C4graphGraph forms for C4 [ 288, 38 ] = PL(MSY(18,8,3,0))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 38 ] = PL(MSY(18,8,3,0)).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {137, 145}, {138, 145}, {129, 161}, {130, 162}, {129, 162}, {130, 161}, {138, 162}, {139, 163}, {138, 163}, {137, 162}, {132, 180}, {133, 180}, {133, 179}, {132, 179}, {140, 181}, {138, 180}, {139, 181}, {139, 180}, {135, 198}, {135, 197}, {140, 198}, {141, 199}, {140, 199}, {136, 197}, {139, 198}, {136, 198}, {131, 215}, {141, 217}, {140, 216}, {130, 215}, {141, 216}, {142, 217}, {130, 216}, {131, 216}, {142, 234}, {143, 235}, {142, 235}, {141, 234}, {133, 233}, {134, 234}, {144, 253}, {133, 234}, {134, 233}, {142, 252}, {143, 253}, {136, 251}, {143, 252}, {136, 252}, {129, 251}, {129, 252}, {60, 188}, {82, 210}, {101, 229}, {102, 230}, {18, 147}, {120, 249}, {60, 189}, {83, 210}, {17, 147}, {120, 250}, {43, 169}, {42, 168}, {37, 167}, {83, 209}, {36, 167}, {56, 187}, {43, 168}, {42, 169}, {82, 209}, {101, 230}, {102, 229}, {56, 188}, {127, 251}, {126, 250}, {17, 148}, {127, 250}, {126, 251}, {18, 148}, {59, 189}, {59, 188}, {110, 230}, {113, 249}, {110, 231}, {109, 231}, {55, 188}, {113, 250}, {109, 230}, {25, 149}, {67, 207}, {55, 187}, {36, 168}, {25, 148}, {66, 207}, {37, 168}, {26, 148}, {92, 210}, {93, 211}, {26, 149}, {92, 211}, {93, 210}, {1, 145}, {59, 171}, {58, 170}, {43, 187}, {2, 146}, {104, 248}, {40, 185}, {118, 231}, {59, 170}, {58, 171}, {43, 186}, {40, 186}, {117, 231}, {66, 208}, {1, 146}, {67, 208}, {2, 145}, {125, 233}, {125, 232}, {44, 186}, {126, 232}, {111, 249}, {110, 248}, {97, 247}, {44, 187}, {126, 233}, {111, 248}, {110, 249}, {87, 192}, {10, 146}, {88, 192}, {10, 147}, {97, 248}, {9, 147}, {91, 193}, {9, 146}, {91, 192}, {53, 169}, {76, 208}, {77, 209}, {92, 192}, {39, 186}, {117, 232}, {52, 169}, {76, 209}, {77, 208}, {92, 193}, {39, 185}, {118, 232}, {52, 170}, {53, 170}, {104, 247}, {4, 164}, {57, 153}, {24, 184}, {23, 183}, {5, 164}, {57, 152}, {27, 185}, {58, 152}, {27, 184}, {58, 153}, {28, 184}, {114, 214}, {70, 226}, {69, 225}, {81, 245}, {28, 185}, {115, 214}, {50, 151}, {103, 194}, {5, 163}, {115, 213}, {49, 151}, {103, 193}, {4, 163}, {114, 213}, {70, 225}, {69, 226}, {81, 246}, {94, 246}, {107, 195}, {95, 247}, {49, 152}, {107, 194}, {94, 247}, {95, 246}, {104, 193}, {50, 152}, {125, 215}, {124, 214}, {104, 194}, {124, 215}, {125, 214}, {78, 226}, {78, 227}, {88, 245}, {10, 164}, {108, 194}, {11, 165}, {77, 227}, {88, 246}, {10, 165}, {108, 195}, {24, 183}, {23, 184}, {11, 164}, {77, 226}, {21, 165}, {99, 211}, {7, 182}, {20, 165}, {85, 228}, {98, 211}, {7, 181}, {65, 243}, {20, 166}, {86, 228}, {21, 166}, {119, 196}, {33, 149}, {119, 195}, {34, 150}, {65, 244}, {86, 227}, {85, 227}, {98, 212}, {33, 150}, {34, 149}, {99, 212}, {93, 229}, {124, 196}, {109, 213}, {108, 212}, {93, 228}, {124, 197}, {109, 212}, {108, 213}, {12, 182}, {78, 244}, {79, 