15)(12, 109)(13, 110)(144, 179)(214, 249)
c5: (2, 5)(3, 6)(4, 7)(8, 101)(9, 104)(10, 105)(11, 98)(12, 103)(13, 102)(14, 95)(15, 100)(16, 99)(17, 92)(18, 97)(19, 96)(20, 89)(21, 94)(22, 93)(23, 86)(24, 91)(25, 90)(26, 83)(27, 88)(28, 87)(29, 80)(30, 85)(31, 84)(32, 77)(33, 82)(34, 81)(35, 74)(36, 79)(37, 78)(38, 71)(39, 76)(40, 75)(41, 68)(42, 73)(43, 72)(44, 65)(45, 70)(46, 69)(47, 62)(48, 67)(49, 66)(50, 59)(51, 64)(52, 63)(53, 56)(54, 61)(55, 60)(57, 58)(107, 108)(109, 140)(110, 139)(111, 138)(112, 137)(113, 136)(114, 135)(115, 134)(116, 133)(117, 132)(118, 131)(119, 130)(120, 129)(121, 128)(122, 127)(123, 126)(124, 125)(141, 142)(143, 175)(144, 174)(145, 173)(146, 172)(147, 171)(148, 170)(149, 169)(150, 168)(151, 167)(152, 166)(153, 165)(154, 164)(155, 163)(156, 162)(157, 161)(158, 160)(176, 177)(178, 210)(179, 209)(180, 208)(181, 207)(182, 206)(183, 205)(184, 204)(185, 203)(186, 202)(187, 201)(188, 200)(189, 199)(190, 198)(191, 197)(192, 196)(193, 195)(211, 212)(213, 245)(214, 244)(215, 243)(216, 242)(217, 241)(218, 240)(219, 239)(220, 238)(221, 237)(222, 236)(223, 235)(224, 234)(225, 233)(226, 232)(227, 231)(228, 230)(246, 247)(248, 280)(249, 279)(250, 278)(251, 277)(252, 276)(253, 275)(254, 274)(255, 273)(256, 272)(257, 271)(258, 270)(259, 269)(260, 268)(261, 267)(262, 266)(263, 265)
d5: (193, 263)
e5: (180, 250)
f5: (2, 4)(101, 103)(104, 107)(105, 140)(175, 210)(245, 280)
g5: (179, 249)
h5: (17, 19)(20, 24)(21, 112)(22, 113)(147, 182)(217, 252)
m5: (206, 276)
n6: (141, 211)
a6: (62, 64)(65, 69)(66, 127)(67, 128)(162, 197)(232, 267)
b6: (201, 271)
c6: (53, 55)(56, 60)(57, 124)(58, 125)(159, 194)(229, 264)
d6: (209, 279)
e6: (200, 270)
f6: (196, 266)
g6: (92, 94)(95, 99)(96, 137)(97, 138)(172, 207)(242, 277)
h6: (1, 2, 101, 98, 95, 92, 89, 86, 83, 80, 77, 74, 71, 68, 65, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11, 8, 5)(3, 104, 103, 100, 97, 94, 91, 88, 85, 82, 79, 76, 73, 70, 67, 64, 61, 58, 55, 52, 49, 46, 43, 40, 37, 34, 31, 28, 25, 22, 19, 16, 13, 10, 7)(4, 105, 102, 99, 96, 93, 90, 87, 84, 81, 78, 75, 72, 69, 66, 63, 60, 57, 54, 51, 48, 45, 42, 39, 36, 33, 30, 27, 24, 21, 18, 15, 12, 9, 6)(106, 107, 140, 139, 138, 137, 136, 135, 134, 133, 132, 131, 130, 129, 128, 127, 126, 125, 124, 123, 122, 121, 120, 119, 118, 117, 116, 115, 114, 113, 112, 111, 110, 109, 108)(141, 175, 174, 173, 172, 171, 170, 169, 168, 167, 166, 165, 164, 163, 162, 161, 160, 159, 158, 157, 156, 155, 154, 153, 152, 151, 150, 149, 148, 147, 146, 145, 144, 143, 142)(176, 210, 209, 208, 207, 206, 205, 204, 203, 202, 201, 200, 199, 198, 197, 196, 195, 194, 193, 192, 191, 190, 189, 188, 187, 186, 185, 184, 183, 182, 181, 180, 179, 178, 177)(211, 245, 244, 243, 242, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 231, 230, 229, 228, 227, 226, 225, 224, 223, 222, 221, 220, 219, 218, 217, 216, 215, 214, 213, 212)(246, 280, 279, 278, 277, 276, 275, 274, 273, 272, 271, 270, 269, 268, 267, 266, 265, 264, 263, 262, 261, 260, 259, 258, 257, 256, 255, 254, 253, 252, 251, 250, 249, 248, 247)
