C4graphGraph forms for C4 [ 288, 25 ] = R_144(110,37)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 25 ] = R_144(110,37).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {2, 3}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {1, 2}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {3, 4}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {7, 8}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {15, 16}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {128, 162}, {129, 163}, {132, 166}, {133, 167}, {136, 170}, {137, 171}, {140, 174}, {141, 175}, {144, 178}, {146, 183}, {218, 255}, {216, 253}, {210, 247}, {208, 245}, {202, 239}, {200, 237}, {194, 231}, {192, 229}, {152, 189}, {154, 191}, {130, 164}, {131, 165}, {138, 172}, {139, 173}, {145, 182}, {217, 254}, {209, 246}, {201, 238}, {193, 230}, {153, 190}, {147, 184}, {215, 252}, {211, 248}, {199, 236}, {195, 232}, {151, 188}, {148, 185}, {214, 251}, {212, 249}, {198, 235}, {196, 233}, {150, 187}, {134, 168}, {135, 169}, {149, 186}, {213, 250}, {197, 234}, {203, 240}, {207, 244}, {204, 241}, {206, 243}, {142, 176}, {143, 177}, {31, 32}, {205, 242}, {95, 96}, {155, 192}, {191, 228}, {187, 224}, {159, 196}, {156, 193}, {190, 227}, {188, 225}, {158, 195}, {157, 194}, {189, 226}, {160, 197}, {186, 223}, {184, 221}, {178, 215}, {176, 213}, {170, 207}, {168, 205}, {162, 199}, {161, 198}, {185, 222}, {177, 214}, {169, 206}, {148, 255}, {183, 220}, {179, 216}, {167, 204}, {163, 200}, {145, 252}, {182, 219}, {180, 217}, {166, 203}, {164, 201}, {147, 254}, {146, 253}, {181, 218}, {165, 202}, {171, 208}, {175, 212}, {172, 209}, {174, 211}, {63, 64}, {173, 210}, {1, 145}, {79, 223}, {78, 222}, {77, 221}, {76, 220}, {75, 219}, {74, 218}, {73, 217}, {72, 216}, {71, 215}, {70, 214}, {69, 213}, {68, 212}, {67, 211}, {66, 210}, {65, 209}, {64, 208}, {2, 146}, {3, 147}, {4, 148}, {5, 149}, {6, 150}, {7, 151}, {8, 152}, {9, 153}, {10, 154}, {11, 155}, {12, 156}, {13, 157}, {14, 158}, {15, 159}, {32, 176}, {33, 177}, {34, 178}, {35, 179}, {36, 180}, {37, 181}, {38, 182}, {39, 183}, {40, 184}, {41, 185}, {42, 186}, {43, 187}, {44, 188}, {45, 189}, {46, 190}, {47, 191}, {96, 240}, {97, 241}, {98, 242}, {99, 243}, {100, 244}, {101, 245}, {102, 246}, {103, 247}, {104, 248}, {105, 249}, {106, 250}, {107, 251}, {108, 252}, {109, 253}, {110, 254}, {111, 255}, {1, 144}, {16, 160}, {84, 228}, {83, 227}, {82, 226}, {81, 225}, {80, 224}, {17, 161}, {18, 162}, {19, 163}, {20, 164}, {21, 165}, {22, 166}, {23, 167}, {24, 168}, {25, 169}, {26, 170}, {27, 171}, {28, 172}, {29, 173}, {30, 174}, {31, 175}, {85, 229}, {86, 230}, {87, 231}, {88, 232}, {89, 233}, {90, 234}, {91, 235}, {92, 236}, {93, 237}, {94, 238}, {95, 239}, {1, 179}, {77, 255}, {76, 