245}, {94, 228}, {12, 183}, {120, 195}, {72, 243}, {78, 245}, {79, 244}, {94, 229}, {11, 183}, {120, 196}, {42, 150}, {27, 167}, {26, 166}, {72, 244}, {8, 181}, {42, 151}, {27, 166}, {26, 167}, {11, 182}, {8, 182}, {123, 197}, {41, 151}, {41, 150}, {123, 196}, {29, 221}, {49, 241}, {29, 220}, {30, 220}, {30, 221}, {49, 242}, {3, 199}, {117, 177}, {13, 201}, {12, 200}, {89, 157}, {2, 199}, {116, 177}, {13, 200}, {12, 201}, {89, 156}, {90, 156}, {116, 178}, {40, 239}, {117, 178}, {90, 157}, {122, 178}, {123, 179}, {21, 220}, {123, 178}, {122, 179}, {56, 241}, {82, 155}, {2, 200}, {56, 242}, {22, 220}, {81, 155}, {101, 175}, {3, 200}, {100, 175}, {62, 242}, {63, 243}, {22, 219}, {63, 242}, {62, 243}, {81, 156}, {21, 219}, {33, 239}, {82, 156}, {74, 154}, {33, 240}, {113, 160}, {74, 155}, {73, 155}, {114, 160}, {73, 154}, {14, 218}, {100, 176}, {14, 219}, {53, 224}, {101, 176}, {13, 219}, {54, 224}, {29, 203}, {28, 202}, {13, 218}, {29, 202}, {28, 203}, {18, 202}, {121, 161}, {66, 154}, {65, 153}, {40, 240}, {19, 202}, {121, 160}, {19, 201}, {122, 160}, {107, 177}, {106, 176}, {18, 201}, {122, 161}, {107, 176}, {106, 177}, {66, 153}, {65, 154}, {5, 217}, {61, 225}, {6, 218}, {61, 224}, {46, 240}, {62, 224}, {47, 241}, {5, 218}, {62, 225}, {47, 240}, {46, 241}, {6, 217}, {44, 204}, {45, 205}, {44, 205}, {45, 204}, {14, 236}, {15, 237}, {8, 235}, {15, 236}, {14, 237}, {8, 236}, {74, 172}, {75, 173}, {74, 173}, {75, 172}, {88, 191}, {35, 203}, {68, 172}, {87, 191}, {34, 203}, {69, 172}, {54, 223}, {1, 235}, {53, 223}, {20, 255}, {19, 255}, {1, 236}, {114, 159}, {16, 254}, {113, 159}, {69, 171}, {34, 204}, {16, 255}, {68, 171}, {35, 204}, {15, 255}, {46, 222}, {31, 239}, {30, 238}, {15, 254}, {46, 223}, {31, 238}, {30, 239}, {45, 223}, {61, 207}, {60, 206}, {76, 190}, {45, 222}, {61, 206}, {60, 207}, {76, 191}, {75, 191}, {90, 174}, {91, 175}, {106, 158}, {24, 237}, {106, 159}, {72, 189}, {75, 190}, {90, 175}, {91, 174}, {24, 238}, {72, 190}, {105, 159}, {105, 158}, {37, 221}, {38, 222}, {85, 173}, {4, 253}, {71, 190}, {84, 173}, {4, 254}, {71, 189}, {84, 174}, {37, 222}, {38, 221}, {85, 174}, {17, 237}, {50, 206}, {97, 157}, {98, 158}, {3, 254}, {51, 206}, {3, 253}, {51, 205}, {17, 238}, {50, 205}, {97, 158}, {98, 157}, {16, 272}, {16, 273}, {22, 274}, {23, 274}, {23, 273}, {22, 273}, {7, 271}, {6, 271}, {25, 275}, {25, 274}, {19, 256}, {20, 256}, {6, 272}, {7, 272}, {9, 273}, {9, 272}, {31, 257}, {31, 256}, {32, 256}, {54, 278}, {32, 257}, {55, 278}, {35, 258}, {35, 257}, {55, 277}, {54, 277}, {48, 276}, {36, 257}, {48, 277}, {36, 258}, {47, 259}, {47, 258}, {57, 279}, {57, 278}, {51, 259}, {52, 260}, {32, 274}, {48, 258}, {38, 276}, {32, 275}, {48, 259}, {39, 276}, {39, 275}, {38, 275}, {51, 260}, {52, 259}, {63, 261}, {63, 260}, {41, 277}, {41, 276}, {68, 261}, {68, 262}, {89, 283}, {89, 282}, {64, 260}, {64, 261}, {67, 262}, {67, 261}, {79, 263}, {80, 280}, {79, 262}, {80, 