C4graphGraph forms for C4 [ 288, 47 ] = PL(MC3(6,24,1,13,11,0,1),[4^36,6^24])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 47 ] = PL(MC3(6,24,1,13,11,0,1),[4^36,6^24]).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {139, 155}, {130, 150}, {133, 147}, {139, 150}, {131, 157}, {144, 179}, {142, 167}, {131, 168}, {134, 171}, {141, 189}, {128, 180}, {136, 188}, {135, 178}, {142, 185}, {131, 187}, {133, 189}, {142, 178}, {139, 182}, {138, 180}, {140, 179}, {129, 192}, {137, 200}, {143, 200}, {136, 195}, {129, 207}, {132, 203}, {128, 209}, {129, 213}, {131, 215}, {130, 214}, {141, 216}, {143, 218}, {129, 217}, {138, 211}, {138, 209}, {144, 203}, {139, 214}, {143, 208}, {134, 230}, {135, 231}, {134, 229}, {136, 236}, {140, 233}, {141, 235}, {142, 231}, {132, 238}, {137, 227}, {143, 227}, {133, 235}, {138, 228}, {136, 250}, {134, 243}, {144, 233}, {144, 238}, {141, 242}, {25, 153}, {68, 196}, {54, 182}, {47, 175}, {29, 156}, {38, 164}, {61, 191}, {50, 177}, {126, 253}, {112, 243}, {85, 214}, {95, 220}, {43, 175}, {20, 145}, {56, 189}, {19, 149}, {110, 232}, {24, 158}, {77, 203}, {84, 210}, {53, 178}, {90, 221}, {35, 171}, {62, 182}, {42, 162}, {81, 217}, {39, 174}, {115, 250}, {64, 201}, {82, 219}, {103, 238}, {29, 151}, {123, 241}, {74, 192}, {80, 218}, {18, 153}, {49, 189}, {104, 228}, {21, 152}, {127, 242}, {68, 201}, {46, 163}, {45, 160}, {44, 161}, {83, 222}, {99, 238}, {73, 199}, {61, 178}, {14, 158}, {74, 218}, {8, 153}, {125, 236}, {57, 168}, {83, 194}, {42, 184}, {63, 173}, {97, 243}, {2, 145}, {118, 229}, {107, 248}, {40, 187}, {9, 154}, {111, 251}, {91, 206}, {112, 229}, {38, 176}, {126, 232}, {108, 250}, {52, 162}, {44, 186}, {117, 226}, {44, 181}, {69, 220}, {95, 198}, {33, 187}, {50, 168}, {76, 214}, {77, 215}, {93, 199}, {14, 149}, {39, 188}, {78, 213}, {6, 154}, {122, 230}, {58, 166}, {32, 188}, {77, 209}, {97, 253}, {12, 145}, {60, 161}, {86, 203}, {88, 197}, {48, 174}, {108, 242}, {106, 244}, {81, 207}, {42, 181}, {82, 205}, {4, 164}, {120, 216}, {93, 253}, {14, 175}, {98, 195}, {2, 160}, {21, 183}, {84, 246}, {63, 156}, {121, 218}, {116, 215}, {51, 151}, {123, 223}, {113, 213}, {96, 196}, {100, 192}, {6, 163}, {24, 190}, {123, 221}, {28, 186}, {16, 183}, {127, 216}, {106, 205}, {25, 190}, {23, 176}, {89, 254}, {79, 231}, {3, 170}, {121, 208}, {107, 194}, {61, 148}, {15, 166}, {98, 200}, {111, 197}, {107, 193}, {10, 161}, {111, 196}, {70, 237}, {11, 160}, {90, 241}, {92, 247}, {12, 160}, {73, 229}, {78, 226}, {92, 240}, {50, 159}, {4, 170}, {73, 231}, {102, 200}, {12, 163}, {123, 212}, {31, 176}, {76, 227}, {115, 195}, {47, 158}, {118, 199}, {113, 192}, {106, 219}, {20, 166}, {101, 215}, {67, 240}, {70, 245}, {72, 251}, {92, 