C4graphGraph forms for C4 [ 288, 51 ] = PL(MC3(6,24,1,7,17,0,1),[6^24,8^18])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 51 ] = PL(MC3(6,24,1,7,17,0,1),[6^24,8^18]).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {140, 159}, {143, 156}, {132, 158}, {135, 154}, {140, 172}, {142, 175}, {132, 166}, {128, 168}, {134, 174}, {137, 163}, {142, 164}, {144, 187}, {134, 170}, {136, 167}, {133, 181}, {143, 188}, {139, 191}, {132, 177}, {144, 165}, {137, 176}, {136, 179}, {141, 182}, {133, 187}, {135, 184}, {131, 195}, {137, 201}, {128, 193}, {142, 207}, {139, 202}, {138, 200}, {131, 203}, {134, 204}, {129, 207}, {144, 222}, {136, 198}, {143, 223}, {132, 213}, {130, 209}, {135, 211}, {139, 221}, {133, 222}, {128, 220}, {130, 223}, {138, 215}, {143, 209}, {141, 210}, {138, 235}, {131, 224}, {142, 232}, {138, 226}, {141, 229}, {129, 232}, {140, 230}, {144, 250}, {134, 237}, {137, 228}, {135, 233}, {140, 253}, {131, 246}, {128, 251}, {136, 243}, {139, 245}, {141, 242}, {89, 216}, {118, 247}, {90, 219}, {96, 225}, {33, 163}, {60, 190}, {49, 179}, {104, 234}, {35, 160}, {22, 146}, {51, 183}, {50, 183}, {116, 241}, {55, 178}, {103, 226}, {118, 240}, {22, 145}, {30, 153}, {27, 147}, {50, 187}, {59, 178}, {70, 207}, {35, 169}, {62, 180}, {98, 232}, {95, 212}, {22, 154}, {24, 148}, {75, 199}, {103, 235}, {45, 163}, {118, 248}, {112, 254}, {69, 203}, {58, 180}, {55, 185}, {28, 147}, {79, 192}, {106, 229}, {63, 175}, {70, 214}, {84, 196}, {10, 152}, {72, 218}, {82, 192}, {2, 145}, {66, 209}, {2, 150}, {96, 244}, {12, 153}, {52, 161}, {15, 154}, {81, 196}, {37, 179}, {124, 234}, {107, 253}, {4, 147}, {109, 250}, {47, 184}, {106, 242}, {126, 230}, {118, 239}, {12, 150}, {116, 238}, {72, 210}, {35, 184}, {120, 227}, {68, 223}, {62, 162}, {112, 236}, {68, 216}, {105, 245}, {11, 150}, {121, 228}, {43, 182}, {38, 187}, {32, 189}, {12, 145}, {75, 214}, {79, 209}, {115, 237}, {6, 153}, {67, 220}, {65, 222}, {33, 190}, {6, 166}, {59, 155}, {57, 152}, {102, 199}, {18, 176}, {59, 152}, {122, 217}, {67, 224}, {74, 233}, {90, 249}, {61, 153}, {113, 213}, {111, 203}, {102, 194}, {8, 173}, {57, 156}, {50, 151}, {48, 149}, {93, 248}, {28, 186}, {124, 218}, {117, 211}, {85, 243}, {29, 186}, {82, 245}, {3, 171}, {15, 167}, {85, 253}, {8, 161}, {25, 176}, {82, 251}, {98, 203}, {11, 161}, {122, 208}, {60, 150}, {53, 159}, {81, 251}, {93, 247}, {71, 236}, {78, 229}, {14, 162}, {123, 215}, {120, 212}, {116, 216}, {111, 195}, {69, 232}, {127, 210}, {109, 192}, {108, 193}, {88, 246}, {96, 206}, {4, 171}, {80, 224}, {121, 201}, {108, 220}, {102, 214}, {22, 167}, {119, 198}, {66, 243}, {27, 170}, {25, 168}, {99, 210}, {104, 218}, {123, 200}, {24, 172}, {105, 221}, {101, 208}, {40, 159}, {125, 202}, {64, 247}, {43, 156}, {1, 185}, {37, 157}, {30, 166}, {10, 178}, {84, 236}, {88, 224}, {65, 248}, {99, 218}, {14, 180}, {18, 168}, {2, 185}, {32, 155}, {95, 227}, {101, 217}, {17, 172}, {120, 197}, {97, 220}, {4, 