C4graphConstructions for C4[ 288, 29 ] = PL(MSY(4,36,17,0))

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 288, 29 ]. See Glossary for some detail.

PL(MSY( 4, 36, 17, 0)) = PL(MSY( 4, 36, 19, 0)) = PL(MC3( 4, 36, 1, 35, 17, 0, 1), [4^36, 36^4])

      = PL(MC3( 4, 36, 1, 35, 19, 0, 1), [4^36, 36^4]) = PL(KE_ 36( 1, 19, 2, 19, 1), [4^36, 36^4]) = PL(Curtain_ 36( 1, 18, 16, 33, 34), [4^36, 36^4])

      = PL(Br( 4, 36; 17)) = PL(ATD[ 36, 12]#DCyc[ 4]) = PL(CS(W( 18, 2)[ 36^ 2], 0))

      = PL(CSI(W( 18, 2)[ 36^ 2], 4)) = BGCG(W( 18, 2), C_ 4, {2, 4, 5, 7', 8'})

Cyclic coverings

mod 36:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - 1 0 19 20
4 - - - - 35 0 19 18
5 0 0 35 1 - - - -
6 0 0 0 0 - - - -
7 0 34 17 17 - - - -
8 0 34 16 18 - - - -

mod 36:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - 17 0 0 0
3 - - - - 19 0 0 2
4 - - - - - - 0 1 19 20
5 0 35 19 17 - - - - -
6 0 35 0 0 - - - - -
7 - 0 0 0 35 - - - -
8 - 0 34 16 17 - - - -

mod 36:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - - 0 17 0 17 -
3 - - - - - - 0 1 0 1
4 - - - - 0 17 - - 0 17
5 0 35 - - 0 19 - - - -
6 0 35 0 19 - - - - - -
7 - 0 19 0 35 - - - - -
8 - - 0 35 0 19 - - - -

mod 36:
12345678
1 - - - - 0 1 0 19 - -
2 - - - - 0 0 0 0
3 - - - - - - 0 17 0 35
4 - - - - 33 15 17 35
5 0 35 0 - 3 - - - -
6 0 17 0 - 21 - - - -
7 - 0 0 19 19 - - - -
8 - 0 0 1 1 - - - -

mod 36:
12345678
1 - - - - 0 0 - 0 27
2 - - - - 0 0 0 27 -
3 - - - - 1 19 0 27 -
4 - - - - 1 19 - 11 20
5 0 0 35 35 - - - -
6 0 0 17 17 - - - -
7 - 0 9 0 9 - - - - -
8 0 9 - - 16 25 - - - -