239}, {67, 247}, {84, 224}, {101, 209}, {39, 146}, {107, 222}, {66, 244}, {105, 223}, {76, 250}, {85, 227}, {92, 234}, {28, 171}, {47, 152}, {46, 153}, {13, 181}, {65, 249}, {36, 156}, {1, 184}, {126, 199}, {28, 165}, {26, 163}, {72, 241}, {2, 184}, {69, 255}, {45, 151}, {4, 190}, {98, 216}, {5, 190}, {120, 195}, {26, 161}, {22, 173}, {104, 211}, {17, 173}, {114, 206}, {24, 164}, {94, 226}, {31, 162}, {105, 212}, {96, 221}, {76, 242}, {114, 204}, {95, 225}, {10, 181}, {68, 251}, {45, 237}, {95, 159}, {125, 188}, {7, 197}, {59, 248}, {119, 180}, {114, 177}, {89, 154}, {8, 204}, {51, 247}, {48, 244}, {29, 217}, {15, 202}, {124, 185}, {53, 243}, {85, 147}, {6, 193}, {19, 212}, {11, 204}, {41, 225}, {53, 253}, {4, 205}, {126, 183}, {37, 239}, {82, 152}, {32, 235}, {35, 232}, {80, 155}, {18, 222}, {115, 191}, {39, 235}, {38, 234}, {11, 198}, {15, 194}, {88, 149}, {97, 172}, {100, 169}, {3, 205}, {48, 254}, {8, 198}, {10, 197}, {106, 165}, {37, 234}, {34, 237}, {93, 146}, {2, 210}, {124, 172}, {32, 241}, {125, 172}, {122, 171}, {110, 191}, {70, 151}, {74, 155}, {9, 219}, {67, 145}, {46, 252}, {44, 254}, {34, 240}, {27, 201}, {1, 210}, {25, 202}, {30, 202}, {114, 166}, {61, 233}, {56, 236}, {54, 226}, {52, 224}, {75, 159}, {10, 223}, {71, 146}, {8, 222}, {50, 228}, {99, 180}, {7, 223}, {117, 173}, {22, 207}, {110, 183}, {14, 212}, {69, 159}, {64, 154}, {37, 255}, {99, 185}, {26, 193}, {124, 167}, {109, 182}, {32, 251}, {21, 201}, {117, 169}, {68, 152}, {60, 224}, {53, 233}, {30, 194}, {6, 219}, {57, 228}, {49, 236}, {43, 246}, {17, 207}, {103, 185}, {65, 158}, {17, 240}, {30, 255}, {24, 249}, {23, 245}, {71, 165}, {27, 249}, {54, 213}, {65, 162}, {74, 169}, {89, 186}, {16, 244}, {46, 202}, {118, 147}, {54, 208}, {66, 165}, {115, 148}, {22, 255}, {117, 156}, {116, 157}, {5, 239}, {119, 157}, {64, 170}, {29, 247}, {77, 167}, {91, 177}, {55, 220}, {49, 221}, {87, 187}, {27, 246}, {1, 239}, {122, 148}, {62, 208}, {60, 210}, {16, 254}, {15, 225}, {33, 206}, {124, 147}, {41, 198}, {5, 245}, {12, 252}, {102, 150}, {7, 246}, {13, 252}, {86, 167}, {33, 211}, {21, 230}, {89, 170}, {93, 174}, {1, 245}, {28, 232}, {96, 148}, {98, 150}, {13, 248}, {49, 196}, {31, 234}, {20, 225}, {16, 230}, {109, 155}, {70, 176}, {58, 204}, {88, 174}, {72, 191}, {83, 164}, {94, 169}, {55, 206}, {65, 184}, {85, 172}, {59, 193}, {111, 149}, {73, 179}, {75, 177}, {3, 248}, {105, 146}, {40, 211}, {84, 175}, {17, 237}, {79, 179}, {33, 220}, {36, 217}, {71, 186}, {7, 249}, {99, 157}, {3, 252}, {31, 224}, {87, 168}, {18, 274}, {11, 265}, {23, 276}, {22, 274}, {36, 288}, {23, 274}, {37, 288}, {5, 259}, {18, 276}, {9, 270}, {9, 259}, {20, 286}, {13, 256}, {27, 267}, {26, 264}, {19, 256}, {25, 