C4graphGraph forms for C4 [ 288, 36 ] = PL(MSY(6,24,17,12))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 36 ] = PL(MSY(6,24,17,12)).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {134, 150}, {134, 151}, {133, 151}, {133, 150}, {134, 162}, {135, 163}, {134, 163}, {135, 162}, {136, 174}, {136, 175}, {135, 175}, {135, 174}, {136, 186}, {137, 187}, {136, 187}, {137, 186}, {138, 198}, {138, 199}, {137, 199}, {137, 198}, {140, 222}, {140, 223}, {139, 223}, {139, 222}, {138, 210}, {139, 211}, {128, 217}, {139, 210}, {138, 211}, {128, 228}, {129, 229}, {128, 229}, {140, 234}, {141, 235}, {140, 235}, {141, 234}, {128, 240}, {129, 241}, {129, 240}, {130, 241}, {142, 246}, {142, 247}, {141, 247}, {141, 246}, {129, 252}, {130, 252}, {131, 253}, {130, 253}, {111, 239}, {51, 178}, {110, 239}, {38, 164}, {51, 177}, {39, 165}, {38, 165}, {103, 228}, {39, 164}, {26, 158}, {103, 227}, {58, 190}, {27, 159}, {26, 159}, {59, 190}, {52, 177}, {27, 158}, {52, 178}, {59, 189}, {58, 189}, {26, 146}, {66, 202}, {65, 201}, {77, 197}, {98, 234}, {26, 147}, {117, 252}, {77, 196}, {99, 234}, {25, 147}, {118, 252}, {78, 196}, {99, 233}, {25, 146}, {104, 227}, {66, 201}, {65, 202}, {78, 197}, {98, 233}, {80, 220}, {104, 228}, {90, 214}, {91, 215}, {80, 221}, {118, 251}, {90, 215}, {91, 214}, {117, 251}, {1, 145}, {2, 146}, {90, 202}, {90, 203}, {79, 221}, {89, 203}, {1, 146}, {63, 172}, {2, 145}, {79, 220}, {89, 202}, {9, 157}, {63, 171}, {41, 189}, {40, 188}, {8, 157}, {41, 188}, {40, 189}, {13, 152}, {8, 158}, {39, 177}, {14, 152}, {9, 158}, {39, 176}, {40, 176}, {67, 219}, {56, 160}, {68, 220}, {14, 151}, {57, 160}, {40, 177}, {13, 151}, {127, 228}, {105, 245}, {106, 246}, {72, 213}, {72, 214}, {110, 240}, {78, 208}, {79, 209}, {67, 220}, {111, 240}, {106, 245}, {105, 246}, {68, 219}, {78, 209}, {79, 208}, {22, 182}, {120, 216}, {102, 198}, {101, 197}, {23, 182}, {50, 147}, {23, 181}, {49, 147}, {22, 181}, {102, 197}, {101, 198}, {61, 153}, {62, 154}, {81, 245}, {94, 250}, {15, 170}, {49, 148}, {81, 244}, {94, 251}, {15, 169}, {127, 217}, {126, 216}, {57, 159}, {50, 148}, {82, 244}, {93, 251}, {56, 159}, {127, 216}, {62, 153}, {61, 154}, {82, 245}, {93, 250}, {116, 221}, {28, 182}, {116, 222}, {106, 192}, {29, 183}, {4, 175}, {107, 192}, {29, 182}, {28, 183}, {3, 175}, {115, 222}, {115, 221}, {120, 215}, {11, 187}, {27, 171}, {20, 164}, {10, 187}, {125, 204}, {27, 170}, {21, 164}, {92, 238}, {127, 205}, {126, 204}, {93, 239}, {3, 176}, {126, 205}, {92, 239}, {93, 238}, {4, 176}, {10, 188}, {28, 170}, {21, 163}, {97, 215}, {11, 188}, {28, 171}, {20, 163}, {80, 232}, {81, 233}, {91, 227}, {16, 169}, {114, 203}, {80, 233}, {81, 232}, {91, 226}, {97, 216}, {16, 170}, {113, 203}, {37, 153}, {125, 193}, {124, 192}, {109, 209}, {69, 249}, {70, 250}, {37, 152}, {125, 192}, {113, 204}, {108, 209}, {38, 152}, {114, 204}, {108, 210}, {65, 255}, {92, 226}, {38, 153}, {126, 