[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 288, 44 ] =
PL(MC3(6,24,1,7,5,12,1),[8^18,12^12]).
(I) Following is a form readable by MAGMA:
g:=Graph<288|{ {135, 151}, {128, 145}, {128, 146}, {143, 154}, {133, 157}, {141,
149}, {134, 154}, {131, 162}, {136, 170}, {132, 161}, {135, 175}, {140, 167},
{136, 167}, {144, 191}, {141, 162}, {140, 186}, {135, 191}, {138, 176}, {138,
183}, {138, 180}, {144, 175}, {130, 194}, {142, 206}, {141, 205}, {133, 199},
{144, 212}, {139, 204}, {132, 201}, {143, 194}, {131, 205}, {139, 196}, {139,
218}, {129, 212}, {132, 210}, {138, 221}, {131, 219}, {133, 220}, {137, 210},
{140, 211}, {130, 227}, {139, 239}, {142, 232}, {131, 234}, {140, 230}, {143,
227}, {129, 236}, {136, 230}, {128, 242}, {142, 250}, {143, 251}, {132, 241},
{137, 241}, {128, 250}, {142, 242}, {144, 236}, {133, 248}, {134, 251}, {39,
167}, {103, 231}, {35, 162}, {78, 207}, {86, 215}, {74, 200}, {121, 251}, {81,
211}, {84, 214}, {85, 215}, {41, 170}, {51, 176}, {93, 222}, {104, 235}, {43,
175}, {107, 239}, {61, 184}, {110, 235}, {109, 232}, {92, 217}, {93, 216}, {32,
166}, {30, 153}, {53, 178}, {56, 176}, {111, 231}, {104, 224}, {50, 187}, {53,
188}, {35, 169}, {64, 202}, {50, 184}, {41, 163}, {72, 195}, {20, 152}, {68,
200}, {57, 181}, {55, 187}, {77, 193}, {25, 148}, {117, 248}, {111, 226}, {63,
178}, {30, 147}, {80, 221}, {32, 174}, {110, 224}, {99, 237}, {22, 153}, {127,
240}, {114, 253}, {49, 190}, {33, 177}, {52, 164}, {78, 222}, {85, 197}, {103,
247}, {64, 209}, {98, 243}, {14, 156}, {123, 233}, {84, 198}, {50, 161}, {7,
147}, {68, 208}, {58, 174}, {34, 182}, {35, 182}, {99, 246}, {55, 161}, {121,
239}, {59, 173}, {87, 193}, {100, 242}, {62, 169}, {71, 208}, {65, 214}, {99,
244}, {62, 166}, {111, 247}, {76, 213}, {125, 228}, {46, 180}, {55, 173}, {89,
195}, {90, 192}, {5, 158}, {110, 245}, {82, 201}, {38, 186}, {67, 223}, {3,
158}, {115, 238}, {92, 193}, {45, 179}, {116, 234}, {101, 250}, {12, 172}, {122,
218}, {113, 209}, {99, 195}, {28, 189}, {83, 242}, {56, 154}, {61, 158}, {109,
206}, {66, 225}, {57, 157}, {114, 214}, {72, 237}, {57, 159}, {86, 240}, {97,
199}, {102, 192}, {30, 185}, {107, 204}, {50, 149}, {31, 184}, {4, 172}, {127,
215}, {112, 216}, {1, 168}, {113, 216}, {51, 154}, {22, 191}, {77, 228}, {2,
168}, {54, 156}, {7, 172}, {25, 178}, {20, 191}, {29, 177}, {124, 208}, {63,
147}, {62, 146}, {56, 148}, {11, 165}, {76, 226}, {9, 166}, {116, 219}, {21,
186}, {18, 189}, {23, 167}, {123, 203}, {69, 245}, {38, 150}, {82, 226}, {20,