259}, {19, 264}, {55, 279}, {58, 282}, {56, 280}, {40, 266}, {41, 266}, {57, 282}, {45, 265}, {43, 270}, {59, 286}, {35, 261}, {34, 266}, {63, 279}, {43, 259}, {38, 270}, {35, 267}, {51, 282}, {40, 258}, {52, 286}, {47, 261}, {42, 256}, {57, 278}, {36, 276}, {51, 258}, {59, 265}, {63, 269}, {62, 269}, {34, 278}, {60, 264}, {56, 271}, {58, 258}, {55, 269}, {62, 260}, {52, 265}, {30, 288}, {41, 278}, {48, 271}, {66, 256}, {87, 277}, {80, 279}, {78, 263}, {66, 264}, {64, 267}, {81, 285}, {80, 285}, {75, 260}, {91, 276}, {87, 263}, {86, 263}, {90, 267}, {79, 284}, {94, 266}, {81, 260}, {75, 285}, {69, 274}, {82, 261}, {86, 257}, {88, 271}, {72, 273}, {78, 277}, {94, 258}, {67, 286}, {83, 270}, {79, 273}, {71, 280}, {90, 261}, {108, 268}, {101, 262}, {127, 284}, {100, 257}, {121, 287}, {122, 284}, {113, 278}, {120, 287}, {112, 280}, {119, 287}, {104, 257}, {108, 262}, {109, 262}, {120, 275}, {113, 282}, {125, 272}, {127, 273}, {118, 281}, {116, 260}, {97, 272}, {105, 280}, {103, 277}, {104, 283}, {121, 268}, {101, 275}, {102, 272}, {116, 269}, {91, 288}, {119, 268}, {96, 284}, {103, 283}, {109, 275}, {100, 283}, {112, 271}, {110, 273}, {102, 281}, {135, 262}, {130, 257}, {130, 263}, {135, 268}, {137, 283}, {140, 287}, {132, 272}, {128, 279}, {133, 281}, {137, 277}, {128, 285}, {132, 281}, {140, 275} }>;

(II) A more general form is to represent the graph as the orbit of {139, 155} under the group generated by the following permutations:

a: (1, 2, 12, 46, 25, 5)(3, 18, 24, 70, 42, 11)(4, 23, 65, 45, 13, 8)(6, 30, 43, 92, 60, 20)(7, 34, 66, 114, 64, 22, 14, 51, 44, 95, 82, 36)(9, 37, 84, 67, 26, 15)(10, 41, 106, 91, 27, 17, 19, 58, 89, 69, 47, 29)(16, 55, 68, 117, 88, 40)(21, 63, 111, 94, 48, 33)(28, 75, 90, 129, 105, 57)(31, 52, 59, 107, 83, 38)(32, 78, 112, 138, 110, 62, 49, 100, 93, 131, 122, 80)(35, 81, 123, 113, 71, 50)(39, 87, 134, 128, 72, 54, 56, 104, 126, 116, 96, 74)(53, 119, 115, 143, 125, 103)(61, 121, 136, 137, 97, 99)(73, 101, 127, 139, 133, 86)(76, 85, 124, 142, 135, 108)(77, 79, 109, 141, 130, 118)(98, 102, 132, 144, 140, 120)(145, 163, 202, 259, 239, 210)(146, 168, 171, 285, 241, 213, 280, 228, 232, 260, 221, 192)(147, 167, 231, 262, 242, 214)(148, 218, 188, 277, 243, 180, 191, 208, 236, 283, 253, 157)(149, 258, 254, 220, 152, 156, 197, 266, 244, 206, 201, 173)(150, 281, 203, 179, 275, 216)(151, 181, 198, 205, 276, 249, 237, 256, 204, 170, 274, 158)(153, 190, 245, 184, 160, 252)(154, 255, 175, 247, 161, 225, 219, 288, 246, 240, 264, 166)(155, 235, 263, 229, 209, 273, 182, 189, 257, 199, 215, 284)(159, 261, 217, 223, 278, 165, 177, 267, 207, 212, 282, 186)(162, 265, 248, 222, 164, 176)(169, 174, 187, 230, 279, 251, 226, 271, 211, 183, 269, 196)(172, 185, 178, 268, 250, 227)(193, 194, 270, 234, 224, 286)(195, 200, 272, 238, 233, 287)
