C4graphGraph forms for C4 [ 288, 58 ] = CPM(12,2,4,1)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 58 ] = CPM(12,2,4,1).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {86, 87}, {218, 219}, {28, 30}, {120, 122}, {160, 162}, {5, 6}, {161, 165}, {217, 220}, {56, 62}, {264, 270}, {171, 173}, {81, 89}, {279, 287}, {225, 233}, {6, 15}, {208, 217}, {193, 200}, {276, 286}, {241, 250}, {258, 265}, {164, 168}, {84, 89}, {68, 74}, {244, 250}, {81, 95}, {116, 122}, {181, 186}, {183, 184}, {67, 83}, {268, 285}, {12, 30}, {14, 28}, {107, 120}, {162, 177}, {37, 49}, {237, 249}, {234, 254}, {200, 220}, {42, 63}, {268, 281}, {229, 240}, {196, 209}, {66, 87}, {107, 126}, {163, 182}, {256, 278}, {227, 244}, {33, 57}, {37, 60}, {70, 95}, {43, 49}, {172, 182}, {175, 180}, {197, 217}, {39, 58}, {192, 221}, {96, 125}, {70, 91}, {130, 159}, {133, 152}, {141, 144}, {40, 54}, {8, 23}, {269, 274}, {6, 38}, {146, 179}, {213, 244}, {3, 33}, {216, 250}, {214, 244}, {134, 164}, {139, 168}, {259, 288}, {220, 255}, {25, 61}, {70, 98}, {194, 231}, {67, 101}, {84, 114}, {140, 170}, {3, 36}, {197, 226}, {95, 120}, {14, 41}, {138, 173}, {144, 183}, {146, 181}, {2, 42}, {206, 230}, {64, 104}, {130, 171}, {149, 188}, {2, 40}, {198, 236}, {154, 176}, {71, 108}, {150, 189}, {151, 188}, {82, 126}, {85, 121}, {133, 169}, {138, 166}, {6, 43}, {204, 225}, {12, 34}, {18, 34}, {79, 127}, {153, 169}, {17, 32}, {71, 118}, {79, 125}, {196, 246}, {13, 62}, {75, 120}, {15, 60}, {17, 37}, {223, 235}, {200, 252}, {78, 122}, {24, 44}, {90, 111}, {209, 228}, {9, 63}, {82, 100}, {138, 188}, {24, 47}, {66, 117}, {135, 176}, {23, 47}, {78, 118}, {144, 171}, {207, 243}, {19, 45}, {212, 235}, {59, 123}, {5, 68}, {40, 106}, {152, 219}, {145, 213}, {153, 223}, {16, 87}, {140, 203}, {147, 219}, {35, 106}, {54, 127}, {161, 232}, {133, 207}, {187, 241}, {22, 90}, {190, 242}, {43, 103}, {41, 101}, {32, 108}, {31, 83}, {146, 222}, {178, 254}, {45, 96}, {155, 214}, {28, 83}, {10, 90}, {27, 75}, {146, 194}, {151, 199}, {155, 202}, {167, 246}, {34, 112}, {60, 110}, {39, 117}, {151, 196}, {183, 228}, {35, 119}, {180, 224}, {25, 76}, {61, 104}, {134, 211}, {30, 72}, {59, 109}, {53, 99}, {160, 246}, {150, 193}, {135, 223}, {170, 242}, {22, 79}, {148, 206}, {50, 105}, {131, 216}, {45, 113}, {55, 107}, {128, 222}, {177, 239}, {22, 73}, {159, 192}, {182, 233}, {19, 115}, {56, 88}, {8, 105}, {10, 107}, {131, 226}, {169, 203}, {9, 106}, {53, 86}, {48, 83}, {137, 234}, {156, 255}, {7, 99}, {46, 74}, {45, 73}, {159, 251}, {4, 97}, {184, 221}, {21, 115}, {52, 82}, {140, 235}, {149, 253}, {190, 215}, {4, 110}, {27, 118}, {131, 238}, {48, 94}, {129, 239}, {5, 117}, {38, 87}, {184, 201}, {26, 104}, {135, 245}, {139, 249}, {143, 251}, {136, 253}, {55, 65}, {186, 204}, {58, 