165}, {108, 221}, {85, 228}, {30, 172}, {105, 219}, {17, 162}, {27, 168}, {25,
170}, {75, 248}, {87, 228}, {96, 211}, {16, 164}, {124, 200}, {77, 249}, {70,
243}, {21, 163}, {81, 231}, {6, 177}, {90, 237}, {15, 183}, {125, 197}, {70,
255}, {124, 197}, {91, 225}, {111, 213}, {101, 223}, {10, 177}, {126, 197},
{113, 202}, {98, 217}, {2, 190}, {41, 148}, {67, 254}, {85, 232}, {97, 220},
{27, 165}, {122, 196}, {34, 156}, {75, 245}, {88, 230}, {1, 190}, {127, 192},
{118, 201}, {8, 183}, {83, 236}, {81, 145}, {124, 188}, {123, 187}, {96, 160},
{19, 210}, {58, 251}, {5, 199}, {126, 188}, {46, 236}, {23, 213}, {18, 208},
{95, 157}, {14, 205}, {120, 187}, {119, 180}, {62, 253}, {81, 146}, {3, 199},
{100, 160}, {40, 237}, {94, 152}, {115, 181}, {34, 229}, {119, 176}, {36, 227},
{88, 159}, {95, 151}, {51, 250}, {91, 146}, {7, 205}, {12, 198}, {8, 194}, {44,
231}, {80, 155}, {6, 202}, {108, 160}, {41, 229}, {24, 212}, {22, 218}, {15,
194}, {35, 238}, {102, 171}, {20, 218}, {38, 233}, {119, 184}, {45, 226}, {100,
171}, {13, 220}, {73, 152}, {59, 234}, {113, 163}, {61, 238}, {121, 170}, {112,
163}, {106, 185}, {74, 153}, {79, 156}, {24, 204}, {127, 171}, {53, 225}, {58,
239}, {60, 233}, {18, 196}, {114, 164}, {29, 202}, {118, 161}, {19, 203}, {48,
232}, {47, 246}, {79, 150}, {6, 220}, {42, 240}, {96, 186}, {105, 179}, {47,
244}, {114, 169}, {108, 183}, {66, 153}, {98, 190}, {33, 252}, {110, 179}, {70,
155}, {55, 234}, {22, 200}, {115, 173}, {42, 244}, {79, 145}, {14, 209}, {57,
230}, {16, 207}, {36, 196}, {16, 241}, {23, 245}, {119, 149}, {112, 147}, {34,
198}, {123, 159}, {73, 173}, {45, 201}, {40, 204}, {28, 249}, {65, 164}, {13,
235}, {126, 152}, {31, 249}, {7, 224}, {120, 159}, {54, 209}, {48, 215}, {25,
254}, {16, 247}, {83, 180}, {91, 188}, {40, 192}, {117, 157}, {49, 217}, {94,
182}, {12, 229}, {80, 185}, {26, 240}, {66, 168}, {44, 198}, {95, 181}, {42,
193}, {125, 150}, {75, 160}, {31, 243}, {125, 145}, {120, 148}, {73, 165}, {51,
223}, {6, 235}, {115, 158}, {67, 174}, {14, 224}, {37, 203}, {33, 207}, {26,
244}, {17, 255}, {23, 248}, {21, 229}, {77, 189}, {102, 150}, {8, 249}, {67,
178}, {63, 206}, {18, 227}, {106, 155}, {4, 246}, {39, 213}, {12, 255}, {42,
217}, {100, 151}, {10, 252}, {69, 179}, {45, 219}, {43, 221}, {11, 253}, {1,
246}, {60, 203}, {37, 210}, {11, 252}, {89, 174}, {94, 169}, {96, 151}, {9,
241}, {83, 171}, {58, 195}, {79, 182}, {98, 155}, {4, 254}, {71, 189}, {44,
214}, {27, 225}, {4, 255}, {66, 185}, {53, 206}, {52, 207}, {37, 222}, {8, 243},
{21, 233}, {73, 181}, {40, 212}, {37, 216}, {91, 166}, {3, 253}, {9, 247}, {1,