b: (1, 3)(2, 13)(4, 5)(6, 31)(7, 8)(9, 38)(10, 11)(12, 42)(14, 15)(16, 17, 28, 29)(18, 27)(19, 20)(21, 22, 35, 36)(23, 64)(24, 25)(26, 52)(30, 47)(32, 33)(34, 71, 51, 48)(37, 82)(39, 40)(41, 105, 58, 88)(43, 83)(44, 45)(46, 65)(49, 50)(53, 54)(55, 72)(56, 57)(59, 60)(61, 62)(63, 110)(66, 67)(68, 69, 90, 91)(70, 89)(73, 74)(75, 96)(76, 77)(78, 97)(79, 80)(81, 122)(84, 107)(85, 86)(87, 125)(92, 106)(93, 94)(95, 123, 114, 111)(98, 99)(100, 118)(101, 108)(102, 103)(104, 133)(109, 135)(112, 113)(115, 116)(117, 126)(119, 120)(121, 140)(124, 130)(127, 128)(129, 134)(131, 136)(132, 137)(138, 141)(139, 142)(143, 144)(145, 256)(146, 258, 174, 266)(147, 257)(148, 260)(149, 225, 212, 166)(150, 185)(151, 254, 237, 186)(152, 255, 261, 288)(153, 249)(154, 176)(155, 231)(156, 183, 173, 232)(157, 195)(158, 202)(159, 221, 177, 196)(160, 181)(161, 265)(162, 163)(164, 259)(165, 247, 244, 240)(167, 214)(168, 236)(169, 199)(170, 245)(171, 217, 230, 207)(172, 263)(175, 194)(178, 182)(179, 218)(180, 216)(184, 252)(187, 188)(189, 228)(191, 269)(192, 229)(193, 224)(197, 198, 223, 204)(200, 238)(201, 274, 267, 276)(203, 227)(205, 239)(206, 251, 220, 241)(208, 233)(209, 242)(210, 248)(211, 235)(213, 243)(215, 250)(219, 234)(222, 246)(226, 253)(264, 286)(268, 275)(271, 278, 280, 282)(272, 277)(273, 279)(281, 283)(284, 285)
c: (8, 15)(11, 20)(17, 29)(18, 30)(22, 36)(23, 37)(34, 51)(41, 58)(45, 67)(69, 91)(70, 92)(95, 114)(145, 160)(151, 240)(153, 202)(156, 173)(159, 177)(166, 198)(176, 234)(194, 222)(204, 225)(206, 220)(207, 217)(237, 247)(239, 245)(255, 276)(258, 266)(265, 286)(274, 288)(278, 282)
d: (3, 6)(4, 9)(7, 14)(10, 19)(13, 26)(24, 43)(27, 47)(42, 60)(44, 66)(64, 82)(65, 84)(89, 106)(149, 197)(152, 201)(154, 205)(158, 246)(161, 256)(162, 224)(163, 252)(164, 270)(165, 186)(170, 219)(175, 249)(181, 264)(184, 210)(190, 259)(193, 248)(212, 223)(244, 254)(261, 267)
e: (2, 5)(3, 8)(4, 11)(6, 15)(7, 29)(9, 20)(10, 36)(12, 25)(13, 18)(14, 17)(16, 33)(19, 22)(21, 40)(23, 42)(24, 45)(26, 30)(27, 51)(28, 50)(32, 54)(34, 47)(35, 57)(37, 60)(38, 52)(39, 62)(41, 82)(43, 67)(44, 91)(48, 55)(49, 74)(53, 99, 73, 77)(56, 80)(58, 64)(59, 83)(61, 103, 79, 86)(63, 88)(65, 70)(66, 69)(68, 94)(71, 75)(72, 78)(81, 105)(84, 92)(85, 108)(87, 110)(89, 114)(90, 113)(93, 116)(95, 106)(96, 100)(97, 119, 118, 101)(102, 120)(104, 122)(109, 125, 121, 133)(111, 117)(112, 128)(115, 137, 127, 130)(123, 129)(124, 135)(126, 131)(132, 140)(134, 138)(136, 143, 141, 139)(145, 259)(146, 260)(147, 262, 172, 268)(148, 283, 284, 257)(149, 173)(150, 195, 200, 216)(151, 249)(152, 266)(153, 252)(154, 166)(155, 236, 218, 