281}, {86, 282}, {87, 282}, {87, 281}, {86, 281}, {71, 279}, {73, 281}, {70, 279}, {73, 280}, {84, 263}, {83, 263}, {64, 278}, {80, 262}, {95, 265}, {64, 279}, {80, 263}, {95, 264}, {83, 264}, {84, 264}, {70, 280}, {71, 280}, {111, 267}, {111, 266}, {121, 287}, {121, 286}, {96, 264}, {118, 286}, {96, 265}, {119, 286}, {99, 266}, {99, 265}, {119, 285}, {118, 285}, {112, 284}, {100, 265}, {112, 285}, {100, 266}, {127, 269}, {127, 268}, {105, 285}, {105, 284}, {115, 267}, {116, 268}, {96, 282}, {112, 266}, {102, 284}, {96, 283}, {112, 267}, {103, 284}, {103, 283}, {102, 283}, {115, 268}, {116, 267}, {143, 270}, {137, 271}, {132, 269}, {132, 270}, {128, 268}, {128, 269}, {131, 270}, {131, 269}, {135, 287}, {134, 287}, {128, 286}, {144, 270}, {128, 287}, {144, 271}, {134, 288}, {135, 288}, {137, 288}, {144, 288} }>;

(II) A more general form is to represent the graph as the orbit of {137, 145} under the group generated by the following permutations:

a: (1, 9, 23, 27, 37, 45, 51, 63, 65, 73, 87, 91, 101, 109, 115, 127, 129, 137, 7, 11, 21, 29, 35, 47, 49, 57, 71, 75, 85, 93, 99, 111, 113, 121, 135, 139, 5, 13, 19, 31, 33, 41, 55, 59, 69, 77, 83, 95, 97, 105, 119, 123, 133, 141, 3, 15, 17, 25, 39, 43, 53, 61, 67, 79, 81, 89, 103, 107, 117, 125, 131, 143)(2, 16, 24, 26, 38, 44, 52, 62, 66, 80, 88, 90, 102, 108, 116, 126, 130, 144, 8, 10, 22, 28, 36, 46, 50, 64, 72, 74, 86, 92, 100, 110, 114, 128, 136, 138, 6, 12, 20, 30, 34, 48, 56, 58, 70, 76, 84, 94, 98, 112, 120, 122, 134, 140, 4, 14, 18, 32, 40, 42, 54, 60, 68, 78, 82, 96, 104, 106, 118, 124, 132, 142)(145, 272, 183, 166, 221, 204, 259, 242, 153, 280, 191, 174, 229, 212, 267, 250, 161, 288, 181, 164, 219, 202, 257, 240, 151, 278, 189, 172, 227, 210, 265, 248, 159, 286, 197, 180, 217, 200, 255, 238, 149, 276, 187, 170, 225, 208, 263, 246, 157, 284, 195, 178, 233, 216, 253, 236, 147, 274, 185, 168, 223, 206, 261, 244, 155, 282, 193, 176, 231, 214, 269, 252)(146, 273, 184, 167, 222, 205, 260, 243, 154, 281, 192, 175, 230, 213, 268, 251, 162, 271, 182, 165, 220, 203, 258, 241, 152, 279, 190, 173, 228, 211, 266, 249, 160, 287, 198, 163, 218, 201, 256, 239, 150, 277, 188, 171, 226, 209, 264, 247, 158, 285, 196, 179, 234, 199, 254, 237, 148, 275, 186, 169, 224, 207, 262, 245, 156, 283, 194, 177, 232, 215, 270, 235)
b: (9, 137)(10, 138)(11, 139)(12, 140)(13, 141)(14, 142)(15, 143)(16, 144)(17, 129)(18, 130)(19, 131)(20, 132)(21, 133)(22, 134)(23, 135)(24, 136)(25, 121)(26, 122)(27, 123)(28, 124)(29, 125)(30, 126)(31, 127)(32, 128)(33, 113)(34, 114)(35, 115)(36, 116)(37, 117)(38, 118)(39, 119)(40, 120)(41, 105)(42, 106)(43, 107)(44, 108)(45, 109)(46, 110)(47, 111)(48, 112)(49, 97)(50, 98)(51, 99)(52, 100)(53, 101)(54, 102)(55, 103)(56, 104)(57, 89)(58, 90)(59, 91)(60, 92)(61, 93)(62, 94)(63, 95)(64, 96)(65, 81)(66, 82)(67, 83)(68, 84)(69, 85)(70, 86)(71, 87)(72, 88)(145, 146)(147, 162)(148, 161)(149, 160)(150, 159)(151, 158)(152, 