186}, {126, 192}, {28, 162}, {20, 170}, {19, 173}, {77, 243}, {5, 186}, {115, 204}, {66, 253}, {16, 175}, {13, 178}, {23, 215}, {113, 177}, {37, 229}, {46, 239}, {61, 252}, {51, 242}, {15, 205}, {125, 191}, {56, 250}, {10, 201}, {37, 230}, {33, 226}, {32, 227}, {94, 157}, {80, 148}, {119, 179}, {2, 199}, {59, 254}, {58, 255}, {43, 238}, {17, 212}, {81, 148}, {87, 146}, {91, 158}, {1, 199}, {14, 200}, {7, 193}, {16, 215}, {122, 189}, {54, 241}, {43, 236}, {100, 163}, {56, 240}, {109, 165}, {87, 158}, {127, 182}, {39, 237}, {89, 147}, {10, 193}, {24, 212}, {93, 145}, {51, 254}, {117, 184}, {7, 201}, {20, 219}, {45, 226}, {44, 227}, {36, 235}, {93, 146}, {9, 217}, {42, 250}, {29, 205}, {74, 154}, {16, 194}, {126, 172}, {110, 188}, {73, 155}, {102, 180}, {3, 208}, {38, 245}, {78, 157}, {4, 208}, {70, 146}, {100, 176}, {124, 169}, {33, 247}, {114, 164}, {72, 158}, {20, 195}, {57, 238}, {49, 230}, {54, 238}, {78, 151}, {120, 161}, {116, 173}, {15, 213}, {122, 160}, {61, 231}, {42, 240}, {16, 202}, {79, 149}, {31, 196}, {112, 171}, {108, 183}, {48, 235}, {18, 206}, {107, 183}, {36, 248}, {24, 196}, {21, 200}, {114, 175}, {38, 251}, {23, 202}, {46, 240}, {96, 190}, {97, 191}, {6, 217}, {69, 165}, {85, 181}, {8, 233}, {124, 157}, {92, 189}, {11, 233}, {119, 149}, {29, 255}, {87, 181}, {9, 234}, {17, 242}, {90, 185}, {28, 249}, {42, 207}, {35, 198}, {76, 169}, {31, 249}, {67, 164}, {91, 188}, {31, 246}, {47, 198}, {39, 206}, {5, 239}, {125, 151}, {41, 195}, {38, 204}, {14, 228}, {77, 167}, {69, 174}, {127, 148}, {112, 155}, {6, 234}, {55, 219}, {76, 160}, {40, 197}, {48, 221}, {1, 239}, {26, 244}, {8, 231}, {34, 205}, {17, 254}, {12, 252}, {61, 205}, {53, 197}, {40, 216}, {5, 244}, {52, 197}, {21, 228}, {13, 252}, {7, 246}, {71, 182}, {87, 166}, {3, 241}, {110, 156}, {60, 206}, {41, 219}, {32, 211}, {70, 181}, {66, 177}, {86, 165}, {19, 231}, {107, 159}, {72, 188}, {73, 189}, {80, 164}, {89, 173}, {1, 244}, {20, 225}, {9, 255}, {34, 213}, {111, 152}, {40, 223}, {94, 169}, {58, 194}, {109, 149}, {86, 174}, {90, 162}, {36, 221}, {81, 168}, {83, 170}, {5, 255}, {36, 222}, {29, 231}, {27, 225}, {26, 225}, {13, 241}, {107, 151}, {67, 191}, {42, 214}, {92, 160}, {63, 194}, {83, 174}, {7, 249}, {64, 190}, {50, 204}, {79, 177}, {3, 252}, {44, 211}, {18, 237}, {84, 171}, {26, 283}, {23, 277}, {34, 288}, {9, 269}, {23, 274}, {27, 286}, {19, 283}, {13, 263}, {30, 277}, {46, 288}, {25, 278}, {48, 288}, {30, 271}, {21, 263}, {11, 280}, {19, 262}, {21, 271}, {26, 262}, {31, 259}, {25, 262}, {57, 281}, {47, 268}, {52, 272}, {60, 280}, {53, 273}, {41, 270}, {39, 267}, {47, 258}, {62, 275}, {49, 284}, {54, 280}, {44, 259}, {55, 263}, {41, 280}, {46, 287}, {45, 287}, {63, 268}, {49, 260}, {56, 269}, {45, 283}, {39, 272}, {58, 269}, {51, 267}, {54, 270}, {56, 257}, {53, 270}, {63, 260}, {62, 258}, {34, 287}, {44, 275}, {52, 267}, {73, 265}, {68, 261}, {86, 276}, {74, 265}, {75, 271}, {83, 278}, {88, 