189)(156, 197)(157, 199, 215, 253)(158, 237)(159, 165)(160, 190)(161, 288)(162, 176)(163, 202)(164, 265)(167, 178, 185, 231)(168, 232)(169, 196)(170, 204)(171, 228)(174, 269)(175, 240)(177, 186)(179, 203, 233, 238)(180, 229, 209, 243)(181, 276)(182, 188, 208, 235)(183, 187)(184, 245)(191, 277, 273, 263)(192, 221)(193, 194)(198, 205)(201, 258)(206, 254)(207, 212)(210, 239)(211, 230)(213, 241)(214, 250, 227, 242)(217, 223)(219, 225)(220, 244)(222, 248)(224, 234)(226, 251)(246, 247)(255, 264)(256, 274)(261, 278)(267, 282)(270, 286)(271, 279)(272, 287, 281, 275)(280, 285)
f: (16, 28)(21, 35)(32, 49)(39, 56)(48, 71)(68, 90)(72, 96)(88, 105)(93, 112)(110, 122)(111, 123)(126, 134)(146, 271)(148, 191)(149, 212)(152, 261)(165, 244)(171, 183)(174, 280)(186, 254)(188, 236)(189, 235)(196, 241)(197, 223)(199, 229)(201, 267)(221, 251)(230, 232)(243, 253)(273, 284)
g: (8, 15)(11, 20)(18, 30)(23, 37)(45, 67)(70, 92)(145, 160)(151, 247)(153, 202)(166, 204)(176, 234)(194, 222)(198, 225)(237, 240)(239, 245)(255, 274)(265, 286)(276, 288)
h: (54, 74)(62, 80)(77, 99)(78, 100)(86, 103)(87, 104)(101, 119)(109, 121)(116, 128)(130, 137)(131, 138)(139, 143)(150, 200)(155, 208)(157, 209)(167, 185)(168, 228)(169, 226)(180, 215)(182, 218)(187, 211)(192, 213)(203, 238)(214, 227)(257, 277)(260, 285)(262, 268)(263, 283)(269, 279)(275, 287)
m: (53, 73)(61, 79)(76, 98)(85, 102)(97, 118)(108, 120)(115, 127)(124, 132)(125, 133)(135, 140)(136, 141)(142, 144)(147, 272)(148, 284)(150, 214)(167, 203)(172, 281)(178, 179)(185, 238)(188, 235)(189, 236)(191, 273)(195, 242)(199, 253)(200, 227)(216, 250)(229, 243)(231, 233)(262, 275)(268, 287)
n1: (54, 74)(62, 80)(78, 100)(87, 104)(116, 128)(131, 138)(155, 182)(157, 180)(168, 228)(169, 226)(187, 211)(192, 213)(208, 218)(209, 215)(257, 263)(260, 285)(269, 279)(277, 283)
a1: (16, 28)(21, 35)(48, 71)(68, 90)(88, 105)(111, 123)(146, 174)(149, 212)(152, 261)(165, 244)(171, 230)(183, 232)(186, 254)(196, 221)(197, 223)(201, 267)(241, 251)(271, 280)
b1: (33, 50)(40, 57)(55, 75)(63, 81)(94, 113)(117, 129)(156, 217)(159, 220)(168, 187)(169, 192)(173, 207)(177, 206)(211, 228)(213, 226)(258, 282)(260, 269)(266, 278)(279, 285)
c1: (53, 73)(61, 79)(97, 118)(115, 127)(125, 133)(136, 141)(147, 172)(148, 284)(178, 231)(179, 233)(188, 235)(189, 236)(191, 273)(195, 216)(199, 253)(229, 243)(242, 250)(272, 281)
d1: (3, 6)(4, 9)(13, 26)(24, 43)(42, 60)(65, 84)(154, 170)(158, 175)(161, 181)(162, 224)(163, 252)(164, 270)(184, 210)(190, 259)(193, 248)(205, 219)(246, 249)(256, 264)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 47 ]
288
-1 210 245 184 239
-2 210 145 160 184
-3 170 248 205 252
-4 190 170 205 164
-5 190 245 259 239
-6 154 193 163 219
-7 223 246 249 197
