C4graphGraph forms for C4 [ 288, 42 ] = PL(MC3(6,24,1,19,5,0,1),[6^24,8^18])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 42 ] = PL(MC3(6,24,1,19,5,0,1),[6^24,8^18]).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {141, 158}, {131, 150}, {135, 159}, {134, 157}, {128, 158}, {129, 160}, {139, 170}, {136, 173}, {133, 175}, {135, 171}, {136, 164}, {142, 160}, {131, 172}, {134, 169}, {138, 187}, {132, 182}, {130, 177}, {140, 181}, {143, 182}, {142, 180}, {141, 178}, {144, 175}, {144, 209}, {132, 193}, {137, 206}, {141, 202}, {137, 195}, {133, 201}, {142, 192}, {143, 193}, {131, 210}, {143, 221}, {138, 217}, {135, 211}, {137, 220}, {130, 212}, {142, 216}, {136, 223}, {129, 216}, {144, 201}, {143, 213}, {140, 215}, {137, 214}, {128, 225}, {136, 233}, {130, 230}, {138, 237}, {140, 235}, {139, 226}, {134, 236}, {141, 225}, {131, 238}, {138, 231}, {139, 229}, {130, 241}, {144, 227}, {134, 242}, {135, 251}, {139, 246}, {140, 243}, {26, 154}, {69, 197}, {65, 193}, {46, 175}, {114, 243}, {59, 186}, {49, 176}, {79, 206}, {84, 213}, {95, 222}, {35, 161}, {72, 202}, {24, 155}, {118, 245}, {60, 191}, {25, 154}, {98, 225}, {103, 228}, {98, 230}, {105, 237}, {54, 179}, {43, 173}, {127, 249}, {118, 240}, {100, 226}, {22, 145}, {58, 189}, {85, 210}, {99, 235}, {116, 252}, {110, 230}, {19, 154}, {42, 163}, {106, 227}, {54, 188}, {117, 255}, {49, 186}, {89, 210}, {35, 175}, {62, 178}, {80, 220}, {102, 234}, {32, 173}, {121, 244}, {18, 156}, {75, 197}, {40, 167}, {63, 176}, {37, 181}, {90, 202}, {68, 213}, {123, 234}, {111, 254}, {70, 215}, {10, 152}, {58, 168}, {53, 167}, {2, 145}, {123, 232}, {50, 161}, {49, 162}, {36, 183}, {79, 220}, {88, 203}, {101, 246}, {40, 188}, {44, 184}, {6, 147}, {126, 235}, {71, 210}, {82, 199}, {87, 194}, {53, 163}, {47, 183}, {125, 229}, {96, 248}, {15, 150}, {118, 239}, {74, 211}, {94, 199}, {9, 147}, {66, 216}, {33, 186}, {123, 224}, {56, 163}, {37, 190}, {59, 167}, {64, 220}, {12, 145}, {122, 231}, {71, 218}, {32, 189}, {96, 253}, {54, 168}, {115, 236}, {125, 226}, {53, 149}, {67, 227}, {56, 152}, {4, 165}, {52, 149}, {30, 191}, {10, 168}, {68, 230}, {58, 152}, {26, 184}, {16, 178}, {103, 197}, {81, 242}, {29, 185}, {77, 233}, {13, 168}, {68, 225}, {28, 185}, {3, 165}, {124, 218}, {118, 208}, {9, 174}, {121, 222}, {59, 156}, {86, 241}, {94, 249}, {6, 174}, {119, 223}, {20, 188}, {103, 207}, {92, 245}, {126, 215}, {67, 233}, {72, 226}, {15, 164}, {19, 184}, {11, 167}, {71, 235}, {92, 240}, {64, 237}, {109, 192}, {8, 166}, {120, 214}, {21, 187}, {78, 224}, {48, 159}, {107, 196}, {75, 228}, {88, 247}, {39, 151}, {83, 227}, {105, 217}, {2, 179}, {108, 221}, {74, 251}, {1, 179}, {22, 164}, {104, 218}, {12, 191}, {25, 170}, {24, 171}, {91, 232}, {34, 150}, {65, 245}, {14, 187}, {19, 166}, {35, 148}, {41, 158}, {18, 170}, {42, 146}, {6, 191}, {108, 213}, {99, 218}, {17, 171}, {110, 212}, {46, 148}, {38, 156}, {37, 159}, {83, 