77}, {130, 245}, {27, 98}, {170, 211}, {44, 86}, {172, 215}, {44, 80}, {49, 77}, {173, 209}, {7, 121}, {152, 230}, {178, 204}, {35, 163}, {103, 231}, {51, 178}, {81, 208}, {3, 129}, {66, 192}, {69, 198}, {102, 229}, {98, 225}, {94, 221}, {127, 252}, {92, 217}, {46, 169}, {96, 231}, {127, 248}, {43, 163}, {82, 218}, {69, 205}, {50, 186}, {91, 210}, {22, 156}, {94, 212}, {46, 164}, {89, 210}, {8, 132}, {72, 196}, {10, 134}, {78, 195}, {85, 216}, {108, 225}, {114, 255}, {116, 249}, {1, 143}, {29, 141}, {75, 218}, {41, 187}, {97, 243}, {96, 242}, {111, 252}, {124, 239}, {21, 128}, {64, 213}, {23, 129}, {88, 206}, {2, 149}, {88, 207}, {13, 154}, {39, 191}, {104, 240}, {13, 148}, {68, 221}, {110, 247}, {121, 227}, {123, 224}, {79, 211}, {112, 236}, {100, 249}, {38, 184}, {84, 202}, {42, 181}, {114, 237}, {48, 144}, {46, 143}, {75, 234}, {56, 153}, {15, 172}, {124, 216}, {33, 132}, {93, 248}, {113, 212}, {44, 138}, {47, 136}, {12, 165}, {61, 148}, {52, 157}, {24, 177}, {20, 190}, {80, 253}, {92, 241}, {11, 165}, {103, 201}, {105, 199}, {16, 191}, {67, 236}, {60, 147}, {12, 188}, {23, 167}, {15, 191}, {1, 176}, {11, 185}, {95, 237}, {92, 238}, {64, 243}, {21, 161}, {30, 171}, {54, 128}, {20, 163}, {90, 237}, {89, 238}, {63, 136}, {51, 132}, {48, 135}, {47, 151}, {67, 251}, {59, 131}, {31, 166}, {59, 129}, {97, 219}, {77, 247}, {5, 190}, {9, 180}, {55, 137}, {65, 255}, {36, 155}, {49, 142}, {109, 210}, {111, 208}, {116, 203}, {115, 179}, {10, 203}, {93, 156}, {73, 139}, {109, 175}, {14, 205}, {57, 250}, {56, 251}, {53, 246}, {39, 228}, {73, 140}, {52, 243}, {102, 174}, {29, 212}, {88, 145}, {105, 160}, {36, 238}, {92, 150}, {65, 139}, {17, 218}, {62, 245}, {11, 199}, {98, 175}, {119, 186}, {1, 207}, {125, 179}, {38, 247}, {94, 143}, {85, 132}, {51, 226}, {50, 224}, {99, 177}, {111, 189}, {18, 193}, {69, 150}, {51, 224}, {29, 201}, {11, 222}, {101, 176}, {113, 164}, {112, 166}, {126, 168}, {26, 195}, {102, 191}, {123, 162}, {64, 154}, {68, 158}, {13, 214}, {21, 200}, {32, 254}, {69, 155}, {61, 227}, {121, 167}, {31, 192}, {3, 227}, {93, 189}, {74, 170}, {9, 233}, {35, 194}, {108, 142}, {122, 152}, {77, 174}, {118, 147}, {55, 208}, {71, 174}, {91, 178}, {84, 189}, {80, 185}, {116, 157}, {18, 248}, {71, 172}, {42, 199}, {100, 137}, {58, 215}, {29, 242}, {66, 173}, {34, 205}, {113, 158}, {115, 156}, {80, 160}, {72, 185}, {112, 130}, {33, 210}, {58, 201}, {57, 202}, {123, 136}, {4, 240}, {101, 145}, {28, 232}, {25, 239}, {7, 240}, {85, 162}, {52, 195}, {62, 198}, {117, 141}, {103, 158}, {119, 142}, {14, 245}, {126, 133}, {26, 230}, {57, 197}, {41, 214}, {17, 272}, {26, 280}, {7, 259}, {27, 274}, {16, 282}, {20, 281}, {1, 271}, {8, 262}, {25, 278}, {16, 256}, {18, 258}, {4, 272}, {19, 261}, {24, 256}, {20, 264}, {19, 