[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 288, 54 ] =
PL(KE_36(9,1,18,35,9),[4^36,72^2]).
(I) Following is a form readable by MAGMA:
g:=Graph<288|{ {133, 147}, {132, 147}, {137, 149}, {143, 147}, {128, 175}, {129,
176}, {134, 180}, {141, 185}, {140, 185}, {143, 185}, {128, 184}, {136, 176},
{131, 187}, {132, 189}, {137, 176}, {135, 189}, {139, 177}, {134, 187}, {140,
177}, {138, 180}, {134, 195}, {133, 204}, {135, 203}, {135, 221}, {140, 215},
{144, 203}, {143, 212}, {139, 215}, {128, 221}, {129, 223}, {137, 215}, {140,
236}, {141, 236}, {144, 244}, {132, 225}, {138, 236}, {128, 232}, {137, 225},
{131, 235}, {136, 225}, {134, 236}, {132, 247}, {138, 247}, {136, 246}, {22,
150}, {113, 241}, {62, 190}, {85, 213}, {23, 150}, {105, 232}, {54, 183}, {76,
205}, {36, 166}, {53, 183}, {81, 211}, {89, 219}, {39, 164}, {118, 245}, {61,
190}, {45, 174}, {40, 171}, {44, 168}, {56, 188}, {96, 228}, {29, 152}, {115,
246}, {110, 235}, {109, 232}, {41, 172}, {18, 148}, {116, 242}, {82, 212}, {71,
192}, {117, 242}, {84, 211}, {91, 220}, {92, 219}, {93, 218}, {18, 154}, {77,
197}, {53, 188}, {125, 244}, {104, 225}, {24, 146}, {27, 145}, {25, 146}, {124,
247}, {89, 210}, {39, 171}, {26, 151}, {122, 247}, {117, 248}, {64, 205}, {28,
145}, {19, 157}, {122, 244}, {100, 234}, {20, 155}, {107, 228}, {102, 233}, {61,
178}, {2, 146}, {37, 181}, {12, 157}, {62, 175}, {55, 166}, {51, 162}, {50,
160}, {120, 234}, {7, 148}, {123, 232}, {103, 244}, {72, 219}, {32, 181}, {63,
169}, {11, 156}, {4, 156}, {67, 218}, {125, 228}, {112, 233}, {75, 210}, {82,
203}, {95, 198}, {97, 248}, {14, 148}, {108, 246}, {47, 181}, {60, 167}, {81,
202}, {90, 193}, {101, 254}, {6, 154}, {57, 165}, {49, 173}, {10, 150}, {52,
169}, {68, 217}, {87, 202}, {9, 150}, {65, 222}, {11, 148}, {8, 168}, {63, 159},
{74, 234}, {79, 239}, {82, 242}, {51, 146}, {83, 242}, {84, 245}, {95, 254}, {7,
165}, {119, 213}, {30, 188}, {15, 173}, {22, 181}, {52, 151}, {76, 239}, {98,
198}, {108, 200}, {103, 195}, {8, 173}, {105, 204}, {59, 158}, {3, 165}, {27,
188}, {12, 164}, {127, 215}, {3, 170}, {106, 195}, {68, 237}, {66, 235}, {60,
149}, {50, 155}, {15, 166}, {95, 246}, {1, 171}, {10, 160}, {9, 163}, {70, 237},
{104, 195}, {6, 170}, {74, 230}, {96, 204}, {4, 170}, {13, 163}, {99, 205}, {5,
170}, {123, 212}, {103, 200}, {55, 152}, {30, 174}, {118, 198}, {112, 192}, {94,
238}, {17, 160}, {110, 223}, {43, 153}, {122, 200}, {111, 221}, {16, 163}, {121,
202}, {78, 253}, {80, 227}, {47, 155}, {76, 248}, {83, 231}, {29, 168}, {115,
198}, {75, 253}, {107, 221}, {79, 249}, {20, 163}, {127, 200}, {35, 155}, {116,
204}, {70, 255}, {115, 202}, {72, 241}, {43, 145}, {100, 222}, {102, 220}, {31,