254}, {44, 211}, {33, 222}, {32, 223}, {17, 238}, {3, 252}, {80, 175}, {106,
149}, {5, 261}, {9, 264}, {10, 264}, {19, 272}, {28, 276}, {29, 277}, {2, 264},
{13, 262}, {11, 263}, {24, 278}, {5, 276}, {2, 272}, {29, 271}, {13, 286}, {26,
268}, {56, 288}, {28, 261}, {10, 272}, {15, 277}, {24, 259}, {31, 260}, {27,
263}, {15, 274}, {17, 268}, {19, 269}, {26, 261}, {60, 285}, {63, 286}, {43,
271}, {54, 274}, {49, 277}, {48, 276}, {39, 258}, {59, 285}, {60, 282}, {32,
264}, {39, 270}, {43, 263}, {59, 279}, {36, 265}, {47, 256}, {52, 283}, {46,
287}, {46, 283}, {48, 262}, {52, 259}, {47, 278}, {61, 260}, {36, 281}, {38,
280}, {49, 271}, {54, 265}, {75, 267}, {90, 282}, {68, 262}, {84, 278}, {93,
287}, {65, 261}, {74, 270}, {92, 280}, {71, 258}, {72, 269}, {87, 274}, {95,
282}, {90, 285}, {94, 281}, {78, 262}, {70, 268}, {74, 257}, {88, 275}, {64,
269}, {109, 288}, {65, 268}, {86, 283}, {82, 284}, {89, 279}, {76, 259}, {69,
277}, {92, 269}, {82, 257}, {89, 266}, {71, 275}, {84, 256}, {86, 259}, {69,
274}, {64, 280}, {120, 288}, {72, 272}, {68, 286}, {76, 278}, {78, 276}, {88,
260}, {87, 265}, {97, 258}, {105, 266}, {107, 270}, {104, 270}, {108, 267},
{126, 281}, {122, 285}, {104, 257}, {118, 287}, {107, 258}, {103, 267}, {116,
281}, {122, 279}, {118, 283}, {101, 267}, {112, 286}, {97, 275}, {117, 263},
{109, 287}, {101, 273}, {103, 273}, {106, 284}, {105, 273}, {121, 256}, {117,
271}, {93, 288}, {116, 265}, {102, 280}, {129, 257}, {134, 260}, {137, 266},
{130, 266}, {136, 256}, {141, 284}, {130, 273}, {134, 275}, {129, 284}, {135,
282}, {137, 279} }>;
(II) A more general form is to represent the graph as the orbit of {135, 151}
under the group generated by the following permutations:
a: (1, 2)(3, 17)(4, 10)(5, 35)(6, 7)(8, 20)(9, 47)(11, 70)(12, 33)(13, 14)(15,
22)(16, 84)(18, 36)(19, 25)(21, 93)(23, 82)(24, 103)(26, 62)(27, 98)(28, 94)(29,
30)(31, 73)(32, 99)(34, 78)(37, 41)(38, 109)(39, 45)(40, 101)(42, 91)(43,
80)(44, 52)(46, 96)(48, 79)(49, 66)(50, 57)(51, 90)(53, 92)(54, 68)(55, 88)(56,
60)(58, 89)(59, 134)(61, 115)(63, 64)(65, 114)(67, 72)(69, 74)(71, 116)(75,
129)(76, 111)(77, 126)(81, 86)(83, 100)(85, 125)(87, 124)(95, 119)(97, 131)(102,
142)(104, 110)(105, 107)(106, 117)(108, 144)(112, 113)(118, 140)(120, 123)(121,
137)(122, 143)(127, 128)(130, 139)(132, 136)(133, 141)(135, 138)(145, 215)(146,
240)(147, 202)(148, 203)(149, 157)(150, 232)(151, 180)(152, 249)(153, 277)(154,
285)(155, 263)(156, 262)(158, 238)(159, 187)(160, 236)(161, 230)(162, 199)(163,
