C4graphConstructions for C4[ 288, 12 ] = {4,4}_<38,34>

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 288, 12 ]. See Glossary for some detail.

{4, 4}_< 38, 34> = MPS( 72, 8; 1) = MPS( 72, 8; 3)

      = PS( 4,144; 35) = PS( 4,144; 37) = MPS( 4,144; 1)

      = MPS( 4,144; 71) = R_144( 2, 73) = R_144( 70, 1)

      = R_144( 74, 1) = R_144(142, 73) = PL(MC3( 4, 36, 1, 19, 19, 34, 1), [4^36, 72^2])

      = PL(MC3( 6, 24, 1, 13, 13, 10, 1), [4^36, 72^2]) = PL(MC3( 6, 24, 1, 13, 13, 22, 1), [4^36, 72^2]) = PL(MC3( 12, 12, 1, 7, 7, 10, 1), [4^36, 72^2])

      = PL(MC3( 18, 8, 1, 5, 5, 2, 1), [4^36, 72^2]) = PL(MC3( 18, 8, 1, 5, 5, 6, 1), [4^36, 72^2]) = PL(MBr( 2, 72; 35))

      = PL(BC_72({ 0, 36 }, { 1, 35 }) = UG(ATD[288, 163]) = UG(ATD[288, 164])

      = UG(ATD[288, 165]) = MG(Rmap(288,242) { 8,144| 4}_144) = DG(Rmap(288,242) { 8,144| 4}_144)

      = MG(Rmap(288,243) { 8,144| 2}_144) = DG(Rmap(288,243) { 8,144| 2}_144) = DG(Rmap(288,244) {144, 8| 2}_144)

      = DG(Rmap(288,245) {144, 8| 4}_144) = BGCG(W( 36, 2); K2;{5, 6}) = AT[288, 48]

     

Cyclic coverings

mod 144:
12
1 1 143 0 70
2 0 74 1 143

mod 144:
12
1 1 143 0 2
2 0 142 71 73