164}, {42, 145}, {97, 218}, {24, 164}, {66, 254}, {33, 157}, {87, 235}, {21,
168}, {80, 237}, {94, 227}, {98, 223}, {78, 241}, {116, 203}, {2, 194}, {111,
175}, {87, 151}, {14, 207}, {58, 251}, {56, 249}, {31, 222}, {91, 154}, {13,
207}, {123, 185}, {60, 254}, {57, 251}, {45, 239}, {40, 234}, {36, 230}, {19,
209}, {1, 194}, {121, 186}, {92, 159}, {6, 194}, {119, 179}, {39, 227}, {28,
216}, {81, 149}, {93, 153}, {19, 214}, {42, 239}, {55, 241}, {89, 158}, {116,
179}, {115, 180}, {102, 161}, {7, 207}, {59, 243}, {45, 229}, {24, 208}, {20,
220}, {101, 172}, {3, 201}, {18, 217}, {113, 186}, {84, 159}, {98, 169}, {5,
201}, {125, 177}, {9, 197}, {106, 167}, {123, 182}, {27, 213}, {48, 255}, {119,
184}, {18, 194}, {73, 153}, {99, 179}, {13, 220}, {112, 161}, {106, 187}, {103,
182}, {44, 253}, {34, 243}, {21, 196}, {11, 217}, {53, 231}, {42, 248}, {28,
206}, {12, 222}, {96, 179}, {2, 214}, {58, 238}, {57, 237}, {52, 224}, {41,
253}, {40, 252}, {4, 208}, {77, 153}, {16, 197}, {121, 172}, {110, 187}, {109,
184}, {104, 189}, {66, 151}, {51, 230}, {37, 240}, {38, 240}, {107, 189}, {1,
214}, {55, 224}, {36, 243}, {72, 159}, {22, 206}, {8, 209}, {68, 157}, {62,
231}, {61, 228}, {107, 177}, {11, 208}, {124, 167}, {31, 196}, {71, 156}, {37,
249}, {41, 245}, {38, 250}, {12, 209}, {26, 199}, {20, 201}, {15, 209}, {110,
176}, {104, 182}, {96, 190}, {30, 193}, {105, 182}, {65, 158}, {97, 190}, {14,
238}, {120, 152}, {63, 223}, {36, 196}, {32, 192}, {16, 240}, {82, 178}, {3,
226}, {17, 240}, {74, 171}, {1, 227}, {75, 169}, {93, 191}, {10, 233}, {24,
251}, {62, 218}, {70, 162}, {7, 226}, {34, 199}, {25, 252}, {81, 180}, {21,
243}, {68, 162}, {52, 210}, {47, 201}, {75, 172}, {85, 178}, {10, 226}, {74,
162}, {78, 166}, {15, 230}, {122, 147}, {61, 212}, {59, 210}, {21, 252}, {16,
249}, {46, 196}, {127, 149}, {50, 216}, {49, 219}, {85, 191}, {5, 238}, {37,
206}, {9, 229}, {112, 156}, {63, 211}, {23, 250}, {67, 174}, {85, 184}, {87,
186}, {41, 199}, {43, 197}, {26, 245}, {60, 211}, {47, 192}, {32, 207}, {80,
161}, {64, 178}, {72, 186}, {17, 226}, {50, 193}, {43, 216}, {22, 229}, {93,
174}, {8, 252}, {14, 250}, {89, 173}, {80, 165}, {49, 199}, {73, 191}, {39,
208}, {33, 217}, {54, 206}, {53, 205}, {46, 214}, {95, 167}, {2, 251}, {56,
193}, {6, 255}, {26, 224}, {77, 183}, {90, 160}, {100, 158}, {4, 255}, {35,
216}, {30, 229}, {76, 183}, {27, 231}, {83, 175}, {100, 152}, {102, 154}, {29,
224}, {23, 233}, {5, 250}, {64, 191}, {42, 213}, {94, 161}, {25, 282}, {23,
287}, {28, 273}, {46, 288}, {48, 288}, {17, 265}, {29, 261}, {19, 264}, {25,
258}, {13, 272}, {45, 269}, {56, 285}, {57, 284}, {33, 263}, {58, 284}, {46,
264}, {49, 278}, {54, 273}, {44, 261}, {48, 282}, {34, 268}, {35, 269}, {38,