m6: (210, 280)
n7: (204, 274)
a7: (197, 267)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 280, 30 ]
280
-1 211 212 141 142
-2 211 245 141 175
-3 177 211 247 141
-4 210 211 280 141
-5 143 212 213 142
-6 176 212 246 142
-7 178 212 248 142
-8 143 144 213 214
-9 143 177 213 247
-10 143 179 213 249
-11 144 145 214 215
-12 144 178 214 248
-13 144 180 214 250
-14 145 146 215 216
-15 145 179 215 249
-16 145 181 215 251
-17 146 147 216 217
-18 146 180 216 250
-19 146 182 216 252
-20 147 148 217 218
-21 147 181 217 251
-22 253 147 183 217
-23 148 149 218 219
-24 148 182 218 252
-25 254 148 184 218
-26 220 149 150 219
-27 253 149 183 219
-28 255 149 185 219
-29 220 221 150 151
-30 220 254 150 184
-31 220 256 150 186
-32 221 222 151 152
-33 221 255 151 185
-34 187 221 257 151
-35 222 223 152 153
-36 222 256 152 186
-37 188 222 258 152
-38 154 223 224 153
-39 187 223 257 153
-40 189 223 259 153
-41 154 155 224 225
-42 154 188 224 258
-43 154 190 224 260
-44 155 156 225 226
-45 155 189 225 259
-46 155 191 225 261
-47 156 157 226 227
-48 156 190 226 260
-49 156 192 226 262
-50 157 158 227 228
-51 157 191 227 261
-52 157 193 227 263
-53 158 159 228 229
-54 158 192 228 262
-55 264 158 194 228
-56 159 160 229 230
-57 159 193 229 263
-58 265 159 195 229
-59 231 160 161 230
-60 264 160 194 230
-61 266 160 196 230
-62 231 232 161 162
-63 231 265 161 195
-64 231 267 161 197
-65 232 233 162 163
-66 232 266 162 196
-67 198 232 268 162
-68 233 234 163 164
-69 233 267 163 197
-70 199 233 269 163
-71 165 234 235 164
-72 198 234 268 164
-73 200 234 270 164
-74 165 166 235 236
-75 165 199 235 269
-76 165 201 235 271
-77 166 167 236 237
-78 166 200 236 270
-79 166 202 236 272
-80 167 168 237 238
-81 167 201 237 271
-82 167 203 237 273
-83 168 169 238 239
-84 168 202 238 272
-85 168 204 238 274
-86 169 170 239 240
-87 169 203 239 273
-88 275 169 205 239
-89 170 171 240 241
-90 170 204 240 274
-91 276 170 206 240
-92 242 171 172 241
-93 275 171 205 241
-94 277 171 207 241
-95 242 243 172 173
-96 242 276 172 206
-97 242 278 172 208
-98 243 244 173 174
-99 243 277 173 207
-100 209 243 279 173
-101 244 245 174 175
-102 244 278 174 208
-103 210 244 280 174
-104 176 245 246 175
-105 209 245 279 175
-106 176 177 246 247
-107 176 210 246 280
-108 177 178 247 248
-109 178 179 248 249
-110 179 180 249 250
-111 180 181 250 251
-112 181 182 251 252
-113 253 182 183 252
-114 253 254 183 184
-115 254 255 184 185
-116 255 256 185 186
-117 187 256 257 186
-118 187 188 257 258
-119 188 189 258 259
-120 189 190 259 260
-121 190 191 260 261
-122 191 192 261 262
-123 192 193 262 263
-124 264 193 194 263
-125 264 265 194 195