216)(164, 214)(165, 243)(166, 244)(167, 201)(168, 190)(169, 261)(170, 210)(171,
242)(172, 177)(173, 260)(174, 195)(175, 221)(176, 282)(178, 269)(179, 270)(181,
184)(182, 276)(183, 191)(185, 271)(186, 287)(188, 193)(189, 281)(192, 250)(194,
218)(196, 227)(197, 228)(198, 207)(200, 274)(204, 273)(205, 220)(206, 280)(208,
265)(209, 286)(211, 283)(212, 267)(213, 226)(217, 225)(219, 258)(222, 229)(223,
237)(224, 235)(231, 259)(233, 288)(234, 275)(239, 266)(241, 256)(245, 257)(246,
264)(247, 278)(248, 284)(251, 279)(252, 255)(253, 268)(254, 272) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 3, 8, 23, 58, 16, 42, 6, 18, 45, 40, 37, 85, 14, 22, 55, 83, 21, 53, 35,
80, 57, 51, 44)(2, 5, 15, 39, 89, 52, 92, 13, 36, 82, 90, 93, 125, 7, 20, 50,
100, 41, 91, 17, 43, 88, 101, 84)(4, 11, 31, 75, 121, 9, 26, 29, 71, 105, 24,
19, 48, 54, 74, 59, 46, 38, 63, 94, 106, 95, 56, 81)(10, 28, 69, 107, 137, 86,
64, 68, 116, 129, 60, 109, 79, 30, 73, 119, 96, 25, 62, 70, 117, 134, 103,
47)(12, 27, 61, 108, 136, 32, 65, 49, 97, 130, 76, 72, 78, 87, 104, 122, 118,
102, 112, 126, 141, 135, 120, 128)(33, 77, 110, 139, 132, 127, 113, 124, 131,
144, 123, 142, 34, 66, 115, 138, 140, 67, 114, 98, 133, 143, 111, 99)(145, 172,
165, 184, 160, 170, 166, 268, 271, 275, 273, 278, 272, 276, 274, 270, 279, 283,
280, 286, 281, 284, 282, 288)(146, 255, 263, 260, 267, 256, 264, 261, 277, 258,
266, 259, 269, 262, 265, 257, 285, 287, 150, 147, 152, 149, 151, 148)(153, 173,
180, 186, 178, 169, 155, 157, 154, 231, 246, 252, 249, 245, 239, 241, 240, 202,
208, 219, 212, 203, 232, 156)(158, 183, 167, 174, 164, 217, 220, 227, 226, 237,
222, 228, 224, 218, 161, 171, 163, 188, 162, 175, 159, 250, 198, 168)(176, 211,
254, 253, 243, 248, 251, 247, 244, 177, 189, 179, 204, 210, 215, 209, 200, 234,
236, 233, 206, 182, 185, 181)(187, 242, 229, 225, 238, 221, 230, 223, 214, 190,
199, 194, 213, 195, 207, 193, 235, 196, 201, 192, 216, 197, 205, 191)
c: (2, 4)(3, 21)(5, 38)(6, 44)(7, 9)(8, 40)(10, 12)(11, 41)(13, 81)(14, 16)(15,
24)(17, 19)(18, 83)(20, 56)(22, 51)(25, 27)(26, 92)(28, 102)(29, 84)(30, 32)(31,
90)(33, 34)(35, 37)(36, 46)(39, 75)(43, 121)(47, 49)(48, 125)(50, 59)(52,
54)(58, 80)(60, 61)(62, 112)(63, 91)(64, 65)(66, 67)(68, 128)(69, 76)(70,
72)(71, 100)(73, 120)(74, 101)(77, 127)(78, 79)(82, 105)(86, 87)(88, 95)(89,
106)(93, 94)(96, 97)(98, 99)(103, 104)(107, 108)(109, 126)(110, 111)(113,
114)(115, 123)(116, 118)(117, 136)(119, 122)(124, 142)(129, 130)(131, 132)(133,
140)(134, 135)(137, 141)(138, 139)(143, 144)(145, 262)(146, 286)(147, 166)(148,
