C4graphConstructions for C4[ 288, 9 ] = {4,4}_[24,6]

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 288, 9 ]. See Glossary for some detail.

{4, 4}_[ 24, 6] = PS( 48, 12; 1) = PS( 48, 12; 5)

      = PS( 12, 48; 1) = PS( 12, 48; 23) = PL(MC3( 6, 24, 1, 17, 17, 6, 1), [6^24, 24^6])

      = PL(MC3( 12, 12, 1, 5, 5, 6, 1), [6^24, 24^6]) = UG(ATD[288, 142]) = UG(ATD[288, 143])

      = UG(ATD[288, 144]) = MG(Rmap(288,317) { 12, 48| 2}_ 48) = DG(Rmap(288,317) { 12, 48| 2}_ 48)

      = MG(Rmap(288,320) { 12, 48| 6}_ 48) = DG(Rmap(288,320) { 12, 48| 6}_ 48) = DG(Rmap(288,328) { 48, 12| 6}_ 48)

      = DG(Rmap(288,329) { 48, 12| 2}_ 48) = BGCG(DW( 24, 3); K2;{1, 3}) = AT[288, 81]

     

Cyclic coverings

mod 48:
123456
1 1 47 0 - - - 0
2 0 1 47 0 - - -
3 - 0 1 47 0 - -
4 - - 0 1 47 0 -
5 - - - 0 1 47 6
6 0 - - - 42 1 47

mod 48:
123456
1 - 0 0 - 0 0
2 0 - 1 0 - 1
3 0 47 - 0 15 -
4 - 0 0 - 16 16
5 0 - 33 32 - 1
6 0 47 - 32 47 -

mod 48:
123456
1 - 0 0 - 0 0
2 0 - 1 0 - 1
3 0 47 - 0 3 -
4 - 0 0 - 4 4
5 0 - 45 44 - 1
6 0 47 - 44 47 -

mod 48:
123456
1 - 0 0 0 38 - -
2 0 - 9 - 0 38 -
3 0 39 - - - 1 39
4 0 10 - - - 0 1
5 - 0 10 - 0 - 10
6 - - 9 47 47 38 -

mod 48:
123456
1 1 47 0 46 - - - -
2 0 2 - 0 46 - - -
3 - 0 2 - 0 46 - -
4 - - 0 2 - 0 46 -
5 - - - 0 2 - 0 46
6 - - - - 0 2 1 47