265}, {32, 272}, {51, 258}, {40, 282}, {34, 278}, {44, 281}, {54, 256}, {48,
263}, {59, 268}, {38, 287}, {33, 282}, {35, 287}, {58, 263}, {31, 288}, {86,
278}, {73, 267}, {79, 269}, {65, 258}, {69, 256}, {88, 285}, {67, 260}, {91,
284}, {92, 283}, {69, 269}, {88, 273}, {90, 272}, {77, 256}, {71, 265}, {86,
281}, {67, 273}, {79, 285}, {91, 265}, {64, 275}, {88, 267}, {73, 285}, {86,
258}, {69, 272}, {78, 281}, {65, 281}, {83, 267}, {66, 283}, {92, 261}, {94,
263}, {69, 287}, {84, 270}, {90, 256}, {71, 284}, {88, 260}, {86, 264}, {109,
271}, {118, 277}, {113, 277}, {126, 283}, {70, 288}, {114, 276}, {108, 266},
{101, 259}, {99, 260}, {127, 280}, {124, 276}, {114, 280}, {117, 286}, {126,
277}, {106, 262}, {111, 257}, {120, 278}, {99, 275}, {120, 264}, {114, 259},
{125, 271}, {126, 268}, {109, 286}, {119, 260}, {108, 280}, {98, 277}, {118,
270}, {121, 259}, {124, 262}, {105, 274}, {126, 261}, {111, 275}, {114, 270},
{113, 268}, {101, 283}, {117, 267}, {97, 286}, {129, 259}, {136, 266}, {130,
257}, {133, 257}, {142, 266}, {141, 266}, {144, 279}, {142, 262}, {130, 271},
{139, 262}, {131, 270}, {143, 257}, {135, 279}, {130, 275}, {129, 276}, {133,
274}, {139, 274}, {142, 279}, {141, 279}, {131, 280}, {130, 286}, {142, 274},
{138, 276}, {144, 271} }>;
(II) A more general form is to represent the graph as the orbit of {133, 147}
under the group generated by the following permutations:
a: (1, 3)(2, 7)(4, 94)(5, 39)(6, 80)(8, 37)(9, 36)(10, 46)(11, 58)(12, 38)(13,
51)(14, 24)(15, 16)(17, 19)(18, 57)(20, 74)(21, 22)(23, 31)(25, 32)(26, 27)(28,
29)(30, 34)(33, 71)(35, 100)(40, 47)(41, 53)(42, 52)(43, 55)(44, 54)(45, 59)(48,
112)(49, 56)(50, 120)(60, 116)(61, 115)(62, 118)(63, 117)(64, 121)(65, 69)(66,
119)(67, 126)(68, 91)(70, 102)(72, 73)(75, 76)(77, 78)(79, 89)(81, 82)(83,
84)(85, 87)(86, 90)(88, 92)(93, 113)(95, 96)(97, 98)(99, 101)(103, 104)(105,
106)(107, 108)(109, 110)(111, 114)(122, 132)(123, 134)(124, 133)(125, 136)(127,
135)(128, 131)(129, 130)(137, 144)(138, 143)(139, 142)(140, 141)(145, 224)(146,
207)(147, 247)(148, 251)(149, 203)(150, 196)(151, 213)(152, 216)(153, 241)(154,
237)(155, 234)(156, 263)(157, 265)(158, 269)(159, 267)(160, 264)(161, 255)(162,
220)(163, 230)(164, 250)(165, 194)(166, 197)(167, 204)(168, 206)(169, 248)(170,
227)(171, 201)(172, 205)(173, 249)(174, 268)(175, 270)(176, 271)(177, 266)(178,
202)(179, 254)(180, 212)(181, 252)(182, 195)(183, 253)(184, 235)(185, 236)(186,
191)(187, 232)(188, 199)(189, 200)(190, 198)(192, 282)(193, 278)(208, 238)(209,
240)(210, 239)(211, 242)(214, 226)(215, 279)(217, 284)(218, 277)(219, 285)(221,
280)(222, 287)(223, 286)(225, 244)(228, 246)(229, 243)(231, 245)(233, 288)(256,