270}, {2, 284}, {31, 257}, {32, 260}, {53, 273}, {40, 281}, {37, 274}, {54, 270}, {50, 267}, {63, 262}, {36, 287}, {74, 266}, {97, 288}, {70, 260}, {81, 275}, {93, 286}, {65, 261}, {72, 257}, {78, 260}, {76, 280}, {76, 282}, {86, 257}, {91, 263}, {100, 260}, {106, 267}, {124, 287}, {125, 281}, {109, 262}, {76, 288}, {110, 282}, {114, 263}, {99, 282}, {119, 269}, {102, 280}, {124, 259}, {154, 283}, {128, 258}, {153, 283}, {134, 261}, {145, 279}, {157, 283}, {141, 266}, {147, 280}, {148, 287}, {137, 263}, {157, 271}, {142, 285}, {159, 266}, {158, 264}, {149, 258}, {182, 274}, {168, 271}, {187, 277}, {166, 265}, {187, 276}, {179, 284}, {185, 265}, {167, 278}, {183, 257}, {165, 284}, {180, 269}, {181, 268}, {175, 275}, {174, 272}, {161, 286}, {197, 263}, {220, 276}, {204, 262}, {215, 285}, {194, 270}, {198, 279}, {209, 256}, {195, 272}, {205, 286}, {193, 277}, {222, 267}, {223, 266}, {213, 259}, {211, 264}, {202, 276}, {232, 265}, {235, 271}, {248, 284}, {233, 268}, {241, 279}, {247, 273}, {206, 288}, {226, 275}, {229, 278}, {254, 269}, {229, 273}, {228, 273}, {253, 267}, {234, 275}, {252, 261}, {236, 277}, {231, 285}, {230, 283}, {232, 277} }>;

(II) A more general form is to represent the graph as the orbit of {86, 87} under the group generated by the following permutations:

a: (2, 109)(3, 12)(4, 184)(5, 147)(6, 60)(7, 257)(8, 199)(11, 132)(13, 245)(14, 214)(17, 103)(18, 238)(19, 137)(20, 27)(21, 197)(22, 237)(23, 151)(25, 173)(26, 141)(28, 244)(29, 195)(30, 227)(31, 259)(32, 231)(33, 165)(34, 36)(35, 269)(37, 43)(38, 110)(39, 102)(40, 175)(42, 262)(44, 177)(45, 100)(46, 133)(48, 64)(51, 222)(52, 212)(54, 275)(55, 261)(57, 161)(58, 174)(59, 149)(61, 171)(66, 76)(67, 145)(68, 219)(70, 125)(71, 215)(72, 121)(73, 249)(74, 152)(75, 264)(78, 242)(79, 95)(80, 162)(81, 127)(82, 113)(83, 213)(84, 93)(85, 185)(86, 99)(87, 282)(88, 251)(89, 248)(91, 179)(92, 193)(94, 243)(96, 260)(97, 221)(98, 281)(104, 144)(106, 180)(107, 134)(108, 285)(112, 287)(114, 156)(115, 263)(116, 140)(117, 280)(118, 190)(120, 211)(122, 170)(123, 253)(124, 166)(126, 164)(128, 226)(129, 188)(130, 148)(131, 258)(135, 154)(138, 239)(143, 207)(146, 178)(155, 205)(157, 235)(158, 218)(159, 206)(163, 274)(167, 196)(181, 204)(183, 240)(192, 288)(194, 254)(200, 217)(201, 272)(202, 286)(208, 252)(209, 278)(210, 284)(216, 265)(223, 283)(224, 267)(225, 268)(228, 229)(230, 266)(232, 250)(234, 270)(236, 279)(241, 277)
