C4graphGraph forms for C4 [ 288, 48 ] = PL(MC3(6,24,1,13,11,12,1),[4^36,12^12])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 48 ] = PL(MC3(6,24,1,13,11,12,1),[4^36,12^12]).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {131, 151}, {133, 147}, {142, 151}, {136, 147}, {135, 155}, {143, 175}, {133, 167}, {141, 175}, {144, 180}, {132, 173}, {144, 186}, {129, 174}, {142, 161}, {135, 168}, {130, 178}, {133, 181}, {139, 185}, {128, 181}, {136, 189}, {138, 189}, {144, 167}, {142, 182}, {128, 185}, {135, 188}, {137, 180}, {133, 186}, {134, 198}, {140, 207}, {143, 203}, {139, 195}, {132, 206}, {140, 198}, {130, 201}, {135, 215}, {132, 213}, {140, 217}, {138, 220}, {131, 212}, {142, 212}, {132, 228}, {138, 235}, {143, 238}, {136, 235}, {129, 229}, {141, 233}, {134, 227}, {143, 233}, {129, 230}, {139, 236}, {130, 232}, {128, 236}, {137, 231}, {140, 227}, {139, 251}, {129, 243}, {144, 231}, {138, 242}, {130, 253}, {17, 145}, {25, 153}, {87, 215}, {67, 194}, {32, 162}, {49, 179}, {36, 166}, {86, 212}, {96, 226}, {73, 202}, {120, 251}, {114, 241}, {29, 153}, {16, 149}, {107, 238}, {66, 199}, {56, 189}, {50, 183}, {31, 154}, {101, 224}, {26, 156}, {116, 242}, {54, 176}, {27, 157}, {79, 201}, {104, 238}, {46, 169}, {93, 218}, {53, 189}, {60, 180}, {31, 150}, {115, 250}, {80, 217}, {40, 162}, {83, 217}, {48, 187}, {63, 180}, {61, 182}, {74, 193}, {16, 156}, {75, 199}, {89, 212}, {88, 214}, {91, 213}, {33, 174}, {64, 207}, {45, 162}, {44, 163}, {43, 164}, {75, 196}, {85, 218}, {9, 153}, {41, 185}, {93, 205}, {32, 177}, {127, 238}, {65, 208}, {57, 168}, {90, 203}, {119, 229}, {14, 157}, {56, 171}, {111, 251}, {11, 158}, {45, 184}, {36, 177}, {102, 243}, {42, 188}, {69, 221}, {126, 230}, {122, 226}, {85, 205}, {87, 206}, {113, 232}, {92, 197}, {38, 188}, {65, 219}, {45, 183}, {72, 210}, {14, 149}, {102, 253}, {37, 185}, {87, 203}, {67, 222}, {111, 242}, {76, 209}, {54, 168}, {70, 216}, {99, 253}, {52, 171}, {94, 193}, {18, 178}, {124, 220}, {118, 214}, {110, 206}, {94, 254}, {7, 166}, {114, 211}, {55, 150}, {26, 187}, {103, 198}, {51, 145}, {117, 215}, {77, 239}, {86, 242}, {103, 195}, {6, 163}, {6, 160}, {118, 208}, {23, 177}, {98, 196}, {7, 160}, {59, 156}, {21, 178}, {16, 183}, {77, 234}, {79, 231}, {116, 220}, {3, 170}, {112, 217}, {54, 159}, {49, 152}, {72, 225}, {93, 244}, {56, 146}, {71, 237}, {79, 229}, {99, 201}, {15, 164}, {24, 179}, {49, 157}, {106, 198}, {95, 243}, {86, 251}, {118, 219}, {114, 223}, {97, 204}, {101, 200}, {4, 170}, {50, 156}, {114, 221}, {30, 174}, {97, 209}, {47, 158}, {75, 250}, {44, 158}, {109, 223}, {71, 245}, {100, 214}, {69, 241}, {127, 203}, {78, 250}, {17, 164}, {73, 252}, {82, 231}, {86, 227}, {40, 158}, {115, 197}, {12, 