286}, {71, 256}, {89, 286}, {64, 265}, {91, 274}, {95, 278}, {94, 277}, {80, 284}, {94, 274}, {77, 285}, {76, 285}, {68, 278}, {91, 264}, {92, 271}, {78, 282}, {83, 261}, {86, 256}, {64, 279}, {119, 288}, {77, 282}, {82, 261}, {84, 259}, {88, 256}, {71, 286}, {73, 272}, {95, 262}, {65, 282}, {76, 279}, {92, 263}, {65, 285}, {74, 279}, {75, 277}, {85, 266}, {99, 257}, {115, 273}, {106, 264}, {127, 284}, {104, 268}, {110, 266}, {103, 258}, {114, 276}, {123, 285}, {100, 259}, {125, 282}, {108, 267}, {101, 258}, {98, 266}, {97, 264}, {121, 272}, {117, 287}, {103, 268}, {104, 260}, {123, 279}, {105, 260}, {117, 283}, {113, 257}, {121, 265}, {98, 273}, {114, 257}, {106, 281}, {105, 284}, {101, 275}, {111, 281}, {99, 276}, {100, 275}, {97, 281}, {126, 261}, {113, 269}, {115, 270}, {110, 273}, {130, 256}, {129, 264}, {133, 266}, {129, 274}, {130, 276} }>;

(II) A more general form is to represent the graph as the orbit of {140, 159} under the group generated by the following permutations:

a: (3, 6)(4, 9)(7, 16)(8, 15)(10, 23)(11, 22)(13, 30)(17, 37)(18, 36)(19, 34)(20, 42)(24, 49)(25, 48)(26, 46)(27, 56)(28, 58)(31, 63)(32, 35)(39, 65)(40, 66)(41, 70)(43, 72)(44, 47)(51, 78)(52, 77)(53, 85)(54, 87)(55, 75)(57, 91)(59, 94)(60, 93)(68, 79)(71, 99)(73, 76)(81, 105)(83, 109)(84, 104)(88, 114)(89, 113)(90, 102)(95, 119)(96, 118)(100, 103)(108, 125)(111, 129)(112, 124)(115, 133)(116, 132)(120, 136)(121, 123)(128, 139)(131, 142)(134, 144)(137, 138)(145, 150)(146, 280)(147, 269)(148, 284)(149, 278)(151, 183)(152, 274)(153, 252)(154, 233)(155, 169)(156, 188)(157, 254)(158, 238)(159, 253)(160, 189)(161, 167)(162, 180)(163, 226)(164, 224)(165, 174)(166, 241)(168, 221)(170, 250)(171, 234)(172, 230)(173, 213)(175, 246)(176, 235)(177, 216)(178, 277)(179, 212)(181, 270)(182, 210)(184, 211)(185, 199)(186, 255)(187, 204)(190, 247)(191, 220)(192, 261)(193, 202)(194, 249)(195, 207)(196, 260)(197, 243)(198, 227)(200, 228)(201, 215)(203, 232)(205, 231)(206, 248)(208, 217)(209, 223)(214, 219)(218, 236)(222, 237)(225, 240)(229, 242)(239, 244)(245, 251)(256, 276)(257, 286)(258, 275)(259, 268)(262, 288)(263, 271)(264, 281)(265, 279)(266, 273)(267, 282)(272, 285)(283, 287)
b: (1, 3, 7, 17, 38, 66, 42, 6, 14, 32, 18, 40, 69, 72, 16, 35, 33, 8, 20, 43, 67, 37, 36, 15)(2, 4, 10, 24, 50, 79, 70, 9, 21, 44, 39, 68, 98, 99, 23, 47, 64, 19, 41, 71, 97, 49, 65, 34)(5, 13, 31, 51, 82, 85, 56, 30, 62, 73, 25, 53, 86, 91, 63, 76, 45, 11, 27, 57, 80, 78, 48, 22)(12, 28, 59, 81, 107, 109, 87, 58, 92, 100, 52, 83, 110, 114, 94, 103, 74, 26, 54, 88, 106, 105, 77, 46)(29, 55, 84, 108, 126, 133, 113, 75, 101, 121, 95, 115, 130, 129, 104, 123, 117, 60, 89, 111, 127, 125, 119, 93)(61, 90, 112, 128, 140, 144, 132, 102, 122, 137, 120, 134, 143, 142, 124, 138, 135, 96, 116, 131, 141, 139, 136, 118)(145, 186, 178, 196, 183, 192, 181, 269, 271, 275, 272, 278, 273, 276, 274, 268, 279, 283, 280, 286, 281, 284, 282, 288)(146, 255, 