193}, {109, 210}, {64, 255}, {69, 250}, {70, 249}, {92, 227}, {13, 205}, {45, 237}, {44, 236}, {12, 205}, {111, 174}, {45, 236}, {44, 237}, {12, 206}, {111, 173}, {13, 206}, {5, 193}, {31, 219}, {6, 194}, {31, 218}, {32, 230}, {33, 231}, {5, 194}, {33, 230}, {32, 231}, {6, 193}, {105, 161}, {125, 181}, {124, 180}, {19, 218}, {124, 181}, {104, 161}, {58, 243}, {19, 217}, {104, 162}, {57, 243}, {43, 225}, {24, 211}, {105, 162}, {43, 224}, {24, 212}, {118, 186}, {44, 224}, {86, 154}, {20, 217}, {119, 186}, {57, 244}, {44, 225}, {86, 155}, {20, 218}, {119, 185}, {58, 244}, {85, 155}, {85, 154}, {123, 180}, {118, 185}, {30, 206}, {100, 180}, {62, 238}, {34, 242}, {31, 207}, {99, 179}, {30, 207}, {63, 238}, {34, 243}, {31, 206}, {1, 211}, {123, 169}, {122, 168}, {117, 167}, {63, 237}, {33, 243}, {33, 242}, {123, 168}, {116, 167}, {62, 237}, {45, 249}, {107, 191}, {51, 231}, {1, 212}, {124, 169}, {106, 191}, {55, 226}, {50, 231}, {45, 248}, {18, 199}, {17, 199}, {55, 225}, {46, 248}, {8, 223}, {46, 249}, {99, 180}, {100, 179}, {7, 223}, {17, 200}, {56, 225}, {18, 200}, {56, 226}, {50, 232}, {51, 232}, {30, 194}, {116, 168}, {35, 255}, {34, 254}, {73, 149}, {30, 195}, {117, 168}, {112, 173}, {35, 254}, {34, 255}, {73, 148}, {29, 195}, {112, 174}, {74, 148}, {29, 194}, {74, 149}, {41, 201}, {69, 165}, {76, 172}, {22, 247}, {68, 165}, {41, 200}, {76, 173}, {14, 236}, {42, 200}, {21, 247}, {68, 166}, {15, 236}, {42, 201}, {69, 166}, {2, 230}, {49, 213}, {15, 235}, {87, 179}, {3, 230}, {121, 156}, {14, 235}, {87, 178}, {3, 229}, {123, 157}, {122, 156}, {75, 173}, {88, 190}, {89, 191}, {2, 229}, {122, 157}, {49, 214}, {7, 224}, {75, 172}, {88, 191}, {89, 190}, {8, 224}, {121, 145}, {74, 160}, {75, 161}, {88, 178}, {64, 171}, {122, 145}, {74, 161}, {75, 160}, {88, 179}, {17, 253}, {64, 172}, {60, 208}, {16, 253}, {61, 208}, {21, 248}, {16, 254}, {22, 248}, {17, 254}, {71, 183}, {86, 166}, {87, 167}, {53, 196}, {109, 156}, {70, 183}, {86, 167}, {87, 166}, {54, 196}, {110, 156}, {61, 207}, {60, 207}, {76, 184}, {77, 185}, {97, 149}, {98, 150}, {54, 195}, {110, 155}, {76, 185}, {77, 184}, {53, 195}, {109, 155}, {97, 150}, {98, 149}, {9, 241}, {10, 242}, {32, 218}, {9, 242}, {32, 219}, {10, 241}, {42, 212}, {43, 213}, {70, 184}, {42, 213}, {43, 212}, {71, 184}, {4, 260}, {5, 260}, {12, 271}, {11, 271}, {25, 285}, {25, 284}, {5, 259}, {4, 259}, {19, 283}, {18, 283}, {18, 284}, {19, 284}, {6, 278}, {7, 278}, {24, 265}, {7, 277}, {24, 266}, {6, 277}, {11, 272}, {12, 272}, {23, 266}, {23, 265}, {48, 272}, {55, 279}, {48, 273}, {54, 279}, {35, 267}, {35, 266}, {59, 274}, {46, 260}, {59, 273}, {47, 261}, {46, 261}, {47, 260}, {48, 284}, {48, 285}, {60, 273}, {36, 266}, {60, 274}, {54, 280}, {36, 267}, {55, 280}, {53, 261}, {52, 261}, {36, 278}, {52, 262}, {37, 279}, {36, 279}, {53, 262}, {37, 278}, {47, 273}, {47, 272}, {64, 256}, {65, 256}, {72, 267}, {72, 268}, {71, 