187}, {121, 206}, {115, 196}, {30, 169}, {34, 154}, {1, 184}, {110, 215}, {47, 150}, {40, 145}, {33, 152}, {26, 163}, {70, 255}, {2, 184}, {22, 172}, {13, 183}, {77, 247}, {88, 226}, {89, 227}, {95, 229}, {103, 220}, {120, 195}, {6, 187}, {68, 249}, {44, 145}, {27, 166}, {14, 179}, {77, 240}, {101, 216}, {72, 246}, {119, 201}, {109, 211}, {19, 172}, {124, 195}, {112, 207}, {78, 241}, {91, 228}, {98, 221}, {52, 244}, {55, 247}, {9, 200}, {60, 253}, {32, 225}, {41, 235}, {47, 237}, {11, 200}, {113, 178}, {51, 240}, {29, 222}, {19, 208}, {16, 211}, {31, 219}, {108, 168}, {51, 247}, {5, 192}, {15, 202}, {9, 204}, {96, 165}, {97, 164}, {104, 173}, {22, 208}, {82, 148}, {7, 192}, {120, 191}, {11, 204}, {48, 248}, {118, 190}, {99, 171}, {4, 205}, {40, 225}, {35, 234}, {33, 232}, {92, 149}, {32, 234}, {52, 254}, {39, 237}, {125, 182}, {35, 239}, {50, 254}, {105, 165}, {8, 197}, {15, 194}, {85, 152}, {3, 205}, {113, 191}, {37, 235}, {36, 234}, {81, 159}, {84, 154}, {10, 197}, {60, 243}, {2, 210}, {126, 174}, {108, 188}, {44, 252}, {73, 153}, {71, 150}, {107, 186}, {97, 176}, {54, 228}, {104, 186}, {1, 210}, {25, 202}, {75, 152}, {102, 181}, {37, 241}, {121, 173}, {56, 236}, {10, 223}, {60, 233}, {20, 194}, {123, 173}, {122, 172}, {63, 233}, {8, 223}, {105, 190}, {39, 240}, {9, 222}, {74, 146}, {25, 192}, {70, 159}, {68, 157}, {53, 236}, {46, 244}, {59, 225}, {58, 224}, {100, 190}, {27, 192}, {28, 199}, {6, 218}, {125, 161}, {35, 255}, {7, 218}, {57, 228}, {14, 211}, {20, 202}, {30, 193}, {122, 165}, {106, 181}, {61, 226}, {37, 250}, {79, 175}, {123, 155}, {122, 154}, {81, 176}, {23, 245}, {66, 160}, {29, 255}, {27, 249}, {19, 240}, {74, 169}, {119, 147}, {28, 249}, {67, 166}, {18, 244}, {115, 149}, {68, 162}, {62, 216}, {33, 199}, {43, 204}, {31, 247}, {66, 170}, {53, 221}, {22, 255}, {59, 210}, {5, 239}, {126, 148}, {28, 246}, {73, 163}, {61, 214}, {18, 254}, {120, 148}, {82, 191}, {1, 239}, {117, 155}, {48, 222}, {24, 246}, {80, 190}, {15, 224}, {62, 209}, {5, 245}, {87, 167}, {103, 151}, {8, 249}, {53, 196}, {17, 224}, {13, 252}, {78, 191}, {80, 161}, {99, 146}, {48, 194}, {61, 207}, {58, 200}, {83, 161}, {21, 230}, {50, 193}, {38, 213}, {104, 155}, {1, 245}, {18, 230}, {12, 248}, {93, 169}, {94, 170}, {13, 248}, {80, 165}, {30, 232}, {64, 182}, {71, 177}, {98, 148}, {38, 209}, {92, 171}, {84, 172}, {34, 219}, {106, 147}, {101, 159}, {3, 248}, {72, 179}, {68, 184}, {76, 176}, {82, 175}, {106, 151}, {90, 167}, {8, 246}, {38, 216}, {19, 237}, {94, 160}, {3, 252}, {109, 146}, {42, 213}, {20, 276}, {11, 266}, {10, 264}, {34, 288}, {23, 276}, {35, 288}, {22, 274}, {23, 274}, {5, 259}, {20, 274}, {12, 266}, {4, 259}, {2, 266}, {4, 268}, {10, 256}, {13, 256}, {17, 