281)(257, 276)(258, 272)(259, 275)(260, 283)(261, 273)(262, 274) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 24, 39)(3, 15, 14, 21)(4, 74, 18, 25)(5, 36, 7, 8)(6, 51, 11, 40)(9,
41, 37, 52)(10, 49, 38, 59)(12, 94, 46, 57)(13, 44, 47, 55)(16, 75, 22, 26)(17,
89, 23, 34)(19, 58, 31, 80)(20, 78, 32, 29)(27, 81, 76, 95)(28, 87, 77, 101)(30,
84, 79, 98)(33, 48, 70, 68)(35, 113, 90, 92)(42, 115, 53, 60)(43, 121, 54,
66)(45, 118, 56, 63)(50, 72, 69, 126)(61, 122, 116, 104)(62, 127, 117, 136)(64,
124, 119, 134)(65, 112, 120, 91)(67, 131, 73, 129)(71, 100, 102, 86)(82, 132,
96, 103)(83, 137, 97, 108)(85, 138, 99, 106)(88, 110, 93, 114)(105, 123, 143,
133)(107, 125, 144, 135)(109, 141, 111, 139)(128, 140, 130, 142)(145, 202, 183,
254)(146, 208, 171, 194)(147, 204, 182, 212)(148, 252, 170, 230)(149, 248, 246,
231)(150, 199, 240, 210)(151, 197, 172, 206)(152, 220, 281, 192)(153, 259, 273,
235)(154, 258, 156, 234)(155, 241, 272, 261)(157, 263, 288, 237)(158, 233, 278,
265)(159, 269, 277, 193)(160, 219, 287, 268)(161, 264, 284, 222)(162, 217, 282,
255)(163, 253, 181, 224)(164, 227, 214, 251)(165, 209, 238, 196)(166, 207, 168,
201)(167, 213, 180, 205)(169, 229, 245, 249)(173, 250, 243, 226)(174, 270, 285,
223)(175, 215, 286, 266)(176, 218, 280, 267)(177, 271, 279, 221)(178, 247, 179,
195)(184, 236, 275, 262)(185, 257, 274, 232)(186, 256, 283, 216)(187, 191, 276,
260)(188, 211, 239, 198)(189, 228, 244, 203)(190, 200, 242, 225)
c: (3, 8)(4, 12)(5, 15)(6, 19)(7, 21)(9, 26)(10, 29)(11, 31)(13, 34)(14, 36)(16,
41)(17, 44)(18, 46)(20, 49)(22, 52)(23, 55)(25, 57)(27, 60)(28, 63)(30, 66)(32,
59)(33, 70)(35, 72)(37, 75)(38, 78)(40, 80)(42, 81)(43, 84)(45, 87)(47, 89)(48,
68)(50, 92)(51, 58)(53, 95)(54, 98)(56, 101)(61, 103)(62, 106)(64, 108)(65,
71)(67, 110)(69, 113)(73, 114)(74, 94)(76, 115)(77, 118)(79, 121)(82, 122)(83,
124)(85, 127)(86, 91)(88, 129)(90, 126)(93, 131)(96, 104)(97, 134)(99, 136)(100,
112)(102, 120)(105, 107)(109, 140)(111, 142)(116, 132)(117, 138)(119, 137)(123,
125)(128, 139)(130, 141)(133, 135)(143, 144)(145, 211)(146, 251)(147, 203)(148,
196)(149, 213)(150, 224)(151, 229)(152, 233)(153, 270)(154, 264)(155, 219)(156,
222)(157, 255)(158, 192)(159, 216)(160, 261)(161, 234)(162, 263)(163, 199)(164,
208)(165, 252)(166, 250)(167, 231)(168, 226)(169, 206)(170, 209)(171, 227)(172,
249)(173, 201)(174, 235)(175, 262)(176, 260)(177, 232)(178, 200)(179, 225)(180,
248)(181, 210)(182, 228)(183, 198)(184, 215)(185, 271)(186, 269)(187, 218)(188,
254)(189, 204)(190, 195)(191, 280)(193, 283)(194, 214)(197, 245)(202, 239)(205,
246)(207, 243)(212, 244)(217, 288)(220, 278)(221, 274)(223, 273)(230, 238)(236,
286)(237, 282)(240, 253)(241, 287)(242, 247)(256, 277)(257, 279)(258, 284)(259,
285)(265, 281)(266, 275)(267, 276)(268, 272)