268}, {71, 267}, {84, 280}, {85, 281}, {95, 275}, {84, 281}, {85, 280}, {95, 274}, {82, 256}, {114, 288}, {83, 257}, {82, 257}, {115, 288}, {83, 256}, {73, 287}, {73, 286}, {84, 268}, {94, 262}, {95, 263}, {84, 269}, {94, 263}, {95, 262}, {66, 286}, {67, 286}, {67, 285}, {83, 269}, {66, 285}, {83, 268}, {101, 263}, {121, 283}, {100, 263}, {121, 282}, {100, 264}, {115, 287}, {101, 264}, {114, 287}, {113, 257}, {112, 257}, {96, 274}, {112, 258}, {96, 275}, {113, 258}, {120, 269}, {120, 270}, {107, 275}, {108, 276}, {119, 270}, {119, 269}, {102, 282}, {103, 282}, {96, 286}, {103, 281}, {96, 287}, {108, 275}, {107, 276}, {102, 281}, {143, 271}, {143, 270}, {130, 264}, {144, 282}, {131, 265}, {131, 264}, {144, 283}, {142, 258}, {143, 259}, {132, 265}, {143, 258}, {142, 259}, {132, 276}, {133, 277}, {132, 277}, {131, 276}, {144, 270}, {144, 271}, {132, 288}, {133, 288} }>;

(II) A more general form is to represent the graph as the orbit of {134, 150} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24)(25, 32, 39, 46, 29, 36, 43, 26, 33, 40, 47, 30, 37, 44, 27, 34, 41, 48, 31, 38, 45, 28, 35, 42)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 80, 87, 94, 77, 84, 91, 74, 81, 88, 95, 78, 85, 92, 75, 82, 89, 96, 79, 86, 93, 76, 83, 90)(97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120)(121, 128, 135, 142, 125, 132, 139, 122, 129, 136, 143, 126, 133, 140, 123, 130, 137, 144, 127, 134, 141, 124, 131, 138)(145, 229, 175, 259, 193, 277, 223, 157, 241, 187, 271, 205, 151, 235, 169, 253, 199, 283, 217, 163, 247, 181, 265, 211)(146, 230, 176, 260, 194, 278, 224, 158, 242, 188, 272, 206, 152, 236, 170, 254, 200, 284, 218, 164, 248, 182, 266, 212)(147, 231, 177, 261, 195, 279, 225, 159, 243, 189, 273, 207, 153, 237, 171, 255, 201, 285, 219, 165, 249, 183, 267, 213)(148, 232, 178, 262, 196, 280, 226, 160, 244, 190, 274, 208, 154, 238, 172, 256, 202, 286, 220, 166, 250, 184, 268, 214)(149, 233, 179, 263, 197, 281, 227, 161, 245, 191, 275, 209, 155, 239, 173, 257, 203, 287, 221, 167, 251, 185, 269, 215)(150, 234, 180, 264, 198, 282, 228, 162, 246, 192, 276, 210, 156, 240, 174, 258, 204, 288, 222, 168, 252, 186, 270, 216)
b: (1, 25)(2, 26)(3, 27)(4, 28)(5, 29)(6, 30)(7, 31)(8, 32)(9, 33)(10, 34)(11, 35)(12, 36)(13, 37)(14, 38)(15, 39)(16, 40)(17, 41)(18, 42)(19, 43)(20, 44)(21, 45)(22, 46)(23, 47)(24, 48)(49, 121)(50, 122)(51, 123)(52, 124)(53, 125)(54, 126)(55, 127)(56, 128)(57, 129)(58, 130)(59, 131)(60, 132)(61, 133)(62, 134)(63, 135)(64, 136)(65, 137)(66, 138)(67, 139)(68, 140)(69, 141)(70, 142)(71, 143)(72, 144)(73, 109)(74, 110)(75, 111)(76, 112)(77, 113)(78, 114)(79, 115)(80, 116)(81, 117)(82, 118)(83, 119)(84, 120)(85, 97)(86, 98)(87, 99)(88, 100)(89, 101)(90, 102)(91, 103)(92, 104)(93, 105)(94, 106)(95, 107)(96, 108)(145, 147)(148, 156)(149, 155)(150, 154)(151, 153)(157, 231)(158, 230)(159, 229)(160, 240)(161, 239)(162, 238)(163, 237)(164, 