165)(149, 279)(150, 276)(151, 275)(152, 288)(153, 223)(154, 191)(155, 195)(156,
207)(157, 230)(158, 233)(159, 181)(160, 258)(161, 234)(162, 210)(163, 253)(164,
209)(167, 248)(168, 254)(169, 216)(170, 263)(171, 189)(172, 264)(173, 187)(174,
185)(175, 251)(176, 218)(177, 198)(178, 225)(179, 226)(180, 196)(182, 222)(183,
204)(184, 285)(186, 199)(188, 206)(190, 246)(192, 249)(193, 240)(194, 212)(197,
232)(200, 250)(201, 219)(202, 214)(203, 238)(205, 241)(208, 242)(211, 220)(213,
245)(215, 228)(217, 244)(221, 239)(224, 247)(227, 236)(229, 252)(231, 235)(237,
243)(255, 272)(256, 271)(257, 273)(259, 274)(260, 282)(261, 280)(265, 283)(266,
284)(267, 270)(268, 269)(277, 278)(281, 287)
d: (2, 4)(3, 44)(5, 81)(6, 21)(7, 19)(8, 51)(9, 17)(10, 12)(11, 84)(13, 38)(14,
37)(15, 56)(16, 35)(18, 83)(20, 24)(22, 40)(23, 57)(25, 49)(26, 91)(27, 47)(28,
128)(29, 41)(30, 72)(31, 101)(32, 70)(33, 34)(36, 46)(39, 95)(42, 53)(43,
121)(45, 55)(48, 125)(50, 105)(52, 94)(54, 93)(58, 80)(59, 82)(60, 104)(61,
103)(62, 65)(63, 92)(64, 112)(66, 99)(67, 98)(68, 102)(69, 120)(71, 100)(73,
76)(74, 90)(75, 88)(77, 142)(78, 79)(86, 126)(87, 109)(89, 106)(96, 97)(107,
135)(108, 134)(110, 123)(111, 115)(116, 118)(117, 136)(119, 130)(122, 129)(124,
127)(131, 132)(133, 140)(137, 141)(138, 143)(139, 144)(145, 276)(146, 261)(147,
269)(148, 277)(149, 266)(150, 262)(151, 258)(152, 259)(153, 237)(154, 183)(155,
174)(156, 222)(157, 167)(158, 231)(159, 245)(160, 275)(161, 219)(162, 241)(163,
202)(164, 169)(165, 278)(166, 268)(168, 246)(170, 271)(171, 208)(172, 272)(173,
226)(175, 239)(176, 194)(177, 229)(178, 217)(179, 187)(180, 227)(181, 213)(182,
207)(184, 273)(185, 195)(186, 220)(188, 240)(189, 242)(190, 254)(191, 204)(192,
200)(193, 206)(196, 236)(197, 215)(198, 252)(199, 211)(201, 234)(203, 224)(205,
210)(209, 216)(212, 218)(214, 253)(221, 251)(223, 243)(225, 244)(228, 232)(230,
248)(233, 235)(238, 247)(249, 250)(255, 264)(256, 263)(257, 285)(260, 267)(265,
287)(270, 282)(274, 288)(279, 284)(280, 286)(281, 283)
C4[ 288, 44 ]
288
-1 254 168 190 246
-2 264 168 190 272
-3 253 199 158 252
-4 254 255 246 172
-5 199 276 158 261
-6 220 177 202 235
-7 147 224 172 205
-8 243 183 194 249
-9 264 166 247 241
-10 264 177 272 252
-11 165 253 252 263
-12 198 255 172 229
-13 220 286 235 262
-14 209 156 224 205
-15 277 183 194 274
-16 247 207 164 241
-17 255 268 238 162
-18 189 227 196 208
-19 210 203 269 272
-20 165 191 152 218
-21 233 163 229 186
-22 200 191 218 153
-23 167 245 213 248
-24 212 278 204 259