d: (2, 39)(3, 36)(4, 51)(5, 15)(6, 74)(7, 21)(8, 14)(9, 26)(10, 34)(11, 25)(12,
58)(13, 29)(16, 52)(17, 59)(18, 40)(19, 94)(20, 55)(22, 41)(23, 49)(27, 115)(28,
121)(30, 118)(31, 57)(32, 44)(35, 72)(37, 75)(38, 89)(42, 81)(43, 87)(45,
84)(46, 80)(47, 78)(48, 68)(50, 113)(53, 95)(54, 101)(56, 98)(60, 76)(61,
103)(62, 108)(63, 79)(64, 106)(65, 71)(66, 77)(67, 114)(69, 92)(73, 110)(82,
104)(83, 136)(85, 134)(86, 112)(88, 129)(90, 126)(91, 100)(93, 131)(96, 122)(97,
127)(99, 124)(102, 120)(105, 143)(107, 144)(109, 140)(111, 142)(116, 132)(117,
137)(119, 138)(128, 141)(130, 139)(145, 202)(146, 208)(147, 204)(148, 252)(149,
248)(150, 199)(151, 197)(152, 220)(153, 235)(154, 234)(155, 241)(156, 258)(157,
263)(158, 265)(159, 269)(160, 268)(161, 264)(162, 255)(163, 224)(164, 251)(165,
196)(166, 201)(167, 205)(168, 207)(169, 249)(170, 230)(171, 194)(172, 206)(173,
250)(174, 270)(175, 266)(176, 267)(177, 271)(178, 195)(179, 247)(180, 213)(181,
253)(182, 212)(183, 254)(184, 236)(185, 232)(186, 216)(187, 191)(188, 198)(189,
203)(190, 200)(192, 281)(193, 277)(209, 238)(210, 240)(211, 239)(214, 227)(215,
286)(217, 282)(218, 280)(219, 287)(221, 279)(222, 284)(223, 285)(225, 242)(226,
243)(228, 244)(229, 245)(231, 246)(233, 278)(237, 288)(256, 283)(257, 274)(259,
273)(260, 276)(261, 272)(262, 275)
e: (1, 4)(2, 11)(3, 74)(5, 40)(6, 39)(7, 51)(8, 38)(9, 59)(10, 36)(12, 91)(13,
65)(14, 25)(15, 17)(16, 89)(18, 24)(19, 71)(20, 100)(21, 23)(22, 34)(26, 28)(27,
87)(29, 35)(30, 113)(31, 102)(32, 86)(33, 58)(37, 49)(41, 54)(42, 66)(43,
52)(44, 69)(45, 126)(46, 112)(47, 120)(48, 94)(50, 55)(53, 121)(56, 72)(57,
68)(60, 117)(61, 136)(62, 115)(63, 73)(64, 129)(67, 118)(70, 80)(75, 77)(76,
101)(78, 90)(79, 92)(81, 83)(82, 137)(84, 88)(85, 110)(93, 98)(95, 97)(96,
108)(99, 114)(103, 105)(104, 123)(106, 109)(107, 141)(111, 138)(116, 127)(119,
131)(122, 133)(124, 130)(125, 142)(128, 134)(132, 143)(135, 140)(139, 144)(145,
151)(146, 148)(149, 242)(150, 243)(152, 155)(153, 169)(154, 164)(156, 214)(157,
284)(158, 163)(159, 285)(160, 166)(161, 288)(162, 165)(167, 286)(168, 287)(170,
171)(172, 183)(173, 240)(174, 277)(175, 180)(176, 178)(177, 279)(179, 280)(181,
278)(184, 187)(185, 189)(186, 188)(190, 246)(191, 223)(192, 264)(193, 241)(194,
208)(195, 232)(196, 233)(197, 210)(198, 218)(199, 206)(200, 204)(201, 234)(202,
231)(203, 215)(205, 259)(207, 258)(209, 265)(211, 267)(212, 225)(213, 235)(216,
224)(217, 251)(219, 249)(220, 222)(221, 236)(226, 230)(227, 255)(228, 266)(229,
268)(238, 282)(239, 283)(244, 274)(245, 273)(247, 257)(248, 254)(250, 252)(253,
256)(260, 270)(261, 269)(262, 271)(272, 281)(275, 276)
C4[ 288, 54 ]
288
-1 214 171 194 227
-2 146 214 194 251
-3 165 201 170 226
-4 156 255 170 208
-5 201 170 238 250