236)(165, 235)(166, 234)(167, 233)(168, 232)(169, 177)(170, 176)(171, 175)(172, 174)(178, 180)(181, 261)(182, 260)(183, 259)(184, 258)(185, 257)(186, 256)(187, 255)(188, 254)(189, 253)(190, 264)(191, 263)(192, 262)(193, 195)(196, 204)(197, 203)(198, 202)(199, 201)(205, 279)(206, 278)(207, 277)(208, 288)(209, 287)(210, 286)(211, 285)(212, 284)(213, 283)(214, 282)(215, 281)(216, 280)(217, 225)(218, 224)(219, 223)(220, 222)(226, 228)(241, 243)(244, 252)(245, 251)(246, 250)(247, 249)(265, 273)(266, 272)(267, 271)(268, 270)(274, 276)
c: (25, 121)(26, 122)(27, 123)(28, 124)(29, 125)(30, 126)(31, 127)(32, 128)(33, 129)(34, 130)(35, 131)(36, 132)(37, 133)(38, 134)(39, 135)(40, 136)(41, 137)(42, 138)(43, 139)(44, 140)(45, 141)(46, 142)(47, 143)(48, 144)(49, 109)(50, 110)(51, 111)(52, 112)(53, 113)(54, 114)(55, 115)(56, 116)(57, 117)(58, 118)(59, 119)(60, 120)(61, 97)(62, 98)(63, 99)(64, 100)(65, 101)(66, 102)(67, 103)(68, 104)(69, 105)(70, 106)(71, 107)(72, 108)(73, 85)(74, 86)(75, 87)(76, 88)(77, 89)(78, 90)(79, 91)(80, 92)(81, 93)(82, 94)(83, 95)(84, 96)(145, 146)(147, 156)(148, 155)(149, 154)(150, 153)(151, 152)(157, 158)(159, 168)(160, 167)(161, 166)(162, 165)(163, 164)(169, 170)(171, 180)(172, 179)(173, 178)(174, 177)(175, 176)(181, 182)(183, 192)(184, 191)(185, 190)(186, 189)(187, 188)(193, 194)(195, 204)(196, 203)(197, 202)(198, 201)(199, 200)(205, 206)(207, 216)(208, 215)(209, 214)(210, 213)(211, 212)(217, 218)(219, 228)(220, 227)(221, 226)(222, 225)(223, 224)(229, 230)(231, 240)(232, 239)(233, 238)(234, 237)(235, 236)(241, 242)(243, 252)(244, 251)(245, 250)(246, 249)(247, 248)(253, 254)(255, 264)(256, 263)(257, 262)(258, 261)(259, 260)(265, 266)(267, 276)(268, 275)(269, 274)(270, 273)(271, 272)(277, 278)(279, 288)(280, 287)(281, 286)(282, 285)(283, 284)
d: (2, 24)(3, 23)(4, 22)(5, 21)(6, 20)(7, 19)(8, 18)(9, 17)(10, 16)(11, 15)(12, 14)(25, 139)(26, 138)(27, 137)(28, 136)(29, 135)(30, 134)(31, 133)(32, 132)(33, 131)(34, 130)(35, 129)(36, 128)(37, 127)(38, 126)(39, 125)(40, 124)(41, 123)(42, 122)(43, 121)(44, 144)(45, 143)(46, 142)(47, 141)(48, 140)(49, 109)(50, 108)(51, 107)(52, 106)(53, 105)(54, 104)(55, 103)(56, 102)(57, 101)(58, 100)(59, 99)(60, 98)(61, 97)(62, 120)(63, 119)(64, 118)(65, 117)(66, 116)(67, 115)(68, 114)(69, 113)(70, 112)(71, 111)(72, 110)(73, 79)(74, 78)(75, 77)(80, 96)(81, 95)(82, 94)(83, 93)(84, 92)(85, 91)(86, 90)(87, 89)(145, 212)(146, 211)(147, 210)(148, 209)(149, 208)(150, 207)(151, 206)(152, 205)(153, 216)(154, 215)(155, 214)(156, 213)(157, 200)(158, 199)(159, 198)(160, 197)(161, 196)(162, 195)(163, 194)(164, 193)(165, 204)(166, 203)(167, 202)(168, 201)(169, 188)(170, 187)(171, 186)(172, 185)(173, 184)(174, 183)(175, 182)(176, 181)(177, 192)(178, 191)(179, 190)(180, 189)(217, 278)(218, 277)(219, 288)(220, 287)(221, 286)(222, 285)(223, 284)(224, 283)(225, 282)(226, 281)(227, 280)(228, 279)(229, 266)(230, 265)(231, 276)(232, 275)(233, 274)(234, 273)(235, 272)(236, 271)(237, 270)(238, 269)(239, 268)(240, 267)(241, 254)(242, 253)(243, 264)(244, 263)(245, 262)(246, 261)(247, 260)(248, 259)(249, 258)(250, 257)(251, 256)(252, 255)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 36 ]
