[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 288, 44 ]. See Glossary for some
detail.
PL(MC3( 6, 24, 1, 7, 5, 12, 1), [8^18, 12^12]) = PL(MC3( 6, 24, 1, 7,
11, 12, 1), [8^18, 12^12])
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | - | - | 0 1 | - | 0 7 |
2 | - | - | - | - | - | - | 0 | 0 | - | 0 | - | 0 |
3 | - | - | - | - | - | - | 10 17 | 16 17 | - | - | - | - |
4 | - | - | - | - | - | - | - | - | 0 | 1 | 0 | 7 |
5 | - | - | - | - | - | - | 10 | 16 | 6 | - | 12 | - |
6 | - | - | - | - | - | - | - | - | 22 23 | - | 5 22 | - |
7 | - | 0 | 7 14 | - | 14 | - | - | - | - | - | - | - |
8 | - | 0 | 7 8 | - | 8 | - | - | - | - | - | - | - |
9 | - | - | - | 0 | 18 | 1 2 | - | - | - | - | - | - |
10 | 0 23 | 0 | - | 23 | - | - | - | - | - | - | - | - |
11 | - | - | - | 0 | 12 | 2 19 | - | - | - | - | - | - |
12 | 0 17 | 0 | - | 17 | - | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 21 | - | - | - |
2 | - | - | - | - | - | - | 4 | 4 | 0 21 | - | - | - |
3 | - | - | - | - | - | - | 21 | 15 | - | 0 | 0 | - |
4 | - | - | - | - | - | - | 1 | 19 | - | 0 | 0 | - |
5 | - | - | - | - | - | - | - | - | - | 4 | 10 | 0 15 |
6 | - | - | - | - | - | - | - | - | - | 8 | 14 | 0 15 |
7 | 0 | 20 | 3 | 23 | - | - | - | - | - | - | - | - |
8 | 0 | 20 | 9 | 5 | - | - | - | - | - | - | - | - |
9 | 0 3 | 0 3 | - | - | - | - | - | - | - | - | - | - |
10 | - | - | 0 | 0 | 20 | 16 | - | - | - | - | - | - |
11 | - | - | 0 | 0 | 14 | 10 | - | - | - | - | - | - |
12 | - | - | - | - | 0 9 | 0 9 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | - | - | 0 |
2 | - | - | - | - | - | - | 20 | 20 | 0 | - | - | 0 |
3 | - | - | - | - | - | - | - | - | 2 | 0 | 0 | 20 |
4 | - | - | - | - | - | - | - | - | 22 | 0 | 0 | 16 |
5 | - | - | - | - | - | - | 1 | 19 | - | 2 | 20 | - |
6 | - | - | - | - | - | - | 2 | 20 | - | 23 | 17 | - |
7 | 0 | 4 | - | - | 23 | 22 | - | - | - | - | - | - |
8 | 0 | 4 | - | - | 5 | 4 | - | - | - | - | - | - |
9 | 0 | 0 | 22 | 2 | - | - | - | - | - | - | - | - |
10 | - | - | 0 | 0 | 22 | 1 | - | - | - | - | - | - |
11 | - | - | 0 | 0 | 4 | 7 | - | - | - | - | - | - |
12 | 0 | 0 | 4 | 8 | - | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | - | 0 | 0 | 0 | 0 |
2 | - | - | - | - | - | - | 0 | 0 | - | 0 | - | 0 |
3 | - | - | - | - | - | - | 1 | 7 | 0 | - | 0 | - |
4 | - | - | - | - | - | - | 0 | 0 | 13 | - | 19 | - |
5 | - | - | - | - | - | - | 1 | 7 | - | 11 | - | 5 |
6 | - | - | - | - | - | - | - | - | 13 | 23 | 19 | 17 |
7 | - | 0 | 23 | 0 | 23 | - | - | - | - | - | - | - |
8 | - | 0 | 17 | 0 | 17 | - | - | - | - | - | - | - |
9 | 0 | - | 0 | 11 | - | 11 | - | - | - | - | - | - |
10 | 0 | 0 | - | - | 13 | 1 | - | - | - | - | - | - |
11 | 0 | - | 0 | 5 | - | 5 | - | - | - | - | - | - |
12 | 0 | 0 | - | - | 19 | 7 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | - | 0 | 0 | 0 | 0 |
2 | - | - | - | - | - | - | 0 | 0 | - | - | 0 | 0 |
3 | - | - | - | - | - | - | - | - | 0 1 | 0 19 | - | - |
4 | - | - | - | - | - | - | 11 18 | 0 11 | - | - | - | - |
5 | - | - | - | - | - | - | - | - | 1 | 19 | 5 | 23 |
6 | - | - | - | - | - | - | 14 | 20 | - | - | 0 | 18 |
7 | - | 0 | - | 6 13 | - | 10 | - | - | - | - | - | - |
8 | - | 0 | - | 0 13 | - | 4 | - | - | - | - | - | - |
9 | 0 | - | 0 23 | - | 23 | - | - | - | - | - | - | - |
10 | 0 | - | 0 5 | - | 5 | - | - | - | - | - | - | - |
11 | 0 | 0 | - | - | 19 | 0 | - | - | - | - | - | - |
12 | 0 | 0 | - | - | 1 | 6 | - | - | - | - | - | - |