-6 154 255 170 194
-7 165 148 226 207
-8 209 168 173 252
-9 150 163 229 197
-10 233 160 226 150
-11 156 148 217 208
-12 209 222 157 164
-13 220 272 163 207
-14 148 238 250 207
-15 209 166 173 230
-16 249 163 240 197
-17 265 160 226 240
-18 154 148 194 217
-19 209 264 157 214
-20 220 155 201 163
-21 243 168 196 252
-22 181 150 206 229
-23 287 233 150 250
-24 146 251 164 208
-25 146 258 282 252
-26 199 245 224 151
-27 231 188 145 213
-28 145 216 206 273
-29 168 224 261 152
-30 188 193 174 229
-31 222 288 196 164
-32 181 192 272 207
-33 157 282 217 263
-34 199 243 278 268
-35 155 287 269 216
-36 166 243 196 230
-37 181 249 206 240
-38 265 287 250 240
-39 171 227 164 208
-40 234 171 282 252
-41 253 199 245 172
-42 145 213 248 239
-43 145 216 153 197
-44 253 168 281 261
-45 269 239 174 229
-46 264 288 214 196
-47 155 201 181 192
-48 255 288 282 263
-49 199 278 173 219
-50 155 160 193 216
-51 146 258 162 230
-52 210 169 224 151
-53 231 188 183 205
-54 256 183 206 273
-55 166 224 152 241
-56 188 193 249 285
-57 165 237 251 284
-58 238 251 284 263
-59 210 243 158 268
-60 254 167 211 149
-61 178 190 212 228
-62 231 190 218 175
-63 211 223 169 159
-64 275 178 191 205
-65 222 158 258 281
-66 254 235 151 283
-67 260 174 218 273
-68 157 237 162 217
-69 287 256 269 272
-70 255 288 237 162
-71 265 156 192 284
-72 159 186 219 241
-73 267 191 153 285
-74 234 171 162 230
-75 253 210 169 172
-76 248 183 205 239
-77 256 183 153 197
-78 253 166 281 241
-79 269 249 239 285
-80 165 237 161 227
-81 211 180 202 149
-82 242 178 212 203
-83 231 242 267 175
-84 211 245 159 270
-85 178 191 213 184
-86 264 278 258 281
-87 202 235 151 186
-88 267 260 273 285
-89 210 158 173 219
-90 256 160 193 272
-91 154 220 265 284
-92 159 261 283 219
-93 191 174 218 153
-94 161 227 238 263
-95 198 254 167 246
-96 179 190 204 228
-97 286 190 248 218
-98 198 277 223 169
-99 275 179 205 260
-100 222 234 158 152
-101 254 259 172 283
-102 154 220 233 161
-103 200 244 182 195
-104 189 225 182 195
-105 232 182 204 274
-106 187 167 195 262
-107 177 221 189 228
-108 200 266 246 280
-109 286 232 271 184
-110 176 187 223 235
-111 275 221 257 175
-112 156 233 192 161
-113 277 268 186 241
-114 276 280 259 270
-115 198 180 202 246
-116 242 179 203 204
-117 242 286 267 248
-118 198 277 245 270
-119 179 213 260 184
-120 264 234 278 152
-121 202 259 172 186
-122 200 244 147 247
-123 232 212 182 185
-124 276 167 247 262
-125 177 244 271 228
-126 277 268 261 283
-127 200 280 149 215
-128 221 232 184 175
-129 176 276 223 259
-130 275 286 257 271
-131 187 235 280 270
-132 189 147 225 247
-133 147 257 204 274
-134 187 180 236 195
-135 221 189 279 203
-136 176 266 246 225
-137 176 225 149 215
-138 276 180 236 247