233}, {85, 238}, {127, 196}, {120, 195}, {113, 202}, {91, 224}, {106, 209}, {5, 185}, {103, 219}, {4, 185}, {40, 149}, {80, 237}, {121, 198}, {20, 212}, {32, 224}, {82, 146}, {87, 151}, {23, 214}, {122, 187}, {63, 254}, {49, 240}, {90, 155}, {97, 160}, {15, 205}, {124, 190}, {45, 239}, {7, 196}, {113, 178}, {11, 200}, {8, 204}, {58, 254}, {12, 200}, {14, 203}, {22, 211}, {94, 155}, {95, 154}, {4, 194}, {60, 250}, {16, 214}, {24, 223}, {114, 181}, {51, 244}, {102, 174}, {127, 183}, {53, 252}, {2, 200}, {111, 165}, {38, 236}, {35, 232}, {95, 148}, {63, 243}, {14, 195}, {117, 184}, {92, 145}, {97, 172}, {10, 196}, {17, 223}, {101, 170}, {29, 205}, {29, 204}, {72, 153}, {36, 245}, {33, 240}, {76, 157}, {45, 255}, {116, 166}, {111, 189}, {44, 255}, {70, 146}, {14, 219}, {123, 174}, {66, 151}, {44, 249}, {21, 195}, {25, 206}, {116, 163}, {33, 246}, {28, 203}, {31, 199}, {33, 249}, {27, 194}, {109, 180}, {44, 246}, {119, 173}, {50, 232}, {96, 186}, {69, 158}, {107, 176}, {15, 211}, {112, 172}, {18, 206}, {34, 255}, {124, 161}, {64, 157}, {28, 194}, {117, 171}, {16, 207}, {125, 162}, {24, 199}, {19, 204}, {7, 231}, {39, 198}, {17, 243}, {57, 219}, {43, 201}, {26, 248}, {27, 248}, {116, 151}, {67, 160}, {93, 190}, {88, 188}, {1, 228}, {126, 155}, {52, 209}, {36, 193}, {2, 228}, {127, 153}, {115, 149}, {112, 150}, {61, 219}, {20, 242}, {26, 253}, {55, 208}, {86, 177}, {6, 238}, {31, 247}, {74, 162}, {3, 234}, {32, 201}, {27, 242}, {77, 164}, {94, 183}, {5, 239}, {117, 159}, {55, 221}, {42, 192}, {28, 247}, {73, 162}, {88, 179}, {90, 177}, {20, 248}, {41, 197}, {10, 231}, {121, 148}, {68, 169}, {89, 180}, {1, 239}, {115, 157}, {48, 222}, {31, 241}, {4, 234}, {17, 254}, {124, 147}, {67, 172}, {34, 205}, {7, 247}, {60, 204}, {30, 238}, {11, 251}, {13, 252}, {62, 207}, {60, 205}, {87, 166}, {23, 229}, {107, 153}, {52, 198}, {8, 251}, {71, 180}, {59, 200}, {78, 189}, {41, 221}, {16, 229}, {51, 198}, {7, 241}, {110, 152}, {64, 182}, {61, 203}, {57, 207}, {47, 217}, {39, 209}, {12, 250}, {13, 250}, {73, 190}, {82, 165}, {5, 253}, {56, 192}, {81, 169}, {3, 250}, {41, 208}, {72, 177}, {74, 176}, {76, 182}, {37, 222}, {104, 147}, {1, 253}, {40, 212}, {8, 244}, {73, 181}, {93, 161}, {96, 156}, {36, 217}, {111, 146}, {45, 208}, {42, 215}, {84, 169}, {100, 153}, {18, 236}, {3, 252}, {39, 216}, {11, 244}, {9, 265}, {13, 269}, {21, 279}, {34, 288}, {23, 274}, {22, 273}, {30, 279}, {5, 265}, {30, 274}, {45, 288}, {47, 288}, {23, 261}, {29, 265}, {31, 267}, {25, 271}, {9, 286}, {21, 269}, {27, 256}, {43, 267}, {61, 284}, {50, 272}, {51, 272}, {55, 276}, {50, 278}, {38, 259}, {61, 283}, {57, 286}, {55, 286}, {46, 257}, {43, 283}, {57, 265}, {52, 260}, {51, 259}, {46, 284}, {62, 268}, {47, 285}, {38, 272}, {48, 263}, {63, 262}, {56, 258}, {54, 269}, {48, 268}, {62, 257}, {81, 275}, {80, 275}, {85, 273}, {70, 256}, {83, 277}, {65, 262}, {73, 259}, {80, 282}, {83, 