C4graphGraph forms for C4 [ 288, 37 ] = PL(MSY(12,12,5,0))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 37 ] = PL(MSY(12,12,5,0)).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {133, 145}, {134, 145}, {133, 156}, {134, 156}, {135, 157}, {134, 157}, {136, 169}, {134, 168}, {135, 169}, {135, 168}, {131, 179}, {132, 180}, {135, 180}, {131, 180}, {132, 179}, {136, 180}, {137, 181}, {136, 181}, {137, 204}, {138, 204}, {139, 205}, {138, 205}, {136, 192}, {137, 193}, {130, 203}, {137, 192}, {129, 203}, {138, 193}, {129, 204}, {130, 204}, {138, 216}, {139, 217}, {139, 216}, {140, 217}, {128, 227}, {128, 228}, {140, 228}, {141, 229}, {140, 229}, {132, 239}, {139, 228}, {141, 252}, {142, 252}, {143, 253}, {142, 253}, {132, 240}, {140, 240}, {141, 241}, {141, 240}, {142, 241}, {31, 159}, {30, 159}, {125, 252}, {108, 237}, {108, 238}, {126, 252}, {40, 172}, {66, 198}, {40, 173}, {126, 251}, {103, 226}, {66, 199}, {38, 160}, {125, 251}, {103, 225}, {65, 199}, {39, 161}, {38, 161}, {65, 198}, {39, 160}, {35, 171}, {36, 172}, {26, 147}, {121, 240}, {104, 225}, {25, 147}, {104, 226}, {39, 173}, {39, 172}, {53, 185}, {118, 250}, {97, 237}, {25, 148}, {118, 251}, {52, 185}, {26, 148}, {117, 251}, {52, 186}, {90, 212}, {91, 213}, {35, 172}, {117, 250}, {53, 186}, {36, 171}, {80, 223}, {90, 213}, {91, 212}, {97, 238}, {1, 145}, {115, 227}, {67, 211}, {66, 210}, {63, 175}, {41, 185}, {40, 184}, {15, 159}, {14, 158}, {2, 146}, {79, 223}, {89, 201}, {14, 159}, {115, 226}, {67, 210}, {66, 211}, {63, 174}, {60, 173}, {41, 184}, {40, 185}, {15, 158}, {89, 200}, {60, 174}, {90, 200}, {1, 146}, {2, 145}, {90, 201}, {54, 162}, {55, 162}, {59, 174}, {82, 199}, {55, 161}, {121, 239}, {116, 226}, {59, 173}, {81, 199}, {54, 161}, {116, 227}, {6, 158}, {75, 211}, {7, 158}, {74, 211}, {81, 200}, {7, 157}, {117, 239}, {116, 238}, {68, 222}, {82, 200}, {6, 157}, {127, 228}, {117, 238}, {116, 239}, {68, 223}, {14, 146}, {127, 227}, {102, 250}, {63, 163}, {62, 162}, {67, 223}, {101, 249}, {14, 147}, {63, 162}, {62, 163}, {67, 222}, {13, 147}, {74, 212}, {13, 146}, {75, 212}, {101, 250}, {102, 249}, {105, 201}, {106, 202}, {11, 170}, {11, 169}, {122, 216}, {73, 235}, {105, 202}, {123, 216}, {106, 201}, {15, 171}, {115, 215}, {114, 214}, {50, 150}, {49, 149}, {28, 184}, {93, 249}, {12, 169}, {115, 214}, {114, 215}, {29, 184}, {15, 170}, {73, 236}, {93, 248}, {12, 170}, {17, 183}, {16, 182}, {94, 248}, {16, 183}, {50, 149}, {49, 150}, {17, 182}, {94, 249}, {62, 150}, {62, 151}, {29, 183}, {61, 151}, {28, 183}, {61, 150}, {123, 215}, {122, 215}, {68, 234}, {69, 235}, {68, 235}, {69, 234}, {79, 224}, {5, 181}, {37, 149}, {70, 246}, {80, 224}, {92, 236}, {93, 237}, {4, 181}, {37, 148}, {70, 247}, {92, 237}, {93, 236}, {4, 182}, {38, 148}, {69, 247}, {5, 182}, {38, 149}, {69, 246}, {98, 214}, {77, 248}, {99, 214}, {78, 248}, {99, 213}, {98, 213}, {84, 236}, {114, 202}, {78, 247}, {114, 203}, {16, 170}, {113, 