157)(153, 156)(154, 155)(163, 164)(165, 180)(166, 179)(167, 178)(168, 177)(169, 176)(170, 175)(171, 174)(172, 173)(181, 182)(183, 198)(184, 197)(185, 196)(186, 195)(187, 194)(188, 193)(189, 192)(190, 191)(199, 200)(201, 216)(202, 215)(203, 214)(204, 213)(205, 212)(206, 211)(207, 210)(208, 209)(217, 218)(219, 234)(220, 233)(221, 232)(222, 231)(223, 230)(224, 229)(225, 228)(226, 227)(235, 236)(237, 252)(238, 251)(239, 250)(240, 249)(241, 248)(242, 247)(243, 246)(244, 245)(253, 254)(255, 270)(256, 269)(257, 268)(258, 267)(259, 266)(260, 265)(261, 264)(262, 263)(271, 272)(273, 288)(274, 287)(275, 286)(276, 285)(277, 284)(278, 283)(279, 282)(280, 281)
c: (1, 2, 3, 4, 5, 6, 7, 8)(9, 12, 15, 10, 13, 16, 11, 14)(17, 18, 19, 20, 21, 22, 23, 24)(25, 28, 31, 26, 29, 32, 27, 30)(33, 34, 35, 36, 37, 38, 39, 40)(41, 44, 47, 42, 45, 48, 43, 46)(49, 50, 51, 52, 53, 54, 55, 56)(57, 60, 63, 58, 61, 64, 59, 62)(65, 66, 67, 68, 69, 70, 71, 72)(73, 76, 79, 74, 77, 80, 75, 78)(81, 82, 83, 84, 85, 86, 87, 88)(89, 92, 95, 90, 93, 96, 91, 94)(97, 98, 99, 100, 101, 102, 103, 104)(105, 108, 111, 106, 109, 112, 107, 110)(113, 114, 115, 116, 117, 118, 119, 120)(121, 124, 127, 122, 125, 128, 123, 126)(129, 130, 131, 132, 133, 134, 135, 136)(137, 140, 143, 138, 141, 144, 139, 142)(145, 199, 253, 163, 217, 271, 181, 235)(146, 200, 254, 164, 218, 272, 182, 236)(147, 201, 255, 165, 219, 273, 183, 237)(148, 202, 256, 166, 220, 274, 184, 238)(149, 203, 257, 167, 221, 275, 185, 239)(150, 204, 258, 168, 222, 276, 186, 240)(151, 205, 259, 169, 223, 277, 187, 241)(152, 206, 260, 170, 224, 278, 188, 242)(153, 207, 261, 171, 225, 279, 189, 243)(154, 208, 262, 172, 226, 280, 190, 244)(155, 209, 263, 173, 227, 281, 191, 245)(156, 210, 264, 174, 228, 282, 192, 246)(157, 211, 265, 175, 229, 283, 193, 247)(158, 212, 266, 176, 230, 284, 194, 248)(159, 213, 267, 177, 231, 285, 195, 249)(160, 214, 268, 178, 232, 286, 196, 250)(161, 215, 269, 179, 233, 287, 197, 251)(162, 216, 270, 180, 234, 288, 198, 252)
d: (2, 8)(3, 7)(4, 6)(9, 15)(10, 14)(11, 13)(18, 24)(19, 23)(20, 22)(25, 31)(26, 30)(27, 29)(34, 40)(35, 39)(36, 38)(41, 47)(42, 46)(43, 45)(50, 56)(51, 55)(52, 54)(57, 63)(58, 62)(59, 61)(66, 72)(67, 71)(68, 70)(73, 79)(74, 78)(75, 77)(82, 88)(83, 87)(84, 86)(89, 95)(90, 94)(91, 93)(98, 104)(99, 103)(100, 102)(105, 111)(106, 110)(107, 109)(114, 120)(115, 119)(116, 118)(121, 127)(122, 126)(123, 125)(130, 136)(131, 135)(132, 134)(137, 143)(138, 142)(139, 141)(145, 235)(146, 236)(147, 237)(148, 238)(149, 239)(150, 240)(151, 241)(152, 242)(153, 243)(154, 244)(155, 245)(156, 246)(157, 247)(158, 248)(159, 249)(160, 250)(161, 251)(162, 252)(163, 217)(164, 218)(165, 219)(166, 220)(167, 221)(168, 222)(169, 223)(170, 224)(171, 225)(172, 226)(173, 227)(174, 228)(175, 229)(176, 230)(177, 231)(178, 232)(179, 233)(180, 234)(181, 199)(182, 200)(183, 201)(184, 202)(185, 203)(186, 204)(187, 205)(188, 206)(189, 207)(190, 208)(191, 209)(192, 210)(193, 211)(194, 212)(195, 213)(196, 214)(197, 215)(198, 216)(253, 271)(254, 272)(255, 273)(256, 274)(257, 275)(258, 276)(259, 277)(260, 278)(261, 279)(262, 280)(263, 281)(264, 282)(265, 283)(266, 284)(267, 285)(268, 286)(269, 287)(270, 288)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 38 ]