281}, {77, 262}, {70, 266}, {85, 281}, {91, 279}, {66, 271}, {92, 273}, {79, 257}, {93, 274}, {95, 271}, {66, 275}, {78, 287}, {76, 287}, {79, 284}, {69, 273}, {77, 280}, {78, 280}, {86, 256}, {91, 269}, {87, 256}, {119, 288}, {89, 270}, {93, 261}, {65, 280}, {75, 274}, {82, 267}, {76, 278}, {69, 281}, {75, 279}, {84, 264}, {86, 266}, {89, 261}, {90, 263}, {81, 271}, {84, 266}, {101, 263}, {122, 280}, {105, 267}, {104, 268}, {112, 276}, {113, 276}, {122, 287}, {98, 260}, {100, 258}, {120, 272}, {101, 268}, {109, 260}, {104, 257}, {100, 270}, {119, 285}, {99, 264}, {110, 258}, {107, 262}, {112, 286}, {120, 278}, {114, 258}, {108, 285}, {105, 283}, {106, 287}, {108, 282}, {98, 277}, {115, 260}, {99, 276}, {109, 277}, {113, 264}, {126, 263}, {102, 284}, {97, 282}, {97, 285}, {114, 270}, {106, 278}, {102, 283}, {125, 259}, {128, 261}, {129, 264}, {129, 266}, {128, 270}, {132, 277}, {133, 275}, {132, 281}, {133, 282} }>;

(II) A more general form is to represent the graph as the orbit of {141, 158} under the group generated by the following permutations:

a: (2, 5)(3, 8)(4, 11)(6, 15)(7, 18)(9, 22)(10, 25)(12, 29)(13, 19)(14, 33)(16, 36)(17, 35)(21, 44)(23, 47)(24, 50)(26, 54)(27, 40)(28, 59)(30, 34)(31, 38)(32, 37)(39, 42)(43, 73)(45, 75)(46, 63)(48, 78)(49, 61)(51, 82)(52, 70)(53, 87)(55, 69)(56, 66)(57, 92)(58, 95)(62, 65)(64, 72)(67, 71)(74, 102)(76, 90)(77, 104)(79, 107)(80, 100)(81, 110)(83, 99)(84, 98)(85, 112)(86, 115)(88, 96)(89, 97)(91, 117)(93, 119)(94, 120)(101, 122)(103, 118)(105, 125)(106, 126)(108, 128)(109, 129)(111, 121)(113, 132)(114, 133)(123, 135)(124, 136)(127, 137)(130, 134)(138, 139)(140, 144)(141, 143)(145, 265)(146, 198)(147, 164)(148, 254)(149, 256)(150, 238)(151, 163)(152, 271)(153, 220)(154, 168)(155, 278)(156, 247)(157, 177)(158, 221)(159, 224)(160, 180)(161, 223)(162, 283)(165, 244)(166, 252)(167, 194)(169, 230)(170, 231)(171, 232)(172, 210)(173, 190)(174, 211)(175, 243)(176, 284)(178, 193)(179, 253)(181, 201)(182, 202)(183, 214)(184, 269)(185, 200)(186, 203)(187, 246)(188, 248)(189, 222)(191, 205)(192, 216)(195, 249)(196, 206)(197, 208)(199, 272)(204, 250)(207, 245)(209, 215)(212, 242)(213, 225)(217, 229)(218, 233)(219, 240)(226, 237)(227, 235)(228, 239)(234, 251)(236, 241)(255, 279)(257, 262)(258, 275)(259, 267)(260, 266)(261, 285)(263, 287)(264, 277)(268, 280)(270, 282)(273, 286)(274, 288)(276, 281)
b: (1, 3, 7, 17, 33, 8, 20, 42, 72, 37, 18, 39, 68, 71, 16, 35, 64, 67, 41, 6, 14, 32, 36, 15)(2, 4, 10, 24, 49, 19, 40, 70, 100, 48, 38, 66, 98, 99, 23, 46, 76, 97, 69, 9, 21, 43, 65, 34)(5, 13, 31, 63, 44, 11, 27, 56, 90, 73, 25, 52, 84, 89, 62, 50, 80, 83, 55, 30, 61, 78, 47, 22)(12, 28, 58, 94, 74, 26, 53, 86, 114, 101, 51, 81, 109, 113, 93, 79, 106, 108, 85, 57, 91, 105, 77, 45)(29, 54, 82, 107, 117, 59, 87, 110, 126, 125, 95, 115, 129, 128, 104, 120, 133, 132, 112, 75, 102, 122, 119, 92)(60, 88, 111, 127, 135, 96, 