-25 254 178 148 170
-26 244 268 261 240
-27 165 168 225 263
-28 276 189 249 261
-29 177 277 202 271
-30 147 172 185 153
-31 243 249 260 184
-32 264 166 223 174
-33 177 222 207 252
-34 198 156 182 229
-35 169 182 238 162
-36 265 281 227 196
-37 210 222 203 216
-38 233 280 150 186
-39 167 213 258 270
-40 212 192 204 237
-41 148 170 163 229
-42 244 193 217 240
-43 221 271 175 263
-44 198 231 211 214
-45 179 201 226 219
-46 287 180 236 283
-47 244 256 278 246
-48 232 276 215 262
-49 277 190 271 217
-50 187 149 161 184
-51 154 176 223 250
-52 259 283 207 164
-53 188 178 225 206
-54 209 265 156 274
-55 187 234 161 173
-56 154 176 288 148
-57 157 159 181 230
-58 195 239 174 251
-59 234 279 173 285
-60 233 203 282 285
-61 158 238 260 184
-62 253 166 146 169
-63 286 178 147 206
-64 209 202 269 280
-65 268 214 261 164
-66 168 225 185 153
-67 254 178 223 174
-68 286 200 262 208
-69 277 179 245 274
-70 155 243 255 268
-71 275 189 258 208
-72 269 237 195 272
-73 165 181 173 152
-74 200 257 270 153
-75 245 267 160 248
-76 278 213 226 259
-77 189 193 249 228
-78 276 222 207 262
-79 145 156 182 150
-80 155 221 185 175
-81 231 145 211 146
-82 201 257 226 284
-83 242 180 236 171
-84 198 256 278 214
-85 232 215 228 197
-86 215 259 283 240
-87 265 193 228 274
-88 275 159 260 230
-89 266 279 195 174
-90 192 237 282 285
-91 166 188 146 225
-92 269 280 193 217
-93 287 222 288 216
-94 169 182 281 152
-95 157 181 282 151
-96 211 160 151 186
-97 220 275 199 258
-98 155 243 190 217
-99 244 246 237 195
-100 242 160 171 151
-101 223 267 250 273
-102 192 280 171 150
-103 231 267 247 273
-104 224 235 257 270
-105 266 179 273 219
-106 155 149 185 284
-107 258 204 270 239
-108 221 267 160 183
-109 232 287 288 206
-110 179 245 224 235
-111 231 213 247 226
-112 286 147 216 163
-113 209 202 216 163
-114 253 169 214 164
-115 158 181 238 173
-116 265 234 281 219
-117 157 248 271 263
-118 287 201 161 283
-119 176 180 149 184
-120 187 288 148 159
-121 256 170 239 251
-122 279 196 218 285
-123 187 233 159 203
-124 188 200 197 208
-125 145 150 228 197
-126 188 281 152 197
-127 192 171 215 240
-128 242 145 146 250
-129 212 257 236 284
-130 266 194 227 273
-131 234 205 162 219
-132 210 201 161 241
-133 220 199 157 248
-134 154 275 260 251
-135 191 282 151 175
-136 167 256 170 230
-137 210 266 279 241
-138 176 221 180 183
-139 204 239 196 218
-140 167 211 186 230
-141 149 205 162 284
-142 242 232 206 250
-143 154 194 227 251
-144 212 191 236 175
-145 79 81 125 128
-146 91 81 62 128
-147 112 7 30 63
-148 56 25 41 120