254}, {73, 251}, {72, 250}, {69, 247}, {68, 246}, {65, 243}, {64, 242}, {4, 182}, {5, 183}, {8, 186}, {9, 187}, {12, 190}, {13, 191}, {2, 180}, {75, 253}, {74, 252}, {67, 245}, {66, 244}, {3, 181}, {10, 188}, {11, 189}, {6, 184}, {71, 249}, {70, 248}, {7, 185}, {14, 192}, {63, 241}, {62, 240}, {15, 193}, {30, 208}, {31, 209}, {46, 224}, {47, 225}, {16, 194}, {61, 239}, {60, 238}, {57, 235}, {56, 234}, {53, 231}, {52, 230}, {17, 195}, {20, 198}, {21, 199}, {24, 202}, {25, 203}, {28, 206}, {29, 207}, {48, 226}, {49, 227}, {18, 196}, {59, 237}, {58, 236}, {51, 229}, {50, 228}, {19, 197}, {26, 204}, {27, 205}, {22, 200}, {55, 233}, {54, 232}, {23, 201}, {126, 160}, {127, 161}, {112, 146}, {113, 147}, {116, 150}, {117, 151}, {120, 154}, {121, 155}, {124, 158}, {125, 159}, {114, 148}, {115, 149}, {122, 156}, {123, 157}, {118, 152}, {119, 153}, {48, 192}, {63, 207}, {62, 206}, {61, 205}, {60, 204}, {59, 203}, {58, 202}, {57, 201}, {56, 200}, {55, 199}, {54, 198}, {53, 197}, {52, 196}, {51, 195}, {49, 193}, {50, 194}, {32, 210}, {33, 211}, {36, 214}, {37, 215}, {40, 218}, {41, 219}, {44, 222}, {45, 223}, {34, 212}, {35, 213}, {42, 220}, {43, 221}, {38, 216}, {39, 217}, {111, 145}, {127, 128}, {78, 256}, {79, 257}, {94, 272}, {95, 273}, {110, 288}, {80, 258}, {84, 262}, {81, 259}, {85, 263}, {88, 266}, {89, 267}, {92, 270}, {93, 271}, {82, 260}, {83, 261}, {90, 268}, {91, 269}, {86, 264}, {87, 265}, {112, 256}, {113, 257}, {114, 258}, {115, 259}, {116, 260}, {117, 261}, {118, 262}, {119, 263}, {120, 264}, {121, 265}, {122, 266}, {123, 267}, {124, 268}, {125, 269}, {126, 270}, {127, 271}, {96, 274}, {97, 275}, {100, 278}, {101, 279}, {104, 282}, {105, 283}, {108, 286}, {109, 287}, {98, 276}, {99, 277}, {106, 284}, {107, 285}, {102, 280}, {103, 281}, {128, 272}, {129, 273}, {130, 274}, {131, 275}, {132, 276}, {133, 277}, {134, 278}, {135, 279}, {136, 280}, {137, 281}, {138, 282}, {139, 283}, {140, 284}, {141, 285}, {142, 286}, {143, 287}, {149, 256}, {181, 288}, {151, 258}, {157, 264}, {159, 266}, {150, 257}, {158, 265}, {152, 259}, {156, 263}, {153, 260}, {155, 262}, {154, 261}, {160, 267}, {180, 287}, {176, 283}, {164, 271}, {161, 268}, {179, 286}, {177, 284}, {163, 270}, {162, 269}, {178, 285}, {144, 288}, {165, 272}, {175, 282}, {173, 280}, {167, 274}, {166, 273}, {174, 281}, {168, 275}, {172, 279}, {169, 276}, {171, 278}, {170, 277}, {219, 256}, {251, 288}, {223, 260}, {220, 257}, {222, 259}, {221, 258}, {224, 261}, {250, 287}, {248, 285}, {242, 279}, {240, 277}, {234, 271}, {232, 269}, {226, 263}, {225, 262}, {249, 286}, {241, 278}, {233, 270}, {227, 264}, {247, 284}, {243, 280}, {231, 268}, {228, 265}, {246, 283}, {244, 281}, {230, 267}, {229, 266}, {245, 282}, {235, 272}, {239, 276}, {236, 273}, {238, 275}, {237, 274} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144)(145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288)