203}, {77, 247}, {91, 225}, {16, 171}, {113, 202}, {91, 224}, {92, 224}, {124, 192}, {92, 225}, {125, 192}, {30, 160}, {31, 160}, {84, 235}, {53, 245}, {54, 246}, {102, 166}, {103, 166}, {103, 165}, {125, 191}, {112, 178}, {31, 220}, {124, 191}, {112, 179}, {54, 245}, {53, 246}, {36, 231}, {102, 165}, {31, 219}, {45, 233}, {44, 232}, {44, 233}, {45, 232}, {9, 193}, {111, 167}, {110, 166}, {19, 219}, {10, 194}, {19, 218}, {111, 166}, {110, 167}, {26, 208}, {9, 194}, {27, 208}, {10, 193}, {2, 206}, {36, 232}, {85, 153}, {3, 206}, {85, 152}, {3, 205}, {113, 191}, {112, 190}, {20, 218}, {86, 152}, {2, 205}, {113, 190}, {112, 191}, {20, 219}, {86, 153}, {18, 194}, {8, 217}, {18, 195}, {73, 152}, {8, 218}, {17, 195}, {74, 152}, {17, 194}, {27, 207}, {26, 207}, {60, 233}, {60, 234}, {126, 168}, {127, 168}, {45, 245}, {127, 167}, {49, 233}, {101, 189}, {45, 244}, {126, 167}, {107, 178}, {100, 189}, {46, 244}, {107, 177}, {100, 190}, {46, 245}, {49, 234}, {101, 190}, {18, 206}, {111, 179}, {35, 255}, {19, 207}, {7, 218}, {111, 178}, {108, 177}, {34, 255}, {19, 206}, {18, 207}, {74, 151}, {7, 217}, {108, 178}, {73, 151}, {50, 210}, {34, 195}, {122, 155}, {51, 210}, {33, 195}, {121, 155}, {51, 209}, {50, 209}, {83, 176}, {1, 229}, {22, 242}, {84, 176}, {88, 188}, {89, 189}, {22, 243}, {121, 156}, {56, 221}, {33, 196}, {88, 189}, {89, 188}, {21, 243}, {122, 156}, {56, 222}, {34, 196}, {87, 177}, {1, 230}, {21, 242}, {87, 176}, {22, 254}, {23, 255}, {88, 176}, {12, 229}, {55, 222}, {29, 244}, {23, 254}, {22, 255}, {88, 177}, {12, 230}, {55, 221}, {30, 244}, {78, 164}, {79, 164}, {41, 197}, {79, 163}, {30, 243}, {41, 196}, {78, 163}, {29, 243}, {64, 174}, {42, 196}, {42, 197}, {64, 175}, {44, 220}, {76, 188}, {25, 232}, {44, 221}, {77, 188}, {20, 230}, {21, 231}, {86, 164}, {87, 165}, {20, 231}, {21, 230}, {86, 165}, {87, 164}, {5, 241}, {110, 154}, {10, 254}, {6, 242}, {11, 254}, {110, 155}, {11, 253}, {109, 155}, {43, 221}, {77, 187}, {5, 242}, {109, 154}, {43, 220}, {10, 253}, {6, 241}, {76, 187}, {97, 153}, {98, 154}, {42, 208}, {65, 187}, {64, 186}, {43, 209}, {32, 219}, {65, 186}, {64, 187}, {43, 208}, {42, 209}, {84, 175}, {97, 154}, {98, 153}, {32, 220}, {58, 198}, {57, 197}, {83, 175}, {25, 231}, {57, 198}, {58, 197}, {3, 266}, {3, 265}, {4, 265}, {4, 266}, {24, 278}, {24, 279}, {27, 267}, {28, 268}, {24, 266}, {24, 267}, {27, 268}, {28, 267}, {13, 279}, {13, 278}, {9, 277}, {23, 267}, {8, 277}, {23, 266}, {8, 278}, {9, 278}, {57, 281}, {56, 281}, {34, 256}, {56, 282}, {47, 269}, {35, 256}, {57, 282}, {47, 268}, {61, 283}, {61, 282}, {48, 280}, {48, 281}, {46, 256}, {47, 257}, {46, 257}, {47, 256}, {33, 279}, {32, 279}, {32, 280}, {58, 258}, {33, 280}, {59, 258}, {52, 269}, {52, 270}, {59, 257}, {58, 257}, {37, 281}, {48, 268}, {37, 280}, {51, 270}, {48, 269}, {51, 269}, {76, 271}, {70, 258}, {71, 259}, {75, 271}, {70, 259}, {71, 258}, {72, 270}, {72, 271}, {71, 271}, {85, 285}, {71, 