263, 259, 267, 261, 266, 257, 277, 258, 265, 262, 270, 256, 264, 260, 285, 287, 150, 147, 152, 148, 151, 149)(153, 162, 155, 168, 159, 165, 158, 194, 160, 163, 161, 170, 156, 164, 157, 235, 154, 244, 241, 246, 242, 245, 243, 240)(166, 180, 189, 176, 197, 174, 188, 175, 169, 226, 233, 225, 238, 224, 229, 221, 167, 239, 252, 249, 254, 251, 253, 250)(171, 193, 172, 187, 177, 214, 217, 228, 227, 237, 223, 232, 218, 215, 184, 190, 173, 195, 182, 191, 179, 248, 205, 185)(198, 247, 231, 219, 236, 220, 230, 222, 213, 199, 208, 201, 212, 204, 209, 207, 234, 200, 211, 206, 216, 203, 210, 202)
c: (2, 5)(3, 8)(4, 11)(6, 15)(7, 18)(9, 22)(10, 25)(12, 29)(13, 19)(14, 33)(16, 36)(21, 45)(23, 48)(24, 51)(26, 55)(27, 41)(28, 60)(30, 34)(31, 39)(38, 67)(40, 43)(44, 73)(46, 75)(47, 76)(49, 78)(50, 80)(52, 84)(53, 71)(54, 89)(56, 70)(57, 68)(58, 93)(59, 95)(62, 64)(63, 65)(66, 72)(74, 101)(77, 104)(79, 91)(81, 108)(82, 97)(83, 111)(85, 99)(86, 98)(87, 113)(88, 115)(90, 96)(92, 117)(94, 119)(100, 121)(102, 118)(103, 123)(105, 125)(106, 126)(107, 127)(109, 129)(110, 130)(112, 120)(114, 133)(122, 135)(124, 136)(131, 134)(140, 141)(142, 144)(145, 255)(146, 269)(147, 280)(148, 183)(149, 274)(150, 186)(151, 284)(152, 278)(153, 205)(154, 217)(155, 227)(156, 223)(157, 179)(158, 177)(159, 182)(160, 184)(161, 171)(162, 190)(163, 228)(164, 187)(165, 232)(166, 213)(167, 234)(168, 193)(169, 198)(170, 195)(172, 242)(173, 241)(174, 203)(175, 222)(176, 201)(178, 262)(180, 247)(181, 257)(185, 244)(188, 209)(189, 211)(191, 245)(192, 264)(194, 248)(196, 267)(197, 236)(199, 239)(200, 226)(202, 221)(204, 224)(206, 249)(207, 250)(208, 233)(210, 253)(212, 254)(214, 240)(215, 235)(216, 238)(218, 243)(219, 225)(220, 251)(229, 230)(231, 252)(237, 246)(256, 273)(258, 279)(259, 272)(260, 282)(261, 281)(263, 283)(265, 275)(266, 276)(268, 285)(270, 286)(271, 287)(277, 288)
d: (1, 2, 12, 61, 29, 5)(3, 19, 28, 96, 55, 11)(4, 26, 90, 60, 13, 8)(6, 34, 58, 118, 75, 22)(7, 39, 59, 120, 84, 25)(9, 46, 102, 93, 30, 15)(10, 52, 112, 95, 31, 18)(14, 64, 92, 135, 101, 45)(16, 65, 94, 136, 104, 48)(17, 24, 81, 128, 108, 51)(20, 41, 54, 116, 89, 27)(21, 74, 122, 117, 62, 33)(23, 77, 124, 119, 63, 36)(32, 44, 100, 137, 121, 73)(35, 47, 103, 138, 123, 76)(37, 49, 105, 139, 125, 78)(38, 97, 107, 141, 126, 80)(40, 71, 83, 131, 115, 57)(42, 70, 87, 132, 113, 56)(43, 68, 88, 134, 111, 53)(50, 106, 140, 127, 82, 67)(66, 99, 109, 142, 133, 91)(69, 98, 110, 143, 130, 86)(72, 79, 114, 144, 129, 85)(145, 153, 205, 255, 239, 199)(146, 166, 213, 269, 240, 214)(147, 225, 219, 280, 241, 173)(148, 251, 220, 183, 242, 172)(149, 175, 222, 274, 243, 218)(150, 252, 231, 186, 244, 185)(151, 229, 230, 284, 245, 191)(152, 197, 236, 278, 246, 237)(154, 217, 287, 180, 247, 271)(155, 227, 259, 176, 201, 272)(156, 223, 256, 174, 203, 273)(157, 179, 260, 221, 202, 282)(158, 177, 257, 250, 207, 181)(159, 182, 261, 224, 204, 281)(160, 184, 258, 226, 200, 279)(161, 171, 262, 249, 206, 178)(162, 190, 263, 233, 208, 283)(163, 228, 265, 189, 211, 275)(164, 187, 264, 253, 210, 192)(165, 232, 266, 188, 209, 276)(167, 234, 288, 194, 248, 277)(168, 193, 267, 254, 212, 196)(169, 198, 268, 235, 215, 285)(170, 195, 270, 238, 216, 286)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 51 ]