b: (2, 144)(3, 143)(4, 142)(5, 141)(6, 140)(7, 139)(8, 138)(9, 137)(10, 136)(11, 135)(12, 134)(13, 133)(14, 132)(15, 131)(16, 130)(17, 129)(18, 128)(19, 127)(20, 126)(21, 125)(22, 124)(23, 123)(24, 122)(25, 121)(26, 120)(27, 119)(28, 118)(29, 117)(30, 116)(31, 115)(32, 114)(33, 113)(34, 112)(35, 111)(36, 110)(37, 109)(38, 108)(39, 107)(40, 106)(41, 105)(42, 104)(43, 103)(44, 102)(45, 101)(46, 100)(47, 99)(48, 98)(49, 97)(50, 96)(51, 95)(52, 94)(53, 93)(54, 92)(55, 91)(56, 90)(57, 89)(58, 88)(59, 87)(60, 86)(61, 85)(62, 84)(63, 83)(64, 82)(65, 81)(66, 80)(67, 79)(68, 78)(69, 77)(70, 76)(71, 75)(72, 74)(145, 179)(146, 178)(147, 177)(148, 176)(149, 175)(150, 174)(151, 173)(152, 172)(153, 171)(154, 170)(155, 169)(156, 168)(157, 167)(158, 166)(159, 165)(160, 164)(161, 163)(180, 288)(181, 287)(182, 286)(183, 285)(184, 284)(185, 283)(186, 282)(187, 281)(188, 280)(189, 279)(190, 278)(191, 277)(192, 276)(193, 275)(194, 274)(195, 273)(196, 272)(197, 271)(198, 270)(199, 269)(200, 268)(201, 267)(202, 266)(203, 265)(204, 264)(205, 263)(206, 262)(207, 261)(208, 260)(209, 259)(210, 258)(211, 257)(212, 256)(213, 255)(214, 254)(215, 253)(216, 252)(217, 251)(218, 250)(219, 249)(220, 248)(221, 247)(222, 246)(223, 245)(224, 244)(225, 243)(226, 242)(227, 241)(228, 240)(229, 239)(230, 238)(231, 237)(232, 236)(233, 235)
c: (2, 145)(3, 182)(5, 148)(6, 185)(8, 151)(9, 188)(11, 154)(12, 191)(14, 157)(15, 194)(17, 160)(18, 197)(20, 163)(21, 200)(23, 166)(24, 203)(26, 169)(27, 206)(29, 172)(30, 209)(32, 175)(33, 212)(35, 178)(36, 215)(38, 181)(39, 218)(41, 184)(42, 221)(44, 187)(45, 224)(47, 190)(48, 227)(50, 193)(51, 230)(53, 196)(54, 233)(56, 199)(57, 236)(59, 202)(60, 239)(62, 205)(63, 242)(65, 208)(66, 245)(68, 211)(69, 248)(71, 214)(72, 251)(74, 217)(75, 254)(77, 220)(78, 257)(80, 223)(81, 260)(83, 226)(84, 263)(86, 229)(87, 266)(89, 232)(90, 269)(92, 235)(93, 272)(95, 238)(96, 275)(98, 241)(99, 278)(101, 244)(102, 281)(104, 247)(105, 284)(107, 250)(108, 287)(110, 253)(111, 146)(113, 256)(114, 149)(116, 259)(117, 152)(119, 262)(120, 155)(122, 265)(123, 158)(125, 268)(126, 161)(128, 271)(129, 164)(131, 274)(132, 167)(134, 277)(135, 170)(137, 280)(138, 173)(140, 283)(141, 176)(143, 286)(144, 179)(147, 219)(150, 222)(153, 225)(156, 228)(159, 231)(162, 234)(165, 237)(168, 240)(171, 243)(174, 246)(177, 249)(180, 252)(183, 255)(186, 258)(189, 261)(192, 264)(195, 267)(198, 270)(201, 273)(204, 276)(207, 279)(210, 282)(213, 285)(216, 288)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 25 ]
288
-1 144 2 145 179
-2 1 3 146 180
-3 2 4 147 181
-4 3 5 148 182