270}, {85, 284}, {81, 283}, {80, 283}, {80, 284}, {81, 284}, {95, 273}, {95, 272}, {83, 259}, {82, 259}, {72, 282}, {72, 283}, {82, 260}, {83, 260}, {94, 260}, {95, 261}, {75, 272}, {94, 261}, {95, 260}, {76, 272}, {119, 275}, {119, 274}, {120, 286}, {120, 287}, {123, 275}, {124, 276}, {120, 274}, {120, 275}, {106, 262}, {107, 262}, {107, 261}, {106, 261}, {124, 275}, {123, 276}, {96, 272}, {119, 263}, {118, 262}, {96, 273}, {119, 262}, {118, 263}, {99, 274}, {99, 273}, {109, 287}, {109, 286}, {105, 285}, {100, 273}, {104, 285}, {100, 274}, {104, 286}, {105, 286}, {96, 284}, {96, 285}, {131, 263}, {144, 276}, {130, 263}, {144, 277}, {142, 264}, {143, 265}, {143, 264}, {130, 264}, {131, 264}, {133, 277}, {144, 265}, {143, 276}, {129, 287}, {128, 287}, {128, 288}, {129, 288}, {133, 288}, {144, 288} }>;

(II) A more general form is to represent the graph as the orbit of {133, 145} under the group generated by the following permutations:

a: (13, 133)(14, 134)(15, 135)(16, 136)(17, 137)(18, 138)(19, 139)(20, 140)(21, 141)(22, 142)(23, 143)(24, 144)(25, 121)(26, 122)(27, 123)(28, 124)(29, 125)(30, 126)(31, 127)(32, 128)(33, 129)(34, 130)(35, 131)(36, 132)(37, 109)(38, 110)(39, 111)(40, 112)(41, 113)(42, 114)(43, 115)(44, 116)(45, 117)(46, 118)(47, 119)(48, 120)(49, 97)(50, 98)(51, 99)(52, 100)(53, 101)(54, 102)(55, 103)(56, 104)(57, 105)(58, 106)(59, 107)(60, 108)(61, 85)(62, 86)(63, 87)(64, 88)(65, 89)(66, 90)(67, 91)(68, 92)(69, 93)(70, 94)(71, 95)(72, 96)(145, 146)(147, 156)(148, 155)(149, 154)(150, 153)(151, 152)(157, 158)(159, 168)(160, 167)(161, 166)(162, 165)(163, 164)(169, 170)(171, 180)(172, 179)(173, 178)(174, 177)(175, 176)(181, 182)(183, 192)(184, 191)(185, 190)(186, 189)(187, 188)(193, 194)(195, 204)(196, 203)(197, 202)(198, 201)(199, 200)(205, 206)(207, 216)(208, 215)(209, 214)(210, 213)(211, 212)(217, 218)(219, 228)(220, 227)(221, 226)(222, 225)(223, 224)(229, 230)(231, 240)(232, 239)(233, 238)(234, 237)(235, 236)(241, 242)(243, 252)(244, 251)(245, 250)(246, 249)(247, 248)(253, 254)(255, 264)(256, 263)(257, 262)(258, 261)(259, 260)(265, 266)(267, 276)(268, 275)(269, 274)(270, 273)(271, 272)(277, 278)(279, 288)(280, 287)(281, 286)(282, 285)(283, 284)
b: (1, 13, 9, 17, 5, 21)(2, 24, 10, 16, 6, 20)(3, 23, 11, 15, 7, 19)(4, 22, 12, 14, 8, 18)(25, 133, 33, 137, 29, 141)(26, 144, 34, 136, 30, 140)(27, 143, 35, 135, 31, 139)(28, 142, 36, 134, 32, 138)(37, 129, 41, 125, 45, 121)(38, 128, 42, 124, 46, 132)(39, 127, 43, 123, 47, 131)(40, 126, 44, 122, 48, 130)(49, 109, 57, 113, 53, 117)(50, 120, 58, 112, 54, 116)(51, 119, 59, 111, 55, 115)(52, 118, 60, 110, 56, 114)(61, 105, 65, 101, 69, 97)(62, 104, 66, 100, 70, 108)(63, 103, 67, 99, 71, 107)(64, 102, 68, 98, 72, 106)(73, 85, 81, 89, 77, 93)(74, 96, 82, 88, 78, 92)(75, 95, 83, 87, 79, 91)(76, 94, 84, 86, 80, 90)(145, 279, 193, 183, 241, 231)(146, 278, 194, 182, 242, 230)(147, 277, 195, 181, 243, 229)(148, 288, 196, 192, 244, 240)(149, 