b: (1, 2, 213, 233)(3, 32, 140, 161)(4, 190, 83, 47)(5, 31, 24, 110)(6, 192, 44, 282)(7, 172, 94, 188)(8, 195, 96, 14)(9, 207, 40, 145)(10, 200, 238, 234)(11, 61, 142, 223)(12, 121, 71, 212)(13, 186, 283, 146)(15, 221, 138, 99)(16, 38, 66, 86)(17, 170, 232, 129)(18, 216, 27, 164)(19, 69, 51, 122)(20, 67, 136, 97)(21, 36, 254, 203)(22, 276, 210, 100)(23, 272, 242, 28)(25, 49, 266, 185)(26, 231, 245, 105)(29, 30, 167, 174)(33, 260, 73, 286)(34, 85, 118, 113)(35, 56, 267, 206)(37, 74, 265, 239)(39, 183, 209, 273)(41, 262, 52, 125)(42, 64, 268, 176)(43, 159, 80, 76)(45, 205, 132, 78)(46, 258, 124, 274)(48, 151, 240, 215)(50, 230, 194, 62)(53, 191, 184, 173)(54, 279, 180, 133)(55, 111, 217, 81)(57, 70, 139, 93)(58, 144, 196, 229)(59, 218, 211, 277)(60, 68, 166, 177)(63, 243, 281, 101)(65, 189, 197, 95)(72, 278, 77, 141)(75, 134, 193, 131)(79, 187, 109, 82)(84, 263, 237, 255)(88, 106)(89, 137, 90, 220)(91, 249, 156, 202)(92, 275, 107, 252)(98, 168, 248, 250)(102, 201, 171, 246)(103, 130, 160, 280)(104, 285, 135, 199)(108, 235, 165, 227)(112, 162, 147, 158)(115, 155, 178, 116)(117, 257, 256, 247)(119, 153, 222, 148)(120, 261, 150, 226)(123, 219, 264, 236)(126, 127, 241, 175)(128, 287, 269, 169)(143, 149, 259, 182)(152, 270, 198, 224)(154, 181)(157, 179, 214, 204)(163, 251, 253, 288)(225, 271, 284, 244)
c: (2, 47)(3, 20)(4, 65)(5, 155)(6, 202)(7, 19)(8, 106)(9, 262)(10, 26)(11, 80)(12, 138)(13, 74)(14, 192)(15, 84)(16, 93)(17, 137)(18, 209)(21, 53)(22, 76)(23, 40)(24, 284)(25, 79)(27, 70)(28, 31)(29, 279)(30, 166)(32, 234)(33, 163)(34, 173)(35, 132)(36, 190)(37, 263)(38, 276)(39, 150)(41, 221)(42, 136)(43, 57)(44, 165)(45, 259)(46, 154)(48, 67)(49, 197)(51, 119)(52, 126)(54, 167)(55, 272)(56, 223)(58, 92)(59, 268)(60, 114)(61, 211)(62, 266)(64, 164)(66, 205)(68, 214)(69, 117)(71, 81)(72, 265)(73, 288)(75, 260)(77, 217)(78, 120)(85, 194)(86, 161)(87, 286)(88, 235)(89, 172)(90, 280)(91, 274)(94, 101)(95, 118)(96, 124)(97, 139)(99, 115)(100, 218)(102, 111)(103, 250)(104, 134)(105, 267)(107, 195)(108, 275)(109, 233)(110, 255)(112, 171)(113, 213)(116, 152)(121, 270)(123, 181)(125, 239)(127, 278)(128, 246)(129, 281)(131, 285)(133, 157)(135, 251)(140, 206)(141, 198)(142, 226)(143, 176)(144, 236)(145, 212)(146, 162)(147, 237)(148, 170)(149, 151)(156, 282)(158, 244)(159, 245)(160, 222)(168, 243)(169, 283)(174, 208)(175, 225)(177, 179)(178, 269)(180, 204)(182, 210)(183, 277)(184, 187)(186, 224)(189, 191)(193, 228)(196, 258)(199, 253)(200, 273)(201, 241)(203, 230)(207, 271)(215, 238)(216, 231)(219, 249)(220, 247)(227, 264)(229, 252)(232, 257)(240, 261)(242, 287)(248, 256)
d: (1, 3)(2, 43)(4, 205)(5, 253)(6, 149)(7, 245)(8, 212)(9, 264)(10, 275)(11, 58)(12, 247)(13, 213)(14, 240)(15, 258)(16, 166)(17, 93)(18, 60)(19, 225)(20, 106)(21, 71)(22, 254)(23, 94)(24, 192)(25, 67)(26, 187)(27, 252)(28, 229)(29, 105)(30, 273)(31, 256)(32, 156)(33, 271)(34, 110)(35, 281)(36, 207)(37, 248)(38, 188)(39, 185)(40, 163)(41, 104)(42, 103)(44, 66)(45, 204)(46, 59)(47, 221)(48, 167)(49, 284)(50, 242)(51, 140)(52, 202)(53, 171)(54, 182)(55, 95)(56, 124)(57, 157)(61, 