286}, {21, 260}, {12, 286}, {26, 264}, {24, 268}, {28, 267}, {25, 259}, {24, 259}, {2, 286}, {21, 267}, {57, 281}, {55, 278}, {42, 265}, {63, 284}, {62, 285}, {39, 258}, {47, 266}, {41, 271}, {46, 264}, {36, 268}, {42, 258}, {43, 258}, {58, 278}, {45, 256}, {51, 286}, {46, 256}, {63, 273}, {57, 278}, {41, 280}, {43, 281}, {58, 265}, {59, 264}, {49, 260}, {34, 276}, {52, 271}, {62, 261}, {29, 288}, {39, 281}, {55, 265}, {69, 260}, {91, 282}, {88, 282}, {89, 283}, {84, 279}, {65, 261}, {83, 279}, {64, 261}, {81, 279}, {95, 280}, {66, 267}, {89, 272}, {64, 270}, {69, 267}, {83, 285}, {67, 268}, {95, 271}, {85, 260}, {74, 280}, {92, 271}, {70, 274}, {76, 276}, {88, 257}, {84, 270}, {91, 257}, {90, 257}, {65, 285}, {90, 263}, {78, 273}, {81, 270}, {113, 273}, {96, 258}, {126, 284}, {111, 269}, {110, 269}, {124, 287}, {121, 285}, {127, 283}, {116, 273}, {116, 284}, {123, 275}, {96, 265}, {111, 262}, {108, 263}, {76, 288}, {119, 283}, {105, 263}, {125, 275}, {121, 279}, {112, 287}, {127, 272}, {124, 275}, {117, 261}, {107, 282}, {110, 287}, {100, 278}, {109, 280}, {102, 272}, {108, 277}, {117, 270}, {125, 262}, {105, 277}, {100, 281}, {123, 262}, {112, 269}, {98, 284}, {107, 277}, {131, 257}, {131, 263}, {137, 269}, {137, 262}, {128, 272}, {141, 287}, {134, 277}, {136, 283}, {134, 282}, {141, 275} }>;

(II) A more general form is to represent the graph as the orbit of {131, 151} under the group generated by the following permutations:

a: (3, 6)(4, 7)(13, 26)(24, 27)(45, 59)(68, 72)(156, 183)(157, 179)(160, 170)(162, 225)(163, 252)(166, 268)(184, 210)(187, 248)(192, 259)(205, 218)(246, 249)(256, 264)
b: (61, 80)(64, 83)(88, 105)(91, 108)(117, 121)(132, 135)(155, 173)(161, 182)(165, 226)(168, 228)(188, 213)(190, 214)(206, 215)(207, 217)(257, 263)(261, 285)(270, 279)(277, 282)
c: (60, 79)(63, 82)(102, 119)(116, 120)(128, 136)(138, 139)(147, 181)(148, 284)(175, 233)(180, 231)(185, 235)(189, 236)(191, 273)(195, 220)(201, 253)(229, 243)(242, 251)(272, 283)
d: (18, 30)(21, 33)(37, 53)(41, 56)(52, 74)(69, 75)(78, 98)(92, 109)(95, 99)(113, 126)(114, 115)(129, 130)(146, 271)(148, 191)(149, 211)(152, 260)(169, 244)(171, 280)(174, 178)(185, 236)(189, 235)(193, 254)(196, 241)(197, 223)(199, 267)(201, 229)(221, 250)(230, 232)(243, 253)(273, 284)
e: (9, 15)(11, 17)(20, 29)(23, 35)(47, 51)(71, 77)(145, 158)(150, 247)(153, 202)(164, 204)(177, 234)(194, 222)(200, 224)(237, 240)(239, 245)(255, 274)(266, 286)(276, 288)