-149 50 106 119 141
-150 79 102 125 38
-151 100 135 95 96
-152 126 94 73 20
-153 22 66 30 74
-154 143 56 134 51
-155 80 70 106 98
-156 34 79 14 54
-157 133 57 95 117
-158 3 5 115 61
-159 88 57 123 120
-160 100 96 75 108
-161 55 132 50 118
-162 35 17 141 131
-163 112 113 41 21
-164 114 16 52 65
-165 11 27 73 20
-166 91 62 9 32
-167 23 136 39 140
-168 66 1 2 27
-169 35 114 94 62
-170 121 25 136 41
-171 100 102 83 127
-172 12 4 7 30
-173 55 59 115 73
-174 67 89 58 32
-175 144 80 135 43
-176 56 138 51 119
-177 33 6 29 10
-178 67 25 63 53
-179 110 45 69 105
-180 46 83 138 119
-181 57 115 73 95
-182 34 35 79 94
-183 15 138 8 108
-184 50 61 31 119
-185 66 80 106 30
-186 38 96 140 21
-187 55 123 50 120
-188 91 124 126 53
-189 77 71 28 18
-190 1 2 49 98
-191 22 144 135 20
-192 90 102 127 40
-193 77 92 42 87
-194 143 15 8 130
-195 99 89 58 72
-196 122 36 18 139
-197 124 125 126 85
-198 44 12 34 84
-199 133 3 5 97
-200 22 68 124 74
-201 132 45 82 118
-202 113 6 29 64
-203 123 37 60 19
-204 24 40 139 107
-205 14 7 141 131
-206 63 53 109 142
-207 33 78 16 52
-208 68 124 71 18
-209 14 113 64 54
-210 132 37 137 19
-211 44 81 96 140
-212 144 24 40 129
-213 23 111 39 76
-214 44 114 84 65
-215 48 127 85 86
-216 112 113 37 93
-217 92 49 42 98
-218 22 122 139 20
-219 45 105 116 131
-220 133 13 6 97
-221 80 138 108 43
-222 33 78 37 93
-223 67 101 51 32
-224 110 14 104 7
-225 66 91 27 53
-226 45 111 82 76
-227 143 36 18 130
-228 77 125 85 87
-229 12 34 41 21
-230 88 57 136 140
-231 44 111 81 103
-232 48 85 109 142
-233 123 38 60 21
-234 55 59 116 131
-235 110 13 104 6
-236 144 46 83 129
-237 99 90 72 40
-238 35 115 17 61
-239 121 58 139 107
-240 26 127 42 86
-241 132 16 137 9
-242 100 83 128 142
-243 70 8 31 98
-244 99 47 26 42
-245 110 23 69 75
-246 99 1 47 4
-247 111 103 16 9
-248 23 133 117 75
-249 77 28 8 31
-250 101 51 128 142
-251 121 143 134 58
-252 11 33 3 10
-253 11 3 114 62
-254 1 67 25 4
-255 12 4 70 17
-256 121 47 136 84
-257 82 104 74 129
-258 71 39 107 97
-259 24 52 86 76
-260 88 134 61 31
-261 26 5 28 65
-262 78 13 68 48
-263 11 27 117 43
-264 2 9 10 32
-265 36 116 54 87
-266 89 137 105 130
-267 101 103 75 108
-268 26 70 17 65
-269 92 72 19 64
-270 104 39 74 107
-271 49 29 117 43
-272 2 72 19 10
-273 101 103 105 130
-274 69 15 54 87
-275 88 134 71 97
-276 78 48 5 28
-277 69 15 49 29
-278 24 47 84 76
-279 89 122 59 137
-280 102 92 38 64
-281 36 126 94 116
-282 90 135 60 95
-283 46 52 118 86
-284 82 106 129 141
-285 122 90 59 60
-286 13 68 112 63
-287 46 93 118 109
-288 56 93 109 120
0