101)(62, 259)(63, 158)(64, 214)(65, 70)(68, 136)(69, 97)(72, 228)(73, 178)(74, 123)(75, 111)(76, 236)(77, 165)(78, 220)(79, 269)(80, 117)(81, 107)(82, 84)(83, 278)(85, 223)(86, 173)(87, 138)(88, 287)(89, 126)(90, 234)(91, 139)(92, 152)(96, 186)(98, 261)(99, 130)(100, 114)(102, 232)(108, 115)(109, 164)(112, 282)(113, 262)(116, 197)(118, 200)(119, 125)(120, 208)(121, 135)(122, 217)(127, 274)(128, 172)(129, 143)(131, 169)(132, 235)(133, 238)(134, 175)(137, 237)(141, 160)(142, 179)(144, 246)(145, 148)(146, 285)(147, 193)(150, 219)(151, 184)(153, 216)(154, 244)(155, 243)(159, 177)(161, 174)(162, 266)(168, 210)(170, 224)(176, 227)(180, 211)(181, 231)(183, 196)(189, 218)(190, 267)(191, 265)(194, 268)(195, 276)(198, 288)(199, 201)(203, 226)(206, 279)(209, 257)(215, 222)(230, 241)(233, 270)(239, 251)(249, 263)(250, 283)(255, 260)(272, 286)(277, 280)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 58 ]
288
-1 143 176 271 207
-2 149 40 42 284
-3 33 36 227 129
-4 110 272 97 240
-5 68 190 6 117
-6 15 5 38 43
-7 99 121 259 240
-8 132 23 105 262
-9 233 180 106 63
-10 90 134 203 107
-11 165 199 222 185
-12 165 34 188 30
-13 154 148 214 62
-14 245 28 205 41
-15 191 60 6 172
-16 256 191 282 87
-17 37 272 218 32
-18 34 258 193 248
-19 45 115 270 261
-20 264 190 281 163
-21 200 115 128 161
-22 79 90 156 73
-23 167 47 8 129
-24 44 177 47 256
-25 278 61 239 76
-26 104 280 195 230
-27 118 75 98 274
-28 232 14 83 30
-29 242 201 212 141
-30 12 28 72 171
-31 166 257 192 83
-32 254 17 260 108
-33 132 210 57 3
-34 12 112 18 205
-35 106 194 119 163
-36 155 287 3 238
-37 49 60 17 274
-38 247 6 184 87
-39 58 191 117 228
-40 2 281 106 54
-41 187 101 14 214
-42 199 2 181 63
-43 103 49 6 163
-44 24 80 138 86
-45 113 73 19 96
-46 143 169 74 164
-47 23 24 136 151
-48 144 135 83 94
-49 77 37 43 142
-50 267 224 105 186
-51 132 178 224 226
-52 243 157 82 195
-53 99 246 86 273
-54 127 270 40 128
-55 137 107 65 208
-56 88 62 251 153
-57 33 202 250 197
-58 77 201 39 215
-59 123 129 109 131
-60 110 15 37 147
-61 25 104 148 227
-62 198 56 13 245
-63 136 9 42 262
-64 154 243 213 104
-65 55 255 139 261
-66 192 117 173 87
-67 101 236 83 251
-68 221 158 5 74
-69 198 155 150 205
-70 91 95 260 98
-71 172 118 108 174
-72 257 30 185 196
-73 22 45 139 140
-74 46 68 266 170
-75 234 27 218 120
-76 288 25 280 282
-77 58 49 247 174
-78 122 260 118 195
-79 22 211 125 127
-80 44 253 160 185
-81 275 89 95 208
-82 100 126 52 218
-83 67 48 28 31
-84 89 189 114 202
-85 121 132 216 162
-86 44 257 53 87
-87 66 16 38 86
-88 56 145 206 207
-89 210 81 84 238
-90 22 111 237 10
-91 210 178 70 263
-92 150 238 217 241
-93 286 156 189 248
-94 143 221 212 48
-95 70 81 237 120
-96 231 242 45 125
-97 243 288 4 219
-98 70 27 225 175
-99 177 7 282 53
-100 82 137 249 260