f: (2, 5)(3, 9)(4, 11)(6, 15)(7, 17)(8, 19)(10, 22)(12, 25)(13, 29)(14, 31)(16, 34)(18, 54, 30, 38)(20, 26)(21, 57, 33, 42)(23, 59)(24, 47)(27, 51)(28, 39)(35, 45)(36, 40)(37, 80)(41, 83)(43, 66)(44, 67)(46, 70)(48, 73)(49, 55)(50, 76)(52, 81, 74, 62)(53, 61)(56, 64)(58, 85)(60, 87, 79, 104)(63, 90, 82, 107)(65, 92, 84, 109)(68, 77)(69, 100, 75, 96)(71, 72)(78, 105)(86, 103)(88, 98)(89, 124)(91, 126)(93, 101)(94, 97)(95, 121)(99, 117)(102, 110, 119, 123)(106, 111)(108, 113)(112, 136, 125, 128)(114, 118, 115, 122)(116, 131, 120, 134)(127, 141)(129, 132)(130, 135)(133, 137)(138, 142, 139, 140)(145, 166)(146, 261, 171, 270)(147, 262, 181, 269)(148, 282, 284, 257)(149, 154, 211, 219)(150, 179)(151, 251, 198, 242)(152, 265, 260, 278)(153, 248)(155, 253, 215, 201)(156, 276)(157, 247)(158, 268)(159, 169, 216, 244)(160, 164)(161, 185, 217, 235)(162, 234)(163, 194)(165, 241, 190, 250)(167, 231, 186, 180)(168, 232, 188, 178)(170, 204)(172, 223, 208, 197)(173, 243, 206, 229)(174, 213, 230, 228)(175, 238, 233, 203)(176, 193, 209, 254)(177, 225)(182, 236, 207, 189)(183, 288)(184, 239)(187, 202)(191, 277, 273, 263)(192, 286)(195, 227, 220, 212)(196, 226, 221, 214)(199, 258, 267, 281)(200, 205)(210, 245)(218, 224)(222, 252)(237, 246)(240, 249)(255, 256)(259, 266)(264, 274)(271, 279, 280, 285)(272, 287, 283, 275)
g: (61, 80)(64, 83)(87, 104)(88, 105)(90, 107)(91, 108)(110, 123)(112, 125)(117, 121)(131, 134)(132, 135)(140, 142)(151, 198)(155, 206)(161, 207)(165, 226)(167, 186)(168, 228)(173, 215)(182, 217)(188, 213)(190, 214)(203, 238)(212, 227)(257, 277)(261, 285)(262, 269)(263, 282)(270, 279)(275, 287)
h: (18, 30)(21, 33)(52, 74)(69, 75)(92, 109)(114, 115)(146, 171)(149, 211)(152, 260)(169, 244)(174, 230)(178, 232)(193, 254)(196, 221)(197, 223)(199, 267)(241, 250)(271, 280)
m: (1, 2, 12, 48, 67, 36, 32, 40, 44, 73, 25, 5)(3, 20, 27, 77, 59, 11)(4, 23, 68, 51, 26, 9)(6, 29, 24, 71, 45, 17)(7, 35, 72, 47, 13, 15)(8, 39, 50, 101, 85, 34)(10, 43, 94, 70, 49, 31)(14, 55, 46, 97, 66, 22)(16, 58, 93, 76, 28, 19)(18, 62, 69, 118, 109, 57, 30, 81, 75, 122, 92, 42)(21, 65, 114, 100, 74, 54, 33, 84, 115, 96, 52, 38)(37, 88, 99, 135, 126, 83)(41, 91, 130, 117, 98, 80)(53, 105, 95, 132, 113, 64)(56, 108, 129, 121, 78, 61)(60, 123, 116, 142, 136, 90, 79, 110, 120, 140, 128, 107)(63, 125, 138, 131, 119, 87, 82, 112, 139, 134, 102, 104)(86, 89, 127, 143, 141, 124, 103, 106, 133, 144, 137, 111)(145, 163, 153, 259, 245, 184, 286, 187, 222, 268, 177, 162)(146, 168, 174, 279, 250, 226, 171, 188, 230, 285, 241, 214)(147, 167, 231, 269, 251, 227, 272, 238, 233, 275, 220, 151)(148, 217, 185, 282, 253, 155, 284, 161, 235, 257, 201, 215)(149, 265, 244, 209, 267, 208, 211, 278, 169, 176, 199, 172)(150, 256, 164, 160, 255, 179)(152, 154, 197, 258, 254, 216, 260, 219, 223, 281, 193, 159)(156, 200, 205, 276, 249, 240)(157, 247, 264, 204, 170, 274)(158, 252, 202, 192, 239, 210, 266, 248, 194, 166, 234, 225)(165, 271, 213, 178, 261, 221, 190, 280, 228, 232, 270, 196)(173, 273, 182, 189, 263, 229, 206, 191, 207, 236, 277, 243)(175, 287, 195, 198, 181, 186, 180, 262, 242, 212, 283, 203)(183, 224, 218, 288, 246, 237)