-8 198 222 204 153
-9 154 259 270 219
-10 223 181 161 197
-11 198 265 160 204
-12 145 160 163 252
-13 256 181 248 252
-14 212 158 149 175
-15 166 202 225 194
-16 254 244 183 230
-17 237 173 207 240
-18 276 222 153 274
-19 264 212 256 149
-20 286 166 145 225
-21 201 183 152 230
-22 255 173 207 274
-23 176 276 245 274
-24 190 158 249 164
-25 190 202 259 153
-26 264 193 161 163
-27 201 267 246 249
-28 165 232 171 186
-29 156 247 151 217
-30 255 288 202 194
-31 176 234 224 162
-32 188 235 251 241
-33 187 220 211 206
-34 266 278 237 240
-35 232 267 171 261
-36 276 156 288 217
-37 255 288 234 239
-38 176 234 270 164
-39 188 146 235 174
-40 187 211 266 258
-41 198 266 278 225
-42 256 181 162 184
-43 246 259 270 175
-44 254 181 161 186
-45 265 160 237 151
-46 202 163 153 252
-47 158 261 152 175
-48 254 244 271 174
-49 221 189 236 196
-50 177 168 159 228
-51 247 258 282 151
-52 286 265 224 162
-53 253 243 178 233
-54 213 182 226 208
-55 220 279 269 206
-56 189 236 280 271
-57 168 278 282 228
-58 166 258 204 282
-59 286 265 193 248
-60 264 210 224 161
-61 178 233 191 148
-62 269 182 260 208
-63 156 279 269 173
-64 154 201 267 170
-65 158 249 162 184
-66 165 264 244 256
-67 286 145 247 240
-68 201 152 196 251
-69 220 255 159 274
-70 176 245 237 151
-71 165 146 280 186
-72 191 251 273 241
-73 231 199 179 229
-74 155 169 192 218
-75 177 159 260 285
-76 242 214 227 250
-77 209 167 203 215
-78 277 213 226 263
-79 231 179 273 284
-80 155 279 218 285
-81 260 217 207 285
-82 205 261 152 219
-83 222 270 194 164
-84 210 224 246 175
-85 147 214 172 227
-86 167 257 203 263
-87 187 277 168 263
-88 149 271 174 197
-89 154 254 170 186
-90 221 267 261 241
-91 177 276 288 206
-92 234 247 239 240
-93 253 199 146 174
-94 266 169 258 226
-95 198 220 159 225
-96 221 148 196 284
-97 253 243 172 272
-98 200 150 216 195
-99 157 180 238 185
-100 169 257 192 283
-101 209 275 215 262
-102 200 281 150 272
-103 277 238 283 185
-104 211 257 228 283
-105 146 212 223 280
-106 165 244 205 219
-107 222 193 248 194
-108 242 268 250 262
-109 275 155 182 262
-110 232 191 183 273
-111 149 196 251 197
-112 243 280 271 229
-113 278 213 192 282
-114 166 177 204 206
-115 191 148 195 250
-116 157 269 215 260
-117 156 169 226 173
-118 199 147 281 229
-119 287 157 180 268
-120 275 287 216 195
-121 287 268 218 208
-122 148 171 284 230
-123 221 212 223 241
-124 167 147 172 185
-125 188 236 172 272
-126 253 199 232 183
-127 242 216 273 284
-128 209 180 279 285
-129 213 192 217 207
-130 257 214 150 263
-131 187 157 168 215
-132 203 281 238 272
-133 189 147 235 281
-134 243 171 229 230
-135 231 178 268 262
-136 188 236 195 250
-137 200 277 227 283
-138 209 211 180 228
-139 155 214 182 150
-140 275 287 233 179