288
-1 199 244 239 185
-2 199 145 150 185
-3 171 208 241 252
-4 147 171 186 208
-5 244 255 239 186
-6 166 234 217 153
-7 201 246 193 249
-8 231 233 161 173
-9 255 234 269 217
-10 178 201 193 152
-11 233 280 150 161
-12 145 150 153 252
-13 178 241 252 263
-14 200 180 162 228
-15 154 167 213 205
-16 202 215 194 175
-17 242 254 212 172
-18 176 168 237 206
-19 231 173 283 262
-20 170 225 195 219
-21 200 271 228 263
-22 154 145 167 146
-23 277 202 215 274
-24 212 148 172 196
-25 176 168 278 262
-26 244 225 283 262
-27 286 147 170 225
-28 147 249 162 186
-29 231 255 205 186
-30 166 277 271 153
-31 246 259 249 196
-32 155 189 211 227
-33 190 247 226 163
-34 287 288 213 205
-35 198 169 160 184
-36 221 222 235 248
-37 157 179 229 230
-38 187 245 204 251
-39 267 237 206 272
-40 223 159 216 197
-41 280 270 195 219
-42 214 250 207 240
-43 156 236 182 238
-44 275 211 259 227
-45 287 226 283 163
-46 287 288 239 240
-47 198 268 258 184
-48 221 288 235 149
-49 179 260 284 230
-50 187 204 183 151
-51 242 254 267 183
-52 267 161 272 197
-53 159 270 273 197
-54 280 270 238 241
-55 178 185 219 263
-56 257 269 250 240
-57 156 281 238 152
-58 255 180 269 194
-59 155 254 178 152
-60 190 280 150 206
-61 231 205 153 252
-62 275 180 258 162
-63 268 194 260 175
-64 265 190 279 247
-65 222 248 282 285
-66 209 253 177 243
-67 220 191 224 164
-68 223 278 216 261
-69 165 232 203 174
-70 146 181 214 207
-71 286 256 236 182
-72 188 210 158 218
-73 155 265 189 272
-74 154 265 233 279
-75 199 277 214 271
-76 169 279 160 285
-77 243 167 282 285
-78 157 282 151 229
-79 209 177 192 149
-80 224 148 284 164
-81 168 148 196 251
-82 245 192 261 251
-83 278 170 261 174
-84 236 171 259 196
-85 253 243 266 181
-86 165 276 256 174
-87 166 146 158 181
-88 286 256 224 246
-89 286 147 216 173
-90 249 162 185 219
-91 264 188 158 274
-92 189 160 271 263
-93 145 146 247 248
-94 277 157 169 274
-95 212 278 227 262
-96 244 190 225 206
-97 220 264 191 281
-98 232 266 203 273
-99 210 276 257 218
-100 176 275 259 163
-101 275 258 217 208
-102 199 180 214 194
-103 235 268 258 226
-104 234 268 260 218
-105 221 245 260 284
-106 242 264 281 229
-107 253 159 183 151
-108 220 267 193 183
-109 165 192 149 250
-110 188 156 266 273
-111 203 281 195 152
-112 155 254 236 171
-113 177 213 257 269
-114 276 257 164 175
-115 204 237 270 273
-116 216 238 173 241
-117 287 211 184 283
-118 247 248 239 240
-119 198 288 179 149
-120 212 161 227 197
-121 265 201 228 272
-122 189 160 217 208
-123 200 279 215 285
-124 157 234 169 218
-125 191 202 282 151
-126 192 172 261 230
-127 210 148 182 284
-128 220 168 193 251
-129 264 232 207 274