n1: (1, 3)(2, 13)(4, 5)(6, 32)(7, 36)(8, 15, 14, 9)(10, 17, 16, 11)(12, 45)(18, 31, 30, 19)(20, 49, 29, 28)(21, 34, 33, 22)(23, 85, 35, 66)(24, 25)(26, 40)(27, 67)(37, 54, 53, 38)(39, 52, 55, 74)(41, 57, 56, 42)(43, 92, 58, 109)(44, 59)(46, 51, 50, 47)(48, 68)(60, 80)(61, 79)(62, 78, 81, 98)(63, 83)(64, 82)(65, 113, 84, 126)(69, 76, 75, 70)(71, 93, 77, 94)(72, 73)(86, 104)(87, 103)(88, 119)(89, 107)(90, 106)(91, 136)(95, 100, 99, 96)(97, 115, 101, 114)(102, 105)(108, 128)(110, 124)(111, 123)(112, 141)(116, 121)(117, 120)(118, 130, 122, 129)(125, 137)(127, 134)(131, 133)(132, 138)(135, 139)(140, 143)(142, 144)(145, 156, 158, 264)(146, 258, 271, 278)(147, 257)(148, 261, 191, 270)(149, 200, 223, 164)(150, 169, 240, 254)(151, 167)(152, 255, 267, 276)(153, 246, 202, 179)(154, 174, 208, 178)(155, 251)(157, 222, 249, 194)(159, 221, 209, 250)(160, 177, 218, 234)(161, 180)(162, 187)(163, 225)(165, 243, 190, 253)(168, 236, 188, 185)(170, 245, 205, 239)(171, 265, 280, 281)(172, 230, 219, 232)(173, 242)(175, 207)(176, 196, 216, 241)(181, 263)(182, 231)(183, 266, 256, 286)(184, 248)(186, 212)(189, 213, 235, 228)(192, 268)(193, 237, 244, 247)(195, 215)(197, 224, 211, 204)(198, 203)(199, 274, 260, 288)(201, 226, 229, 214)(206, 220)(210, 252)(217, 233)(227, 238)(269, 275)(272, 277)(273, 279, 284, 285)(282, 283)
a1: (3, 6)(4, 7)(8, 14)(10, 16)(13, 26)(24, 27)(28, 49)(45, 59)(46, 50)(66, 85)(68, 72)(93, 94)(149, 197)(152, 199)(156, 256)(157, 246)(160, 205)(162, 225)(163, 252)(166, 268)(169, 193)(170, 218)(179, 249)(183, 264)(184, 210)(187, 248)(192, 259)(211, 223)(244, 254)(260, 267)
b1: (9, 15)(11, 17)(19, 31)(20, 29)(22, 34)(23, 35)(39, 55)(43, 58)(47, 51)(70, 76)(71, 77)(97, 101)(145, 158)(150, 240)(153, 202)(154, 172)(159, 176)(164, 200)(177, 234)(194, 222)(204, 224)(208, 219)(209, 216)(237, 247)(239, 245)(255, 276)(258, 265)(266, 286)(274, 288)(278, 281)
c1: (60, 79)(63, 82)(86, 103)(89, 106)(102, 119)(111, 124)(116, 120)(127, 133)(128, 136)(137, 141)(138, 139)(143, 144)(147, 272)(148, 284)(151, 212)(167, 203)(175, 180)(181, 283)(185, 235)(186, 238)(189, 236)(191, 273)(195, 242)(198, 227)(201, 253)(220, 251)(229, 243)(231, 233)(262, 275)(269, 287)
d1: (38, 54)(42, 57)(62, 81)(65, 84)(96, 100)(118, 122)(154, 219)(159, 216)(165, 190)(168, 188)(172, 208)(176, 209)(213, 228)(214, 226)(258, 281)(261, 270)(265, 278)(279, 285)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 48 ]
288
-1 210 245 184 239
-2 286 210 266 184
-3 170 248 205 252
-4 268 170 259 205
-5 245 192 259 239
-6 187 160 163 218
-7 166 192 160 218