287, 197, 191, 245, 239)(150, 286, 198, 190, 246, 238)(151, 285, 199, 189, 247, 237)(152, 284, 200, 188, 248, 236)(153, 283, 201, 187, 249, 235)(154, 282, 202, 186, 250, 234)(155, 281, 203, 185, 251, 233)(156, 280, 204, 184, 252, 232)(157, 219, 205, 267, 253, 171)(158, 218, 206, 266, 254, 170)(159, 217, 207, 265, 255, 169)(160, 228, 208, 276, 256, 180)(161, 227, 209, 275, 257, 179)(162, 226, 210, 274, 258, 178)(163, 225, 211, 273, 259, 177)(164, 224, 212, 272, 260, 176)(165, 223, 213, 271, 261, 175)(166, 222, 214, 270, 262, 174)(167, 221, 215, 269, 263, 173)(168, 220, 216, 268, 264, 172)
c: (2, 12)(3, 11)(4, 10)(5, 9)(6, 8)(13, 21)(14, 20)(15, 19)(16, 18)(22, 24)(26, 36)(27, 35)(28, 34)(29, 33)(30, 32)(37, 45)(38, 44)(39, 43)(40, 42)(46, 48)(50, 60)(51, 59)(52, 58)(53, 57)(54, 56)(61, 69)(62, 68)(63, 67)(64, 66)(70, 72)(74, 84)(75, 83)(76, 82)(77, 81)(78, 80)(85, 93)(86, 92)(87, 91)(88, 90)(94, 96)(98, 108)(99, 107)(100, 106)(101, 105)(102, 104)(109, 117)(110, 116)(111, 115)(112, 114)(118, 120)(122, 132)(123, 131)(124, 130)(125, 129)(126, 128)(133, 141)(134, 140)(135, 139)(136, 138)(142, 144)(145, 229)(146, 230)(147, 231)(148, 232)(149, 233)(150, 234)(151, 235)(152, 236)(153, 237)(154, 238)(155, 239)(156, 240)(157, 217)(158, 218)(159, 219)(160, 220)(161, 221)(162, 222)(163, 223)(164, 224)(165, 225)(166, 226)(167, 227)(168, 228)(169, 205)(170, 206)(171, 207)(172, 208)(173, 209)(174, 210)(175, 211)(176, 212)(177, 213)(178, 214)(179, 215)(180, 216)(181, 193)(182, 194)(183, 195)(184, 196)(185, 197)(186, 198)(187, 199)(188, 200)(189, 201)(190, 202)(191, 203)(192, 204)(241, 277)(242, 278)(243, 279)(244, 280)(245, 281)(246, 282)(247, 283)(248, 284)(249, 285)(250, 286)(251, 287)(252, 288)(253, 265)(254, 266)(255, 267)(256, 268)(257, 269)(258, 270)(259, 271)(260, 272)(261, 273)(262, 274)(263, 275)(264, 276)
d: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)(13, 18, 23, 16, 21, 14, 19, 24, 17, 22, 15, 20)(25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36)(37, 42, 47, 40, 45, 38, 43, 48, 41, 46, 39, 44)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60)(61, 66, 71, 64, 69, 62, 67, 72, 65, 70, 63, 68)(73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84)(85, 90, 95, 88, 93, 86, 91, 96, 89, 94, 87, 92)(97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108)(109, 114, 119, 112, 117, 110, 115, 120, 113, 118, 111, 116)(121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132)(133, 138, 143, 136, 141, 134, 139, 144, 137, 142, 135, 140)(145, 205, 265, 181, 241, 157, 217, 277, 193, 253, 169, 229)(146, 206, 266, 182, 242, 158, 218, 278, 194, 254, 170, 230)(147, 207, 267, 183, 243, 159, 219, 279, 195, 255, 171, 231)(148, 208, 268, 184, 244, 160, 220, 280, 196, 256, 172, 232)(149, 209, 269, 185, 245, 161, 221, 281, 197, 257, 173, 233)(150, 210, 270, 186, 246, 162, 222, 282, 198, 258, 174, 234)(151, 211, 271, 187, 247, 163, 223, 283, 199, 259, 175, 235)(152, 212, 272, 188, 248, 164, 224, 284, 200, 260, 176, 236)(153, 213, 273, 189, 249, 165, 225, 285, 201, 261, 177, 237)(154, 214, 274, 190, 250, 166, 226, 286, 202, 262, 178, 238)(155, 215, 275, 191, 251, 167, 227, 287, 203, 263, 179, 239)(156, 216, 276, 192, 252, 168, 228, 288, 204, 264, 180, 240)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 37 ]