-130 209 276 223 256
-131 224 246 203 195
-132 166 177 158 213
-133 187 222 266 181
-134 170 204 237 174
-135 154 211 233 184
-136 198 243 167 179
-137 176 201 228 163
-138 200 235 215 226
-139 221 245 191 202
-140 253 159 172 230
-141 242 210 182 229
-142 232 207 164 175
-143 209 188 156 223
-144 165 187 222 250
-145 22 12 2 93
-146 22 70 93 87
-147 89 4 27 28
-148 24 80 81 127
-149 79 48 119 109
-150 11 12 2 60
-151 78 125 50 107
-152 111 57 59 10
-153 12 6 61 30
-154 22 135 15 74
-155 112 59 73 32
-156 110 143 57 43
-157 78 124 37 94
-158 132 91 72 87
-159 40 107 140 53
-160 122 35 92 76
-161 11 8 52 120
-162 90 14 28 62
-163 33 45 100 137
-164 67 80 114 142
-165 144 69 86 109
-166 132 6 30 87
-167 22 77 15 136
-168 25 81 18 128
-169 35 124 94 76
-170 134 27 83 20
-171 112 3 4 84
-172 24 126 17 140
-173 89 116 8 19
-174 134 69 83 86
-175 114 16 63 142
-176 100 25 137 18
-177 66 132 79 113
-178 55 13 59 10
-179 37 136 49 119
-180 14 58 102 62
-181 133 70 85 87
-182 71 127 141 43
-183 50 51 107 108
-184 35 47 135 117
-185 55 1 2 90
-186 4 5 28 29
-187 133 144 38 50
-188 110 143 91 72
-189 122 92 73 32
-190 33 60 96 64
-191 67 125 139 97
-192 79 82 126 109
-193 7 128 108 10
-194 58 102 16 63
-195 111 41 20 131
-196 24 81 84 31
-197 40 52 53 120
-198 35 47 136 119
-199 1 2 102 75
-200 123 14 138 21
-201 121 137 7 10
-202 23 125 16 139
-203 111 69 98 131
-204 134 38 115 50
-205 34 15 61 29
-206 60 39 18 96
-207 70 129 42 142
-208 122 101 3 4
-209 66 143 79 130
-210 99 72 127 141
-211 44 135 117 32
-212 24 17 95 120
-213 132 34 113 15
-214 102 70 42 75
-215 23 123 16 138
-216 89 68 116 40
-217 122 101 6 9
-218 99 124 104 72
-219 55 90 41 20
-220 67 128 97 108
-221 36 48 105 139
-222 133 144 36 65
-223 143 68 40 130
-224 88 67 80 131
-225 26 27 96 20
-226 33 45 103 138
-227 44 95 32 120
-228 121 14 137 21
-229 78 37 106 141
-230 37 49 126 140
-231 61 29 8 19
-232 69 129 98 142
-233 11 135 8 74
-234 124 104 6 9
-235 36 48 103 138
-236 112 71 84 43
-237 134 115 39 18
-238 57 116 43 54
-239 1 46 5 118
-240 56 46 118 42
-241 13 3 116 54
-242 17 51 106 141
-243 66 77 136 85
-244 1 26 5 96
-245 38 82 105 139
-246 88 7 31 131
-247 33 93 118 64
-248 36 93 118 65
-249 90 28 7 31
-250 56 144 42 109
-251 81 38 82 128
-252 12 13 3 61
-253 66 85 107 140
-254 112 59 17 51
-255 58 5 29 9
-256 88 71 86 130
-257 99 56 113 114
-258 101 47 103 62
-259 44 100 84 31
-260 49 104 105 63
-261 68 82 126 83
-262 25 26 95 19
-263 55 13 92 21
-264 91 106 129 97
-265 121 73 74 64
-266 110 133 85 98
-267 39 51 52 108
-268 47 103 104 63
-269 56 58 113 9
-270 115 41 53 54
-271 92 30 75 21
-272 121 39 73 52
-273 110 115 53 98
-274 23 91 94 129
-275 44 100 101 62
-276 99 114 86 130
-277 23 94 30 75
-278 68 25 83 95
-279 123 74 64 76
-280 11 60 41 54
-281 111 57 106 97
-282 77 78 125 65
-283 45 26 117 19
-284 80 49 105 127
-285 77 123 65 76
-286 88 89 27 71
-287 34 45 46 117
-288 34 46 48 119
0

**************