-8 223 246 249 197
-9 200 222 204 153
-10 264 223 256 197
-11 200 266 158 204
-12 187 286 266 248
-13 256 248 183 252
-14 211 157 179 149
-15 202 224 194 164
-16 156 211 149 183
-17 286 145 224 164
-18 254 178 244 230
-19 237 172 240 208
-20 276 202 194 274
-21 178 267 260 230
-22 255 172 208 274
-23 177 276 245 274
-24 179 246 268 259
-25 202 192 259 153
-26 187 264 156 163
-27 166 157 192 249
-28 199 267 246 249
-29 222 255 288 153
-30 232 169 193 174
-31 154 247 150 219
-32 177 234 225 162
-33 199 232 152 174
-34 154 276 288 219
-35 255 288 234 239
-36 166 177 234 268
-37 235 250 185 241
-38 209 188 213 216
-39 258 237 281 240
-40 145 158 225 162
-41 235 280 271 185
-42 188 265 213 258
-43 258 204 281 164
-44 145 158 163 252
-45 256 183 162 184
-46 264 244 256 169
-47 266 158 237 150
-48 187 222 248 194
-49 157 179 260 152
-50 254 156 193 183
-51 286 145 247 240
-52 254 244 171 271
-53 221 189 236 196
-54 176 168 159 228
-55 265 278 247 150
-56 189 146 236 171
-57 168 278 281 228
-58 265 200 278 224
-59 264 210 156 225
-60 253 243 233 180
-61 214 182 226 207
-62 209 216 261 285
-63 233 180 273 284
-64 182 270 261 207
-65 261 208 219 285
-66 199 267 170 160
-67 166 222 268 194
-68 157 249 162 184
-69 221 267 260 241
-70 255 159 216 274
-71 177 245 237 150
-72 210 179 246 225
-73 202 163 153 252
-74 146 169 280 193
-75 199 250 152 196
-76 176 209 276 288
-77 234 247 239 240
-78 191 250 273 241
-79 231 201 229 175
-80 165 190 161 217
-81 176 279 159 270
-82 231 191 148 175
-83 279 161 217 285
-84 154 279 270 172
-85 205 260 152 218
-86 242 212 227 251
-87 167 203 215 206
-88 257 214 226 282
-89 212 227 272 283
-90 167 257 203 263
-91 213 257 282 228
-92 149 171 271 197
-93 244 169 205 218
-94 254 170 160 193
-95 243 280 271 229
-96 165 265 258 226
-97 176 209 204 164
-98 221 148 196 284
-99 253 146 201 171
-100 190 278 214 281
-101 200 224 159 216
-102 253 243 181 272
-103 198 220 151 195
-104 155 238 173 186
-105 165 277 190 263
-106 198 147 181 151
-107 277 238 282 186
-108 188 277 168 263
-109 211 146 223 280
-110 287 269 215 206
-111 242 269 251 262
-112 287 269 217 207
-113 232 178 191 273
-114 221 211 223 241
-115 149 250 196 197
-116 220 242 273 284
-117 155 215 270 261
-118 190 214 208 219
-119 201 147 283 229
-120 191 148 195 251
-121 279 173 206 285
-122 154 165 226 172
-123 275 155 173 262
-124 220 275 287 195
-125 275 182 161 262
-126 148 174 284 230
-127 203 238 272 283
-128 181 236 272 185
-129 243 174 229 230
-130 253 232 178 201
-131 212 257 151 263
-132 213 173 206 228
-133 167 147 181 186
-134 198 277 227 282
-135 155 188 168 215
-136 189 147 235 283
-137 231 180 269 262
-138 220 242 189 235
-139 236 195 185 251
-140 198 227 217 207