-5 4 6 149 183
-6 5 7 150 184
-7 6 8 151 185
-8 7 9 152 186
-9 187 8 10 153
-10 11 154 188 9
-11 12 155 189 10
-12 11 13 156 190
-13 12 14 157 191
-14 13 15 158 192
-15 14 16 159 193
-16 15 17 160 194
-17 16 18 161 195
-18 17 19 162 196
-19 18 20 163 197
-20 198 19 21 164
-21 22 165 199 20
-22 23 166 200 21
-23 22 24 167 201
-24 23 25 168 202
-25 24 26 169 203
-26 25 27 170 204
-27 26 28 171 205
-28 27 29 172 206
-29 28 30 173 207
-30 29 31 174 208
-31 209 30 32 175
-32 33 176 210 31
-33 34 177 211 32
-34 33 35 178 212
-35 34 36 179 213
-36 35 37 180 214
-37 36 38 181 215
-38 37 39 182 216
-39 38 40 183 217
-40 39 41 184 218
-41 40 42 185 219
-42 220 41 43 186
-43 44 187 221 42
-44 45 188 222 43
-45 44 46 189 223
-46 45 47 190 224
-47 46 48 191 225
-48 47 49 192 226
-49 48 50 193 227
-50 49 51 194 228
-51 50 52 195 229
-52 51 53 196 230
-53 231 52 54 197
-54 55 198 232 53
-55 56 199 233 54
-56 55 57 200 234
-57 56 58 201 235
-58 57 59 202 236
-59 58 60 203 237
-60 59 61 204 238
-61 60 62 205 239
-62 61 63 206 240
-63 62 64 207 241
-64 242 63 65 208
-65 66 209 243 64
-66 67 210 244 65
-67 66 68 211 245
-68 67 69 212 246
-69 68 70 213 247
-70 69 71 214 248
-71 70 72 215 249
-72 71 73 216 250
-73 72 74 217 251
-74 73 75 218 252
-75 253 74 76 219
-76 77 220 254 75
-77 78 221 255 76
-78 77 79 222 256
-79 78 80 223 257
-80 79 81 224 258
-81 80 82 225 259
-82 81 83 226 260
-83 82 84 227 261
-84 83 85 228 262
-85 84 86 229 263
-86 264 85 87 230
-87 88 231 265 86
-88 89 232 266 87
-89 88 90 233 267
-90 89 91 234 268
-91 90 92 235 269
-92 91 93 236 270
-93 92 94 237 271
-94 93 95 238 272
-95 94 96 239 273
-96 95 97 240 274
-97 275 96 98 241
-98 99 242 276 97
-99 100 243 277 98
-100 99 101 244 278
-101 100 102 245 279
-102 101 103 246 280
-103 102 104 247 281
-104 103 105 248 282
-105 104 106 249 283
-106 105 107 250 284
-107 106 108 251 285
-108 286 107 109 252
-109 110 253 287 108
-110 111 254 288 109
-111 110 112 145 255
-112 111 113 146 256
-113 112 114 147 257
-114 113 115 148 258
-115 114 116 149 259
-116 115 117 150 260
-117 116 118 151 261
-118 117 119 152 262
-119 118 120 153 263
-120 121 154 264 119
-121 122 155 265 120
-122 121 123 156 266
-123 122 124 157 267
-124 123 125 158 268
-125 124 126 159 269
-126 125 127 160 270
-127 126 128 161 271
-128 127 129 162 272
-129 128 130 163 273
-130 129 131 164 274
-131 132 165 275 130
-132 133 166 276 131
-133 132 134 167 277
-134 133 135 168 278
-135 134 136 169 279
-136 135 137 170 280
-137 136 138 171 281
-138 137 139 172 282
-139 138 140 173 283
-140 139 141 174 284
-141 140 142 175 285
-142 143 176 286 141
-143 144 177 287 142
-144 143 1 178 288
-145 1 111 182 252
-146 253 2 112 183
-147 254 3 113 184
-148 255 4 114 185
-149 256 5 115 186