116, 130, 140, 139, 121, 134, 142, 141, 124, 137, 144, 143, 131, 103, 123, 138, 136, 118)(145, 185, 168, 199, 176, 184, 167, 256, 258, 263, 259, 271, 260, 264, 261, 257, 278, 282, 281, 286, 279, 283, 280, 288)(146, 153, 159, 156, 151, 230, 235, 229, 148, 157, 160, 158, 147, 195, 201, 193, 150, 228, 234, 231, 223, 240, 204, 188)(149, 266, 270, 268, 272, 275, 277, 276, 274, 284, 287, 285, 273, 265, 269, 267, 262, 255, 200, 194, 152, 155, 162, 154)(161, 220, 227, 221, 238, 219, 224, 217, 164, 239, 250, 247, 254, 249, 251, 248, 163, 177, 181, 170, 198, 169, 180, 178)(165, 196, 171, 186, 166, 212, 215, 226, 222, 236, 216, 225, 218, 214, 175, 182, 172, 197, 174, 187, 173, 245, 205, 179)(183, 211, 253, 252, 241, 243, 246, 244, 242, 192, 202, 190, 206, 209, 213, 210, 207, 232, 237, 233, 208, 191, 203, 189)
c: (3, 6)(4, 9)(7, 16)(8, 15)(10, 23)(11, 22)(13, 30)(17, 37)(18, 36)(19, 34)(20, 41)(24, 48)(25, 47)(26, 45)(27, 55)(28, 57)(31, 62)(32, 35)(38, 65)(39, 67)(40, 69)(42, 71)(43, 46)(50, 78)(51, 77)(52, 83)(53, 85)(54, 75)(56, 89)(58, 93)(59, 92)(63, 73)(66, 97)(70, 99)(79, 105)(81, 108)(82, 104)(86, 113)(87, 112)(88, 103)(94, 101)(95, 119)(96, 118)(107, 125)(110, 128)(111, 124)(115, 132)(116, 131)(120, 122)(121, 136)(127, 139)(130, 141)(134, 143)(137, 138)(145, 200)(146, 218)(147, 165)(148, 173)(149, 281)(150, 166)(151, 172)(152, 261)(153, 226)(154, 288)(155, 263)(156, 245)(157, 182)(158, 212)(159, 171)(160, 216)(161, 189)(162, 176)(163, 210)(164, 244)(167, 273)(168, 274)(169, 213)(170, 183)(174, 234)(175, 201)(177, 202)(178, 241)(179, 228)(180, 192)(181, 243)(184, 255)(185, 265)(186, 240)(187, 195)(188, 197)(190, 254)(191, 250)(193, 236)(194, 286)(196, 229)(198, 233)(199, 268)(203, 219)(204, 205)(206, 217)(207, 247)(208, 248)(209, 227)(211, 251)(214, 231)(215, 235)(220, 237)(221, 242)(222, 223)(224, 232)(225, 230)(238, 252)(239, 253)(246, 249)(256, 276)(257, 267)(258, 270)(259, 262)(260, 277)(264, 266)(269, 279)(271, 285)(272, 280)(275, 282)(278, 287)(283, 284)
d: (1, 2)(3, 4)(5, 12)(6, 9)(7, 10)(8, 19)(11, 26)(13, 28)(14, 21)(15, 34)(16, 23)(17, 24)(18, 38)(20, 40)(22, 45)(25, 51)(27, 53)(29, 60)(30, 57)(31, 58)(32, 43)(33, 49)(35, 46)(36, 65)(37, 48)(39, 66)(41, 69)(42, 70)(44, 74)(47, 77)(50, 79)(52, 81)(54, 88)(55, 85)(56, 86)(59, 96)(61, 91)(62, 93)(63, 94)(64, 76)(67, 97)(68, 98)(71, 99)(72, 100)(73, 101)(75, 103)(78, 105)(80, 106)(82, 111)(83, 108)(84, 109)(87, 116)(89, 113)(90, 114)(92, 118)(95, 121)(102, 123)(104, 124)(107, 127)(110, 130)(112, 131)(115, 134)(117, 135)(119, 136)(120, 137)(122, 138)(125, 139)(126, 140)(128, 141)(129, 142)(132, 143)(133, 144)(145, 239)(149, 242)(152, 241)(154, 244)(155, 243)(161, 257)(162, 246)(163, 256)(164, 288)(167, 248)(168, 247)(169, 260)(170, 259)(176, 249)(177, 258)(178, 261)(180, 264)(181, 263)(183, 262)(184, 251)(185, 250)(189, 267)(190, 268)(191, 265)(192, 266)(194, 252)(198, 271)(199, 254)(200, 253)(202, 270)(203, 269)(206, 272)(207, 274)(208, 273)(209, 275)(210, 276)(211, 255)(213, 277)(217, 280)(219, 279)(220, 278)(221, 281)(224, 283)(227, 282)(232, 284)(233, 285)(237, 287)(238, 286)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 42 ]