-141 275 287 233 175
-142 212 182 161 151
-143 233 203 238 175
-144 231 167 180 186
-145 44 17 40 51
-146 99 56 74 109
-147 133 136 106 119
-148 82 126 98 120
-149 14 92 16 115
-150 55 47 71 31
-151 103 106 131 142
-152 33 49 85 75
-153 25 29 73 9
-154 34 122 84 31
-155 123 135 104 117
-156 26 59 16 50
-157 68 14 27 49
-158 11 44 47 40
-159 101 70 81 54
-160 66 6 94 7
-161 80 125 83 142
-162 45 68 40 32
-163 44 26 6 73
-164 15 17 97 43
-165 122 80 105 96
-166 67 36 27 7
-167 133 144 90 87
-168 57 135 108 54
-169 46 93 30 74
-170 66 3 4 94
-171 99 56 92 52
-172 22 122 84 19
-173 121 132 123 104
-174 33 126 30 129
-175 143 79 82 141
-176 81 97 54 76
-177 23 36 71 32
-178 113 18 130 21
-179 24 14 49 72
-180 144 60 137 63
-181 133 102 106 128
-182 125 61 64 142
-183 45 13 16 50
-184 1 45 2 68
-185 37 128 139 41
-186 133 144 104 107
-187 12 26 48 6
-188 135 38 42 108
-189 56 136 138 53
-190 100 80 105 118
-191 78 113 82 120
-192 25 5 27 7
-193 50 94 30 74
-194 67 15 48 20
-195 124 103 139 120
-196 115 53 75 98
-197 92 115 8 10
-198 134 103 106 140
-199 33 66 28 75
-200 11 101 58 9
-201 99 79 119 130
-202 25 15 73 20
-203 143 90 127 87
-204 11 9 97 43
-205 3 4 93 85
-206 110 121 132 87
-207 112 61 140 64
-208 22 19 118 65
-209 38 62 97 76
-210 1 2 59 72
-211 14 114 16 109
-212 89 86 131 142
-213 132 91 38 42
-214 88 100 61 118
-215 110 135 117 87
-216 101 70 38 62
-217 112 80 83 140
-218 93 6 7 85
-219 34 118 31 65
-220 124 103 116 138
-221 69 114 53 98
-222 67 48 29 9
-223 114 8 10 109
-224 101 58 15 17
-225 59 72 40 32
-226 88 122 61 96
-227 89 134 140 86
-228 132 57 91 54
-229 79 95 129 119
-230 126 18 129 21
-231 144 79 82 137
-232 33 113 30 130
-233 143 60 63 141
-234 77 35 36 32
-235 37 136 138 41
-236 56 128 139 53
-237 47 71 39 19
-238 143 104 127 107
-239 77 1 35 5
-240 77 39 51 19
-241 78 69 37 114
-242 111 116 138 86
-243 102 60 95 129
-244 46 93 18 52
-245 1 23 5 71
-246 24 28 72 8
-247 55 77 51 31
-248 12 13 3 48
-249 68 27 28 8
-250 78 37 115 75
-251 111 139 86 120
-252 44 13 3 73
-253 99 102 60 130
-254 50 94 18 52
-255 22 35 70 29
-256 45 13 46 10
-257 88 90 91 131
-258 39 96 42 43
-259 24 25 4 5
-260 69 49 85 21
-261 62 117 64 65
-262 111 123 125 137
-263 90 105 108 131
-264 46 26 59 10
-265 55 58 96 42
-266 11 12 2 47
-267 66 69 28 21
-268 67 24 36 4
-269 110 111 112 137
-270 81 84 117 64
-271 92 95 41 52
-272 89 102 127 128
-273 78 113 116 63
-274 22 23 70 20
-275 123 124 125 141
-276 23 34 20 76
-277 134 105 107 108
-278 55 100 57 58
-279 121 81 83 84
-280 95 41 74 109
-281 100 57 39 43
-282 88 134 91 107
-283 89 136 127 119
-284 126 116 63 98
-285 121 83 62 65
-286 12 2 17 51
-287 110 112 124 141
-288 34 35 29 76
0

**************