288
-1 145 146 235 236
-2 199 145 200 146
-3 253 199 254 200
-4 253 254 163 164
-5 217 163 218 164
-6 271 217 272 218
-7 181 182 271 272
-8 235 181 236 182
-9 146 147 272 273
-10 165 146 147 164
-11 165 182 183 164
-12 200 201 182 183
-13 200 201 218 219
-14 236 237 218 219
-15 254 255 236 237
-16 254 255 272 273
-17 147 148 237 238
-18 201 147 202 148
-19 255 201 256 202
-20 165 166 255 256
-21 165 220 166 219
-22 220 273 219 274
-23 183 184 273 274
-24 237 183 238 184
-25 275 148 149 274
-26 166 167 148 149
-27 166 167 184 185
-28 202 203 184 185
-29 220 221 202 203
-30 220 221 238 239
-31 256 257 238 239
-32 275 256 257 274
-33 149 150 239 240
-34 203 149 204 150
-35 257 203 258 204
-36 167 168 257 258
-37 221 167 222 168
-38 275 221 276 222
-39 275 276 185 186
-40 239 185 240 186
-41 276 277 150 151
-42 168 169 150 151
-43 187 168 169 186
-44 187 204 205 186
-45 222 223 204 205
-46 222 223 240 241
-47 258 259 240 241
-48 276 277 258 259
-49 242 151 152 241
-50 205 151 206 152
-51 259 205 260 206
-52 169 170 259 260
-53 223 169 224 170
-54 277 223 278 224
-55 187 188 277 278
-56 187 242 188 241
-57 278 279 152 153
-58 170 171 152 153
-59 188 189 170 171
-60 188 189 206 207
-61 224 225 206 207
-62 242 243 224 225
-63 242 243 260 261
-64 278 279 260 261
-65 154 243 244 153
-66 154 207 153 208
-67 261 207 262 208
-68 171 172 261 262
-69 225 171 226 172
-70 279 225 280 226
-71 189 190 279 280
-72 243 189 244 190
-73 154 155 280 281
-74 154 155 172 173
-75 190 191 172 173
-76 209 190 191 208
-77 209 226 227 208
-78 244 245 226 227
-79 244 245 262 263
-80 280 281 262 263
-81 155 156 245 246
-82 209 155 210 156
-83 209 264 210 263
-84 264 173 174 263
-85 227 173 228 174
-86 281 227 282 228
-87 191 192 281 282
-88 245 191 246 192
-89 156 157 282 283
-90 156 157 174 175
-91 192 193 174 175
-92 210 211 192 193
-93 210 211 228 229
-94 246 247 228 229
-95 264 265 246 247
-96 264 265 282 283
-97 157 158 247 248
-98 211 157 212 158
-99 265 211 266 212
-100 176 265 266 175
-101 176 229 175 230
-102 283 229 284 230
-103 193 194 283 284
-104 247 193 248 194
-105 158 159 284 285
-106 176 177 158 159
-107 176 177 194 195
-108 212 213 194 195
-109 231 212 213 230
-110 231 248 249 230
-111 266 267 248 249
-112 266 267 284 285
-113 159 160 249 250
-114 213 159 214 160
-115 267 213 268 214
-116 177 178 267 268
-117 231 177 232 178
-118 231 286 232 285
-119 286 195 196 285
-120 249 195 250 196
-121 286 287 160 161
-122 178 179 160 161
-123 178 179 196 197
-124 214 215 196 197
-125 232 233 214 215
-126 232 233 250 251
-127 268 269 250 251
-128 286 287 268 269
-129 161 162 251 252
