[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 288, 42 ]. See Glossary for some
detail.
PL(MC3( 6, 24, 1, 19, 5, 0, 1), [6^24, 8^18]) = PL(ATD[ 8, 1]#ATD[
9, 1]) = PL(ATD[ 8, 1]#ATD[ 18, 1])
= PL(ATD[ 9, 1]#ATD[ 24, 4]) = PL(ATD[ 18, 1]#ATD[ 24, 4]) = PL(ATD[
24, 4]#DCyc[ 3])
= PL(ATD[ 24, 4]#DCyc[ 6]) = PL(CSI(C_ 24(1, 5)[ 8^ 6], 3)) = PL(CSI(C_
24(1, 5)[ 8^ 6], 6))
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | 0 | - | 0 | 0 | 0 |
2 | - | - | - | - | - | - | 0 | 0 | 0 | - | 0 | - |
3 | - | - | - | - | - | - | 1 | - | 19 | 0 | - | 0 |
4 | - | - | - | - | - | - | 0 | - | 0 | 1 | - | 19 |
5 | - | - | - | - | - | - | 1 | 5 | 19 | - | 23 | - |
6 | - | - | - | - | - | - | - | 5 | - | 1 | 23 | 19 |
7 | - | 0 | 23 | 0 | 23 | - | - | - | - | - | - | - |
8 | 0 | 0 | - | - | 19 | 19 | - | - | - | - | - | - |
9 | - | 0 | 5 | 0 | 5 | - | - | - | - | - | - | - |
10 | 0 | - | 0 | 23 | - | 23 | - | - | - | - | - | - |
11 | 0 | 0 | - | - | 1 | 1 | - | - | - | - | - | - |
12 | 0 | - | 0 | 5 | - | 5 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | 0 | - | 0 | 0 | 0 |
2 | - | - | - | - | - | - | 0 | 0 | 0 | - | 0 | - |
3 | - | - | - | - | - | - | - | - | - | 0 1 | - | 0 19 |
4 | - | - | - | - | - | - | 18 23 | - | 0 23 | - | - | - |
5 | - | - | - | - | - | - | - | 23 | - | 1 | 5 | 19 |
6 | - | - | - | - | - | - | 14 | 18 | 20 | - | 0 | - |
7 | - | 0 | - | 1 6 | - | 10 | - | - | - | - | - | - |
8 | 0 | 0 | - | - | 1 | 6 | - | - | - | - | - | - |
9 | - | 0 | - | 0 1 | - | 4 | - | - | - | - | - | - |
10 | 0 | - | 0 23 | - | 23 | - | - | - | - | - | - | - |
11 | 0 | 0 | - | - | 19 | 0 | - | - | - | - | - | - |
12 | 0 | - | 0 5 | - | 5 | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | 0 | - | - | 0 9 |
2 | - | - | - | - | - | - | 16 | - | 16 | - | - | 0 9 |
3 | - | - | - | - | - | - | 21 | - | 15 | 0 | 0 | - |
4 | - | - | - | - | - | - | 14 | - | 8 | 1 | 1 | - |
5 | - | - | - | - | - | - | - | 0 21 | - | 22 | 16 | - |
6 | - | - | - | - | - | - | - | 1 22 | - | 15 | 9 | - |
7 | 0 | 8 | 3 | 10 | - | - | - | - | - | - | - | - |
8 | - | - | - | - | 0 3 | 2 23 | - | - | - | - | - | - |
9 | 0 | 8 | 9 | 16 | - | - | - | - | - | - | - | - |
10 | - | - | 0 | 23 | 2 | 9 | - | - | - | - | - | - |
11 | - | - | 0 | 23 | 8 | 15 | - | - | - | - | - | - |
12 | 0 15 | 0 15 | - | - | - | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | - | 0 1 | - | 0 19 | - |
2 | - | - | - | - | - | - | 0 | 0 | 0 | - | 0 | - |
3 | - | - | - | - | - | - | 5 10 | 4 5 | - | - | - | - |
4 | - | - | - | - | - | - | 10 | 4 | - | 0 | - | 0 |
5 | - | - | - | - | - | - | - | - | 1 | 18 | 19 | 0 |
6 | - | - | - | - | - | - | - | - | - | 4 5 | - | 5 10 |
7 | - | 0 | 14 19 | 14 | - | - | - | - | - | - | - | - |
8 | - | 0 | 19 20 | 20 | - | - | - | - | - | - | - | - |
9 | 0 23 | 0 | - | - | 23 | - | - | - | - | - | - | - |
10 | - | - | - | 0 | 6 | 19 20 | - | - | - | - | - | - |
11 | 0 5 | 0 | - | - | 5 | - | - | - | - | - | - | - |
12 | - | - | - | 0 | 0 | 14 19 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | 0 | 0 | 0 | - |
2 | - | - | - | - | - | - | 8 | - | 0 | 8 | 0 | - |
3 | - | - | - | - | - | - | - | 0 | 2 | - | 8 | 0 |
4 | - | - | - | - | - | - | - | 0 | 10 | - | 16 | 0 |
5 | - | - | - | - | - | - | 1 | 2 | - | 7 | - | 8 |
6 | - | - | - | - | - | - | 1 | 10 | - | 7 | - | 16 |
7 | 0 | 16 | - | - | 23 | 23 | - | - | - | - | - | - |
8 | - | - | 0 | 0 | 22 | 14 | - | - | - | - | - | - |
9 | 0 | 0 | 22 | 14 | - | - | - | - | - | - | - | - |
10 | 0 | 16 | - | - | 17 | 17 | - | - | - | - | - | - |
11 | 0 | 0 | 16 | 8 | - | - | - | - | - | - | - | - |
12 | - | - | 0 | 0 | 16 | 8 | - | - | - | - | - | - |