-126 265 266 195 196
-127 266 267 196 197
-128 198 267 268 197
-129 198 199 268 269
-130 199 200 269 270
-131 200 201 270 271
-132 201 202 271 272
-133 202 203 272 273
-134 203 204 273 274
-135 275 204 205 274
-136 275 276 205 206
-137 276 277 206 207
-138 277 278 207 208
-139 209 278 279 208
-140 209 210 279 280
-141 1 2 3 4
-142 1 5 6 7
-143 5 8 9 10
-144 11 12 13 8
-145 11 14 15 16
-146 14 17 18 19
-147 22 17 20 21
-148 23 24 25 20
-149 23 26 27 28
-150 26 29 30 31
-151 33 34 29 32
-152 35 36 37 32
-153 35 38 39 40
-154 38 41 42 43
-155 44 45 46 41
-156 44 47 48 49
-157 47 50 51 52
-158 55 50 53 54
-159 56 57 58 53
-160 56 59 60 61
-161 59 62 63 64
-162 66 67 62 65
-163 68 69 70 65
-164 68 71 72 73
-165 71 74 75 76
-166 77 78 79 74
-167 77 80 81 82
-168 80 83 84 85
-169 88 83 86 87
-170 89 90 91 86
-171 89 92 93 94
-172 92 95 96 97
-173 99 100 95 98
-174 101 102 103 98
-175 2 101 104 105
-176 104 6 106 107
-177 3 106 9 108
-178 12 7 108 109
-179 110 15 10 109
-180 110 111 13 18
-181 111 112 16 21
-182 24 112 113 19
-183 22 113 114 27
-184 25 114 115 30
-185 33 115 28 116
-186 36 116 117 31
-187 34 39 117 118
-188 37 118 42 119
-189 45 40 119 120
-190 121 48 43 120
-191 121 122 46 51
-192 122 123 49 54
-193 57 123 124 52
-194 55 124 125 60
-195 58 125 126 63
-196 66 126 61 127
-197 69 127 128 64
-198 67 72 128 129
-199 70 129 75 130
-200 78 73 130 131
-201 132 81 76 131
-202 132 133 79 84
-203 133 134 82 87
-204 90 134 135 85
-205 88 135 136 93
-206 91 136 137 96
-207 99 137 94 138
-208 102 138 139 97
-209 100 105 139 140
-210 4 103 107 140
-211 1 2 3 4
-212 1 5 6 7
-213 5 8 9 10
-214 11 12 13 8
-215 11 14 15 16
-216 14 17 18 19
-217 22 17 20 21
-218 23 24 25 20
-219 23 26 27 28
-220 26 29 30 31
-221 33 34 29 32
-222 35 36 37 32
-223 35 38 39 40
-224 38 41 42 43
-225 44 45 46 41
-226 44 47 48 49
-227 47 50 51 52
-228 55 50 53 54
-229 56 57 58 53
-230 56 59 60 61
-231 59 62 63 64
-232 66 67 62 65
-233 68 69 70 65
-234 68 71 72 73
-235 71 74 75 76
-236 77 78 79 74
-237 77 80 81 82
-238 80 83 84 85
-239 88 83 86 87
-240 89 90 91 86
-241 89 92 93 94
-242 92 95 96 97
-243 99 100 95 98
-244 101 102 103 98
-245 2 101 104 105
-246 104 6 106 107
-247 3 106 9 108
-248 12 7 108 109
-249 110 15 10 109
-250 110 111 13 18
-251 111 112 16 21
-252 24 112 113 19
-253 22 113 114 27
-254 25 114 115 30
-255 33 115 28 116
-256 36 116 117 31
-257 34 39 117 118
-258 37 118 42 119
-259 45 40 119 120
-260 121 48 43 120
-261 121 122 46 51
-262 122 123 49 54
-263 57 123 124 52
-264 55 124 125 60
-265 58 125 126 63
-266 66 126 61 127
-267 69 127 128 64
-268 67 72 128 129
-269 70 129 75 130
-270 78 73 130 131
-271 132 81 76 131
-272 132 133 79 84
-273 133 134 82 87
-274 90 134 135 85
-275 88 135 136 93
-276 91 136 137 96
-277 99 137 94 138
-278 102 138 139 97
-279 100 105 139 140
-280 4 103 107 140
0

**************