-150 187 257 6 116
-151 188 258 7 117
-152 189 259 8 118
-153 190 260 9 119
-154 191 261 10 120
-155 11 121 192 262
-156 12 122 193 263
-157 264 13 123 194
-158 265 14 124 195
-159 266 15 125 196
-160 267 16 126 197
-161 198 268 17 127
-162 199 269 18 128
-163 200 270 19 129
-164 201 271 20 130
-165 202 272 21 131
-166 22 132 203 273
-167 23 133 204 274
-168 275 24 134 205
-169 276 25 135 206
-170 277 26 136 207
-171 278 27 137 208
-172 209 279 28 138
-173 210 280 29 139
-174 211 281 30 140
-175 212 282 31 141
-176 213 283 32 142
-177 33 143 214 284
-178 34 144 215 285
-179 286 1 35 216
-180 287 2 36 217
-181 288 3 37 218
-182 145 4 38 219
-183 220 146 5 39
-184 221 147 6 40
-185 222 148 7 41
-186 223 149 8 42
-187 224 150 9 43
-188 44 225 151 10
-189 11 45 226 152
-190 12 46 227 153
-191 154 13 47 228
-192 155 14 48 229
-193 156 15 49 230
-194 231 157 16 50
-195 232 158 17 51
-196 233 159 18 52
-197 234 160 19 53
-198 235 161 20 54
-199 55 236 162 21
-200 22 56 237 163
-201 23 57 238 164
-202 165 24 58 239
-203 166 25 59 240
-204 167 26 60 241
-205 242 168 27 61
-206 243 169 28 62
-207 244 170 29 63
-208 245 171 30 64
-209 246 172 31 65
-210 66 247 173 32
-211 33 67 248 174
-212 34 68 249 175
-213 176 35 69 250
-214 177 36 70 251
-215 178 37 71 252
-216 253 179 38 72
-217 254 180 39 73
-218 255 181 40 74
-219 256 182 41 75
-220 257 183 42 76
-221 77 258 184 43
-222 44 78 259 185
-223 45 79 260 186
-224 187 46 80 261
-225 188 47 81 262
-226 189 48 82 263
-227 264 190 49 83
-228 265 191 50 84
-229 266 192 51 85
-230 267 193 52 86
-231 268 194 53 87
-232 88 269 195 54
-233 55 89 270 196
-234 56 90 271 197
-235 198 57 91 272
-236 199 58 92 273
-237 200 59 93 274
-238 275 201 60 94
-239 276 202 61 95
-240 277 203 62 96
-241 278 204 63 97
-242 279 205 64 98
-243 99 280 206 65
-244 66 100 281 207
-245 67 101 282 208
-246 209 68 102 283
-247 210 69 103 284
-248 211 70 104 285
-249 286 212 71 105
-250 287 213 72 106
-251 288 214 73 107
-252 145 215 74 108
-253 146 216 75 109
-254 110 147 217 76
-255 77 111 148 218
-256 78 112 149 219
-257 220 79 113 150
-258 221 80 114 151
-259 222 81 115 152
-260 223 82 116 153
-261 154 224 83 117
-262 155 225 84 118
-263 156 226 85 119
-264 157 227 86 120
-265 121 158 228 87
-266 88 122 159 229
-267 89 123 160 230
-268 231 90 124 161
-269 232 91 125 162
-270 233 92 126 163
-271 234 93 127 164
-272 165 235 94 128
-273 166 236 95 129
-274 167 237 96 130
-275 168 238 97 131
-276 132 169 239 98
-277 99 133 170 240
-278 100 134 171 241
-279 242 101 135 172
-280 243 102 136 173
-281 244 103 137 174
-282 245 104 138 175
-283 176 246 105 139
-284 177 247 106 140
-285 178 248 107 141
-286 179 249 108 142
-287 143 180 250 109
-288 110 144 181 251
0

**************