288
-1 145 211 146 212
-2 145 146 229 230
-3 176 229 175 230
-4 176 259 260 175
-5 193 259 194 260
-6 277 278 193 194
-7 277 223 278 224
-8 157 223 158 224
-9 242 157 158 241
-10 187 242 188 241
-11 187 188 271 272
-12 205 271 206 272
-13 205 151 206 152
-14 235 236 151 152
-15 169 235 170 236
-16 253 254 169 170
-17 253 199 254 200
-18 199 200 283 284
-19 217 283 218 284
-20 217 163 218 164
-21 247 248 163 164
-22 181 247 182 248
-23 265 266 181 182
-24 265 211 266 212
-25 146 147 284 285
-26 146 147 158 159
-27 158 159 170 171
-28 170 171 182 183
-29 182 183 194 195
-30 194 195 206 207
-31 206 207 218 219
-32 231 218 219 230
-33 231 242 243 230
-34 242 243 254 255
-35 254 255 266 267
-36 266 267 278 279
-37 278 279 152 153
-38 165 152 153 164
-39 165 176 177 164
-40 176 177 188 189
-41 188 189 200 201
-42 200 201 212 213
-43 212 213 224 225
-44 224 225 236 237
-45 236 237 248 249
-46 248 249 260 261
-47 260 261 272 273
-48 272 273 284 285
-49 147 213 148 214
-50 231 232 147 148
-51 231 177 232 178
-52 177 178 261 262
-53 195 261 196 262
-54 279 280 195 196
-55 279 225 280 226
-56 159 225 160 226
-57 243 244 159 160
-58 243 189 244 190
-59 189 190 273 274
-60 207 273 208 274
-61 154 207 153 208
-62 154 237 238 153
-63 171 237 172 238
-64 255 256 171 172
-65 255 201 256 202
-66 286 201 202 285
-67 220 286 219 285
-68 165 220 166 219
-69 165 166 249 250
-70 183 249 184 250
-71 267 268 183 184
-72 267 213 268 214
-73 286 287 148 149
-74 148 149 160 161
-75 160 161 172 173
-76 172 173 184 185
-77 184 185 196 197
-78 209 196 197 208
-79 209 220 221 208
-80 220 221 232 233
-81 232 233 244 245
-82 244 245 256 257
-83 256 257 268 269
-84 268 269 280 281
-85 154 155 280 281
-86 154 155 166 167
-87 166 167 178 179
-88 178 179 190 191
-89 190 191 202 203
-90 202 203 214 215
-91 214 215 226 227
-92 226 227 238 239
-93 238 239 250 251
-94 250 251 262 263
-95 275 262 263 274
-96 275 286 287 274
-97 149 215 150 216
-98 233 234 149 150
-99 233 179 234 180
-100 264 179 180 263
-101 198 264 197 263
-102 198 281 282 197
-103 281 227 282 228
-104 161 227 162 228
-105 245 246 161 162
-106 245 191 246 192
-107 275 276 191 192
-108 209 275 210 276
-109 209 155 210 156
-110 155 156 239 240
-111 173 239 174 240
-112 257 258 173 174
-113 257 203 258 204
-114 287 288 203 204
-115 221 287 222 288
-116 221 167 222 168
-117 167 168 251 252
-118 185 251 186 252
-119 269 270 185 186
-120 269 215 270 216
-121 145 156 282 283
-122 145 156 157 168
-123 157 168 169 180
-124 169 180 181 192
-125 181 192 193 204
-126 193 204 205 216
-127 205 216 217 228
-128 217 228 229 240
-129 229 240 241 252
-130 253 264 241 252