288
-1 253 179 228 239
-2 145 200 179 228
-3 165 234 250 252
-4 165 234 194 185
-5 253 265 239 185
-6 147 191 238 174
-7 231 247 196 241
-8 166 244 204 251
-9 286 265 147 174
-10 231 168 152 196
-11 167 200 244 251
-12 145 200 191 250
-13 168 269 250 252
-14 187 203 195 219
-15 211 150 205 164
-16 178 214 207 229
-17 243 254 223 171
-18 156 170 236 206
-19 154 166 204 184
-20 242 188 212 248
-21 187 279 269 195
-22 145 211 273 164
-23 214 261 229 274
-24 155 199 223 171
-25 154 170 271 206
-26 154 253 248 184
-27 242 256 248 194
-28 203 247 194 185
-29 265 204 205 185
-30 191 279 238 274
-31 199 267 247 241
-32 189 201 224 173
-33 246 249 240 186
-34 255 288 150 205
-35 232 148 161 175
-36 245 193 183 217
-37 222 190 159 181
-38 156 236 259 272
-39 198 209 216 151
-40 188 167 212 149
-41 221 158 197 208
-42 146 192 215 163
-43 201 267 173 283
-44 255 246 249 184
-45 255 288 239 208
-46 257 148 284 175
-47 288 183 217 285
-48 222 268 159 263
-49 176 162 240 186
-50 232 278 161 272
-51 198 244 259 272
-52 198 209 149 260
-53 167 149 163 252
-54 188 168 179 269
-55 286 221 276 208
-56 192 258 152 163
-57 286 265 207 219
-58 254 189 168 152
-59 156 167 200 186
-60 191 204 205 250
-61 203 283 284 219
-62 178 257 268 207
-63 176 243 254 262
-64 220 157 182 237
-65 245 280 193 262
-66 275 216 271 151
-67 233 160 172 227
-68 169 213 225 230
-69 158 281 273 197
-70 266 146 256 215
-71 210 180 235 218
-72 177 202 226 153
-73 190 181 259 162
-74 176 211 162 251
-75 279 228 197 274
-76 287 157 278 182
-77 233 280 262 164
-78 287 189 224 280
-79 220 257 206 284
-80 220 275 237 282
-81 242 275 169 271
-82 165 199 146 267
-83 233 277 281 227
-84 264 266 169 213
-85 210 281 238 273
-86 177 266 256 241
-87 166 256 194 151
-88 188 179 203 247
-89 210 180 270 261
-90 155 177 202 263
-91 232 224 279 269
-92 145 245 240 273
-93 190 161 261 274
-94 155 199 183 249
-95 154 222 148 271
-96 253 156 248 186
-97 160 172 282 285
-98 277 225 260 230
-99 264 276 235 218
-100 258 226 270 153
-101 246 268 170 263
-102 234 283 174 284
-103 228 207 197 219
-104 147 257 268 218
-105 267 237 217 283
-106 209 287 278 227
-107 176 196 262 153
-108 221 213 282 285
-109 277 180 192 260
-110 212 258 152 230
-111 165 254 189 146
-112 286 276 150 172
-113 264 276 178 202
-114 243 181 258 270
-115 157 236 149 260
-116 166 151 163 252
-117 255 159 171 184
-118 245 239 240 208
-119 288 223 173 285
-120 278 214 195 272
-121 198 222 244 148
-122 187 231 287 280
-123 232 234 224 174
-124 190 147 161 218
-125 226 259 162 229
-126 155 235 215 263
-127 183 249 196 153
-128 158 225 270 261
-129 264 266 160 216
-130 177 212 230 241
-131 210 150 172 238