-139 177 215 262 274
-140 177 236 215 185
-141 266 279 236 185
-142 266 279 262 274
-143 212 147 257 185
-144 244 279 203 271
-145 27 28 42 43
-146 2 24 25 51
-147 132 143 122 133
-148 11 14 7 18
-149 81 60 137 127
-150 22 23 9 10
-151 66 26 52 87
-152 55 100 29 120
-153 77 93 73 43
-154 91 102 6 18
-155 35 47 50 20
-156 11 112 4 71
-157 33 12 68 19
-158 89 100 59 65
-159 92 72 84 63
-160 90 17 50 10
-161 112 80 102 94
-162 68 70 51 74
-163 13 16 9 20
-164 12 24 39 31
-165 57 3 80 7
-166 55 78 36 15
-167 124 60 95 106
-168 44 29 8 21
-169 52 63 75 98
-170 3 4 5 6
-171 1 39 40 74
-172 121 101 41 75
-173 89 15 49 8
-174 45 67 93 30
-175 111 83 62 128
-176 110 136 137 129
-177 125 139 107 140
-178 82 61 85 64
-179 99 116 96 119
-180 134 81 115 138
-181 22 47 37 32
-182 123 103 104 105
-183 77 53 54 76
-184 128 85 119 109
-185 143 123 140 141
-186 121 113 72 87
-187 110 134 106 131
-188 56 27 30 53
-189 132 135 104 107
-190 61 62 96 97
-191 93 73 85 64
-192 112 47 71 32
-193 56 90 50 30
-194 1 2 6 18
-195 134 103 104 106
-196 46 36 31 21
-197 77 16 9 43
-198 115 95 118 98
-199 34 26 49 41
-200 122 103 127 108
-201 3 47 5 20
-202 121 81 115 87
-203 144 135 82 116
-204 133 105 116 96
-205 99 53 64 76
-206 22 37 28 54
-207 13 14 7 32
-208 11 24 4 39
-209 12 15 8 19
-210 89 59 52 75
-211 81 60 84 63
-212 143 123 82 61
-213 27 85 42 119
-214 1 2 46 19
-215 137 127 139 140
-216 35 28 50 43
-217 11 33 68 18
-218 67 93 62 97
-219 89 92 49 72
-220 13 91 102 20
-221 111 135 128 107
-222 12 100 31 65
-223 110 63 129 98
-224 55 26 29 52
-225 132 136 104 137
-226 3 17 7 10
-227 1 80 39 94
-228 125 61 96 107
-229 22 45 30 9
-230 36 15 51 74
-231 27 83 62 53
-232 123 105 128 109
-233 23 112 102 10
-234 100 40 74 120
-235 66 110 87 131
-236 134 138 140 141
-237 57 68 80 70
-238 14 58 5 94
-239 45 79 42 76
-240 37 16 38 17
-241 55 78 113 72
-242 82 83 116 117
-243 34 36 59 21
-244 122 144 103 125
-245 26 84 41 118
-246 136 115 95 108
-247 132 122 124 138
-248 117 42 97 76
-249 56 79 37 16
-250 23 14 5 38
-251 2 24 57 58
-252 25 40 8 21
-253 44 78 41 75
-254 66 101 60 95
-255 4 48 70 6
-256 77 90 69 54
-257 143 111 133 130
-258 25 51 86 65
-259 121 101 114 129
-260 88 99 67 119
-261 44 92 126 29
-262 124 106 139 142
-263 33 58 48 94
-264 46 19 86 120
-265 91 38 71 17
-266 136 108 141 142
-267 88 83 73 117
-268 34 113 59 126
-269 45 35 79 69
-270 114 84 118 131
-271 144 125 130 109
-272 13 90 69 32
-273 88 67 28 54
-274 133 105 139 142
-275 99 111 64 130
-276 124 114 138 129
-277 113 126 118 98
-278 34 49 86 120
-279 144 135 141 142
-280 114 127 108 131
-281 44 78 86 65
-282 33 25 48 40
-283 66 101 92 126
-284 57 58 91 71
-285 88 56 79 73
-286 117 97 130 109
-287 23 35 69 38
-288 46 48 70 31
0