-131 253 264 265 276
-132 265 276 277 288
-133 277 288 150 151
-134 150 151 162 163
-135 162 163 174 175
-136 187 174 175 186
-137 187 198 199 186
-138 198 199 210 211
-139 210 211 222 223
-140 222 223 234 235
-141 234 235 246 247
-142 246 247 258 259
-143 258 259 270 271
-144 270 271 282 283
-145 121 1 122 2
-146 1 2 25 26
-147 25 26 49 50
-148 49 50 73 74
-149 73 74 97 98
-150 133 134 97 98
-151 133 13 134 14
-152 13 14 37 38
-153 37 38 61 62
-154 61 62 85 86
-155 110 85 86 109
-156 110 121 122 109
-157 122 123 8 9
-158 26 27 8 9
-159 56 57 26 27
-160 56 57 74 75
-161 104 105 74 75
-162 134 135 104 105
-163 134 135 20 21
-164 38 39 20 21
-165 68 69 38 39
-166 68 69 86 87
-167 116 117 86 87
-168 122 123 116 117
-169 123 124 15 16
-170 15 16 27 28
-171 27 28 63 64
-172 63 64 75 76
-173 111 112 75 76
-174 111 112 135 136
-175 3 135 4 136
-176 3 4 39 40
-177 39 40 51 52
-178 88 51 52 87
-179 88 99 100 87
-180 99 100 123 124
-181 22 23 124 125
-182 22 23 28 29
-183 70 71 28 29
-184 77 70 71 76
-185 77 118 119 76
-186 136 137 118 119
-187 11 136 137 10
-188 11 40 41 10
-189 58 59 40 41
-190 88 89 58 59
-191 88 89 106 107
-192 124 125 106 107
-193 125 5 126 6
-194 5 6 29 30
-195 29 30 53 54
-196 77 78 53 54
-197 77 78 101 102
-198 101 102 137 138
-199 137 17 138 18
-200 17 18 41 42
-201 66 41 42 65
-202 66 89 90 65
-203 89 90 113 114
-204 113 114 125 126
-205 12 13 126 127
-206 12 13 30 31
-207 60 61 30 31
-208 78 79 60 61
-209 78 79 108 109
-210 138 139 108 109
-211 1 24 138 139
-212 1 24 42 43
-213 49 72 42 43
-214 90 91 49 72
-215 90 91 97 120
-216 126 127 97 120
-217 127 128 19 20
-218 19 20 31 32
-219 67 68 31 32
-220 67 68 79 80
-221 79 80 115 116
-222 115 116 139 140
-223 7 139 8 140
-224 44 7 8 43
-225 44 55 56 43
-226 55 56 91 92
-227 91 92 103 104
-228 103 104 127 128
-229 2 3 128 129
-230 33 2 3 32
-231 33 50 51 32
-232 80 81 50 51
-233 99 80 81 98
-234 99 140 141 98
-235 14 15 140 141
-236 44 45 14 15
-237 44 45 62 63
-238 92 93 62 63
-239 110 111 92 93
-240 110 111 128 129
-241 129 9 130 10
-242 33 34 9 10
-243 33 34 57 58
-244 57 58 81 82
-245 81 82 105 106
-246 105 106 141 142
-247 22 141 21 142
-248 22 45 46 21
-249 45 46 69 70
-250 69 70 93 94
-251 93 94 117 118
-252 117 118 129 130
-253 16 17 130 131
-254 34 35 16 17
-255 34 35 64 65
-256 82 83 64 65
-257 112 113 82 83
-258 143 112 113 142
-259 143 4 5 142
-260 46 47 4 5
-261 46 47 52 53
-262 94 95 52 53
-263 100 101 94 95
-264 100 101 130 131
-265 132 23 24 131
-266 23 24 35 36
-267 35 36 71 72
-268 71 72 83 84
-269 83 84 119 120
-270 143 144 119 120
-271 11 143 12 144
-272 11 12 47 48
-273 47 48 59 60
-274 59 60 95 96
-275 95 96 107 108
-276 132 107 108 131
-277 132 133 6 7
-278 36 37 6 7
-279 55 36 37 54
-280 55 84 85 54
-281 102 103 84 85
-282 121 144 102 103
-283 121 144 18 19
-284 25 48 18 19
-285 66 67 25 48
-286 66 67 73 96
-287 114 115 73 96
-288 132 133 114 115
0

**************