288
-1 145 146 229 230
-2 145 146 205 206
-3 265 266 205 206
-4 265 266 181 182
-5 242 181 182 241
-6 242 157 158 241
-7 157 158 217 218
-8 277 278 217 218
-9 277 278 193 194
-10 253 254 193 194
-11 253 254 169 170
-12 169 170 229 230
-13 146 278 147 279
-14 146 147 158 159
-15 158 159 170 171
-16 170 171 182 183
-17 182 183 194 195
-18 194 195 206 207
-19 206 207 218 219
-20 231 218 219 230
-21 231 242 243 230
-22 242 243 254 255
-23 254 255 266 267
-24 266 267 278 279
-25 231 232 147 148
-26 147 148 207 208
-27 267 268 207 208
-28 267 268 183 184
-29 243 244 183 184
-30 243 244 159 160
-31 220 159 160 219
-32 220 279 280 219
-33 279 280 195 196
-34 255 256 195 196
-35 255 256 171 172
-36 231 232 171 172
-37 148 280 149 281
-38 148 149 160 161
-39 160 161 172 173
-40 172 173 184 185
-41 184 185 196 197
-42 209 196 197 208
-43 209 220 221 208
-44 220 221 232 233
-45 232 233 244 245
-46 244 245 256 257
-47 256 257 268 269
-48 268 269 280 281
-49 233 234 149 150
-50 209 210 149 150
-51 209 210 269 270
-52 269 270 185 186
-53 245 246 185 186
-54 245 246 161 162
-55 221 222 161 162
-56 221 222 281 282
-57 198 281 282 197
-58 198 257 258 197
-59 257 258 173 174
-60 233 234 173 174
-61 150 282 151 283
-62 150 151 162 163
-63 162 163 174 175
-64 187 174 175 186
-65 187 198 199 186
-66 198 199 210 211
-67 210 211 222 223
-68 222 223 234 235
-69 234 235 246 247
-70 246 247 258 259
-71 258 259 270 271
-72 270 271 282 283
-73 235 236 151 152
-74 211 212 151 152
-75 211 212 271 272
-76 187 188 271 272
-77 187 188 247 248
-78 247 248 163 164
-79 223 224 163 164
-80 223 224 283 284
-81 199 200 283 284
-82 199 200 259 260
-83 176 259 260 175
-84 176 235 236 175
-85 152 284 153 285
-86 165 152 153 164
-87 165 176 177 164
-88 176 177 188 189
-89 188 189 200 201
-90 200 201 212 213
-91 212 213 224 225
-92 224 225 236 237
-93 236 237 248 249
-94 248 249 260 261
-95 260 261 272 273
-96 272 273 284 285
-97 154 237 238 153
-98 154 213 214 153
-99 213 214 273 274
-100 189 190 273 274
-101 189 190 249 250
-102 165 166 249 250
-103 165 166 225 226
-104 286 225 226 285
-105 286 201 202 285
-106 201 202 261 262
-107 177 178 261 262
-108 177 178 237 238
-109 154 286 155 287
-110 154 155 166 167
-111 166 167 178 179
-112 178 179 190 191
-113 190 191 202 203
-114 202 203 214 215
-115 214 215 226 227
-116 226 227 238 239
-117 238 239 250 251
-118 250 251 262 263
-119 275 262 263 274
-120 275 286 287 274
-121 155 156 239 240
-122 155 156 215 216
-123 275 276 215 216
-124 275 276 191 192
-125 191 192 251 252
-126 167 168 251 252
-127 167 168 227 228
-128 287 288 227 228
-129 287 288 203 204