-141 242 189 235 216
-142 231 167 178 185
-143 200 227 218 208
-144 233 179 203 238
-145 12 67 2 20
-146 71 93 39 105
-147 133 124 85 118
-148 122 115 61 96
-149 88 111 14 19
-150 102 139 130 98
-151 45 70 29 51
-152 68 47 82 21
-153 46 25 18 8
-154 89 6 9 64
-155 80 139 74 109
-156 36 29 117 63
-157 99 116 119 131
-158 24 14 47 65
-159 69 50 95 75
-160 11 12 45 2
-161 44 26 60 10
-162 52 31 42 65
-163 12 46 26 6
-164 24 4 38 83
-165 66 71 28 106
-166 58 15 114 20
-167 77 124 86 142
-168 57 50 87 131
-169 100 94 117 74
-170 89 3 4 64
-171 122 35 134 28
-172 124 125 85 97
-173 22 17 117 63
-174 88 48 93 39
-175 14 47 84 43
-176 23 70 38 31
-177 91 114 50 75
-178 135 61 53 142
-179 144 79 73 140
-180 99 138 128 119
-181 44 13 42 10
-182 62 139 54 109
-183 110 16 126 21
-184 1 2 42 65
-185 99 124 103 142
-186 44 89 71 28
-187 33 40 87 131
-188 125 136 39 32
-189 56 133 49 141
-190 24 25 4 5
-191 110 115 61 72
-192 100 113 74 129
-193 26 59 6 107
-194 15 83 30 107
-195 136 115 98 120
-196 111 68 49 96
-197 88 111 7 10
-198 11 95 8 41
-199 93 126 73 118
-200 143 102 137 98
-201 68 27 64 21
-202 46 25 15 30
-203 77 132 144 86
-204 11 58 114 8
-205 3 4 82 106
-206 33 55 91 114
-207 22 81 17 129
-208 121 143 62 54
-209 77 101 138 128
-210 1 2 60 84
-211 33 104 138 40
-212 123 14 105 19
-213 78 113 129 54
-214 139 85 130 76
-215 77 101 116 131
-216 127 141 98 120
-217 36 81 29 129
-218 121 143 80 74
-219 82 6 106 9
-220 33 55 69 95
-221 90 123 49 96
-222 83 18 8 107
-223 123 105 7 10
-224 60 84 52 31
-225 15 95 41 20
-226 78 94 117 54
-227 143 137 85 76
-228 57 104 50 138
-229 112 134 73 118
-230 122 134 16 21
-231 79 135 73 142
-232 110 35 126 28
-233 144 61 140 53
-234 37 92 38 31
-235 133 39 141 32
-236 56 125 136 49
-237 34 45 70 17
-238 99 132 144 103
-239 1 37 92 5
-240 34 67 92 17
-241 90 123 72 32
-242 127 108 141 76
-243 112 134 53 97
-244 66 48 16 106
-245 1 23 70 5
-246 27 7 84 43
-247 67 92 29 51
-248 13 3 59 107
-249 24 27 7 65
-250 136 115 108 76
-251 111 68 72 32
-252 12 13 46 3
-253 93 126 53 97
-254 44 89 48 16
-255 22 69 37 30
-256 66 13 19 42
-257 100 104 86 130
-258 58 94 40 51
-259 25 5 9 43
-260 81 116 62 75
-261 35 90 47 82
-262 101 135 108 109
-263 78 86 130 87
-264 66 26 60 19
-265 11 45 59 52
-266 34 94 40 41
-267 35 90 27 64
-268 121 135 108 119
-269 55 116 62 63
-270 38 83 9 43
-271 88 56 112 48
-272 132 102 125 97
-273 110 79 72 127
-274 22 23 69 18
-275 101 140 109 120
-276 23 36 91 18
-277 78 103 137 87
-278 34 57 113 41
-279 55 80 128 63
-280 56 112 71 105
-281 132 133 102 118
-282 57 58 113 51
-283 100 103 104 137
-284 122 79 127 96
-285 80 81 128 75
-286 67 59 52 20
-287 121 140 119 120
-288 36 91 37 30
0

**************