-132 277 182 193 281
-133 275 201 282 175
-134 242 157 169 236
-135 211 159 171 251
-136 233 223 173 164
-137 220 214 195 206
-138 187 231 237 217
-139 246 170 226 229
-140 243 235 181 215
-141 178 158 202 225
-142 180 192 160 216
-143 221 213 182 193
-144 209 201 227 175
-145 22 12 2 92
-146 111 70 82 42
-147 124 104 6 9
-148 121 35 46 95
-149 115 40 52 53
-150 34 112 15 131
-151 66 39 116 87
-152 110 56 58 10
-153 100 72 127 107
-154 25 26 95 19
-155 24 90 126 94
-156 59 38 18 96
-157 134 115 64 76
-158 69 128 41 141
-159 135 37 48 117
-160 67 129 97 142
-161 35 124 93 50
-162 125 49 73 74
-163 56 116 42 53
-164 22 77 15 136
-165 111 3 4 82
-166 116 8 19 87
-167 11 59 40 53
-168 13 58 10 54
-169 68 134 81 84
-170 101 25 18 139
-171 24 135 17 117
-172 67 112 97 131
-173 136 119 32 43
-174 123 102 6 9
-175 133 144 35 46
-176 49 63 74 107
-177 90 72 86 130
-178 113 16 62 141
-179 88 1 2 54
-180 89 71 109 142
-181 37 114 73 140
-182 132 143 64 76
-183 36 47 94 127
-184 44 26 117 19
-185 4 5 28 29
-186 33 59 49 96
-187 122 14 138 21
-188 88 40 20 54
-189 78 111 58 32
-190 124 37 93 73
-191 12 60 6 30
-192 56 42 109 142
-193 132 143 36 65
-194 4 27 28 87
-195 14 137 21 120
-196 127 7 107 10
-197 69 103 41 75
-198 121 39 51 52
-199 24 82 94 31
-200 11 12 2 59
-201 133 144 32 43
-202 90 113 72 141
-203 88 14 28 61
-204 60 29 8 19
-205 34 15 60 29
-206 79 25 137 18
-207 57 103 16 62
-208 55 45 41 118
-209 144 39 106 52
-210 89 71 85 131
-211 22 135 15 74
-212 110 40 20 130
-213 143 68 84 108
-214 23 16 137 120
-215 70 126 140 42
-216 66 39 129 142
-217 36 47 105 138
-218 99 124 71 104
-219 57 14 103 61
-220 79 80 137 64
-221 55 143 41 108
-222 121 37 48 95
-223 24 136 17 119
-224 78 123 91 32
-225 68 128 141 98
-226 100 125 72 139
-227 67 144 83 106
-228 1 2 103 75
-229 23 125 16 139
-230 110 68 130 98
-231 122 138 7 10
-232 35 123 91 50
-233 77 67 136 83
-234 123 3 102 4
-235 99 71 126 140
-236 134 38 115 18
-237 80 105 138 64
-238 6 30 85 131
-239 1 45 5 118
-240 33 92 49 118
-241 7 31 86 130
-242 134 81 27 20
-243 114 17 63 140
-244 11 121 51 8
-245 36 92 118 65
-246 33 44 101 139
-247 88 28 7 31
-248 26 27 96 20
-249 33 44 94 127
-250 12 13 3 60
-251 11 135 8 74
-252 13 3 116 53
-253 1 26 5 96
-254 111 58 17 63
-255 44 34 45 117
-256 70 27 86 87
-257 46 79 104 62
-258 110 56 100 114
-259 125 38 51 73
-260 115 52 98 109
-261 23 89 93 128
-262 77 63 107 65
-263 90 101 48 126
-264 99 113 84 129
-265 57 5 29 9
-266 70 84 129 86
-267 82 105 31 43
-268 101 48 104 62
-269 13 91 21 54
-270 89 100 114 128
-271 66 25 81 95
-272 38 50 51 120
-273 22 69 92 85
-274 23 93 30 75
-275 66 133 80 81
-276 55 99 112 113
-277 132 83 98 109
-278 50 106 76 120
-279 91 30 75 21
-280 77 78 122 65
-281 132 69 83 85
-282 133 80 97 108
-283 102 61 105 43
-284 46 79 102 61
-285 47 97 108 119
-286 55 57 112 9
-287 78 122 106 76
-288 34 45 47 119
0

**************