-130 264 203 204 263
-131 264 179 180 263
-132 179 180 239 240
-133 156 277 145 288
-134 145 156 157 168
-135 157 168 169 180
-136 169 180 181 192
-137 181 192 193 204
-138 193 204 205 216
-139 205 216 217 228
-140 217 228 229 240
-141 229 240 241 252
-142 253 264 241 252
-143 253 264 265 276
-144 265 276 277 288
-145 1 133 2 134
-146 1 2 13 14
-147 13 14 25 26
-148 25 26 37 38
-149 37 38 49 50
-150 49 50 61 62
-151 61 62 73 74
-152 73 74 85 86
-153 85 86 97 98
-154 110 97 98 109
-155 110 121 122 109
-156 121 122 133 134
-157 134 135 6 7
-158 14 15 6 7
-159 14 15 30 31
-160 38 39 30 31
-161 55 38 39 54
-162 55 62 63 54
-163 78 79 62 63
-164 78 79 86 87
-165 102 103 86 87
-166 110 111 102 103
-167 110 111 126 127
-168 134 135 126 127
-169 11 12 135 136
-170 11 12 15 16
-171 35 36 15 16
-172 35 36 39 40
-173 59 60 39 40
-174 59 60 63 64
-175 83 84 63 64
-176 88 83 84 87
-177 88 107 108 87
-178 111 112 107 108
-179 132 111 112 131
-180 132 135 136 131
-181 4 136 5 137
-182 4 5 16 17
-183 16 17 28 29
-184 28 29 40 41
-185 40 41 52 53
-186 52 53 64 65
-187 77 64 65 76
-188 77 88 89 76
-189 88 89 100 101
-190 100 101 112 113
-191 112 113 124 125
-192 124 125 136 137
-193 137 138 9 10
-194 17 18 9 10
-195 33 34 17 18
-196 33 34 41 42
-197 57 58 41 42
-198 66 57 58 65
-199 66 81 82 65
-200 89 90 81 82
-201 89 90 105 106
-202 113 114 105 106
-203 113 114 129 130
-204 137 138 129 130
-205 2 3 138 139
-206 2 3 18 19
-207 26 27 18 19
-208 26 27 42 43
-209 50 51 42 43
-210 66 67 50 51
-211 66 67 74 75
-212 90 91 74 75
-213 99 90 91 98
-214 99 114 115 98
-215 122 123 114 115
-216 122 123 138 139
-217 7 139 8 140
-218 7 8 19 20
-219 19 20 31 32
-220 44 31 32 43
-221 44 55 56 43
-222 55 56 67 68
-223 67 68 79 80
-224 79 80 91 92
-225 91 92 103 104
-226 103 104 115 116
-227 115 116 127 128
-228 127 128 139 140
-229 1 12 140 141
-230 1 12 20 21
-231 25 36 20 21
-232 44 45 25 36
-233 44 45 49 60
-234 68 69 49 60
-235 68 69 73 84
-236 92 93 73 84
-237 92 93 97 108
-238 116 117 97 108
-239 121 132 116 117
-240 121 132 140 141
-241 5 6 141 142
-242 22 5 6 21
-243 22 29 30 21
-244 45 46 29 30
-245 45 46 53 54
-246 69 70 53 54
-247 77 78 69 70
-248 77 78 93 94
-249 101 102 93 94
-250 101 102 117 118
-251 125 126 117 118
-252 125 126 141 142
-253 11 143 10 142
-254 11 22 23 10
-255 22 23 34 35
-256 34 35 46 47
-257 46 47 58 59
-258 58 59 70 71
-259 70 71 82 83
-260 82 83 94 95
-261 94 95 106 107
-262 106 107 118 119
-263 118 119 130 131
-264 143 130 131 142
-265 143 144 3 4
-266 23 24 3 4
-267 23 24 27 28
-268 47 48 27 28
-269 47 48 51 52
-270 71 72 51 52
-271 71 72 75 76
-272 95 96 75 76
-273 99 100 95 96
-274 99 100 119 120
-275 123 124 119 120
-276 143 144 123 124
-277 133 144 8 9
-278 13 24 8 9
-279 33 13 24 32
-280 33 37 48 32
-281 56 57 37 48
-282 56 57 61 72
-283 80 81 61 72
-284 80 81 85 96
-285 104 105 85 96
-286 104 105 109 120
-287 128 129 109 120
-288 133 144 128 129
0

**************