-130 215 161 216 162
-131 269 215 270 216
-132 179 180 269 270
-133 233 179 234 180
-134 287 233 288 234
-135 198 287 288 197
-136 198 251 197 252
-137 145 288 271 162
-138 145 180 162 163
-139 198 180 181 163
-140 198 199 181 216
-141 199 234 216 217
-142 234 235 217 252
-143 253 235 270 252
-144 253 288 270 271
-145 1 2 137 138
-146 1 2 9 10
-147 17 18 9 10
-148 25 26 17 18
-149 33 34 25 26
-150 33 34 41 42
-151 49 50 41 42
-152 57 58 49 50
-153 66 57 58 65
-154 66 73 74 65
-155 81 82 73 74
-156 89 90 81 82
-157 89 90 97 98
-158 105 106 97 98
-159 113 114 105 106
-160 121 122 113 114
-161 121 122 129 130
-162 137 138 129 130
-163 4 5 138 139
-164 11 4 5 10
-165 11 20 10 21
-166 26 27 20 21
-167 36 26 37 27
-168 36 37 42 43
-169 52 42 53 43
-170 58 59 52 53
-171 68 58 69 59
-172 68 69 74 75
-173 84 74 85 75
-174 90 91 84 85
-175 100 90 101 91
-176 100 101 106 107
-177 116 106 117 107
-178 122 123 116 117
-179 132 122 133 123
-180 132 133 138 139
-181 7 139 8 140
-182 11 12 7 8
-183 11 12 23 24
-184 23 24 27 28
-185 27 28 39 40
-186 44 39 40 43
-187 44 55 56 43
-188 55 56 59 60
-189 59 60 71 72
-190 71 72 75 76
-191 88 75 76 87
-192 88 91 92 87
-193 91 92 103 104
-194 103 104 107 108
-195 107 108 119 120
-196 123 124 119 120
-197 123 124 135 136
-198 135 136 139 140
-199 2 3 140 141
-200 12 2 13 3
-201 12 13 18 19
-202 28 18 29 19
-203 34 35 28 29
-204 44 34 45 35
-205 44 45 50 51
-206 60 50 61 51
-207 66 67 60 61
-208 66 77 67 76
-209 77 82 83 76
-210 92 82 93 83
-211 99 92 93 98
-212 99 108 98 109
-213 114 115 108 109
-214 124 114 125 115
-215 124 125 130 131
-216 140 130 141 131
-217 5 6 141 142
-218 13 14 5 6
-219 22 13 14 21
-220 22 29 30 21
-221 37 38 29 30
-222 45 46 37 38
-223 45 46 53 54
-224 61 62 53 54
-225 69 70 61 62
-226 77 78 69 70
-227 77 78 85 86
-228 93 94 85 86
-229 101 102 93 94
-230 110 101 102 109
-231 110 117 118 109
-232 125 126 117 118
-233 133 134 125 126
-234 133 134 141 142
-235 143 1 8 142
-236 1 14 15 8
-237 24 14 15 17
-238 24 17 30 31
-239 33 40 30 31
-240 33 46 47 40
-241 56 46 47 49
-242 56 49 62 63
-243 72 62 63 65
-244 78 79 72 65
-245 88 78 79 81
-246 88 81 94 95
-247 104 94 95 97
-248 110 111 104 97
-249 110 111 113 120
-250 113 126 127 120
-251 136 126 127 129
-252 143 136 129 142
-253 143 144 3 4
-254 3 4 15 16
-255 15 16 19 20
-256 19 20 31 32
-257 35 36 31 32
-258 35 36 47 48
-259 47 48 51 52
-260 51 52 63 64
-261 67 68 63 64
-262 67 68 79 80
-263 79 80 83 84
-264 83 84 95 96
-265 99 100 95 96
-266 99 100 111 112
-267 111 112 115 116
-268 115 116 127 128
-269 132 127 128 131
-270 132 143 144 131
-271 144 137 6 7
-272 16 6 7 9
-273 22 23 16 9
-274 22 23 25 32
-275 25 38 39 32
-276 48 38 39 41
-277 55 48 41 54
-278 55 57 64 54
-279 57 70 71 64
-280 80 70 71 73
-281 80 73 86 87
-282 89 96 86 87
-283 89 102 103 96
-284 112 102 103 105
-285 112 105 118 119
-286 121 128 118 119
-287 121 134 135 128
-288 144 134 135 137
0

**************