-101 176 67 145 41
-102 191 280 174 229
-103 231 201 158 43
-104 26 61 64 240
-105 199 50 160 8
-106 35 267 40 9
-107 55 126 10 120
-108 71 225 32 142
-109 210 59 262 175
-110 4 60 247 282
-111 90 189 208 252
-112 34 166 236 130
-113 45 212 158 164
-114 255 237 84 263
-115 156 179 19 21
-116 122 157 203 249
-117 66 5 39 141
-118 78 147 27 71
-119 35 269 142 186
-120 122 95 107 75
-121 167 7 227 85
-122 78 116 152 120
-123 59 136 224 162
-124 287 259 216 239
-125 79 179 281 96
-126 133 168 82 107
-127 79 248 54 252
-128 222 258 21 54
-129 23 3 59 239
-130 112 245 159 171
-131 59 226 216 238
-132 33 51 8 85
-133 169 126 152 207
-134 211 261 10 164
-135 176 223 245 48
-136 253 123 47 63
-137 55 100 234 263
-138 44 166 188 173
-139 168 73 249 65
-140 235 170 203 73
-141 144 266 29 117
-142 49 108 119 285
-143 1 46 94 251
-144 48 171 183 141
-145 88 101 213 279
-146 222 179 181 194
-147 60 280 118 219
-148 287 13 61 206
-149 253 188 2 258
-150 189 69 92 193
-151 188 199 47 196
-152 122 133 219 230
-153 56 223 169 283
-154 176 13 283 64
-155 36 69 202 214
-156 22 255 93 115
-157 116 271 52 283
-158 264 68 113 103
-159 266 192 130 251
-160 80 246 105 162
-161 165 286 232 21
-162 177 123 160 85
-163 35 182 20 43
-164 46 134 113 168
-165 11 12 161 284
-166 265 112 138 31
-167 121 23 278 246
-168 126 139 271 164
-169 133 46 203 153
-170 242 211 74 140
-171 144 30 173 130
-172 15 71 182 215
-173 66 209 138 171
-174 77 102 71 272
-175 275 180 98 109
-176 154 1 101 135
-177 99 24 162 239
-178 254 91 204 51
-179 146 125 115 284
-180 224 269 9 175
-181 146 268 42 186
-182 233 172 163 274
-183 144 257 184 228
-184 221 201 38 183
-185 11 265 80 72
-186 181 50 204 119
-187 276 277 41 241
-188 12 138 149 151
-189 111 93 84 150
-190 242 5 215 20
-191 102 15 16 39
-192 66 221 159 31
-193 200 277 18 150
-194 231 35 146 270
-195 78 26 52 272
-196 209 246 72 151
-197 57 226 217 263
-198 69 279 236 62
-199 11 105 151 42
-200 220 193 21 252
-201 58 103 29 184
-202 155 276 57 84
-203 169 116 140 10
-204 178 225 262 186
-205 286 34 14 69
-206 88 288 148 230
-207 88 1 133 243
-208 55 111 81 217
-209 256 173 228 196
-210 33 89 91 109
-211 264 79 134 170
-212 113 235 94 29
-213 145 244 259 64
-214 155 13 244 41
-215 58 190 172 285
-216 124 85 250 131
-217 220 92 197 208
-218 82 17 75 219
-219 147 97 152 218
-220 276 200 255 217
-221 68 192 94 184
-222 11 146 267 128
-223 266 135 235 153
-224 123 180 50 51
-225 233 204 108 98
-226 275 51 131 197
-227 121 244 3 61
-228 209 39 183 273
-229 102 278 240 273
-230 26 206 283 152
-231 103 194 96 285
-232 265 277 28 161
-233 268 225 182 9
-234 275 254 137 75
-235 212 223 271 140
-236 198 67 112 277
-237 90 114 95 249
-238 89 36 92 131
-239 177 25 124 129
-240 4 104 7 229
-241 187 92 279 250
-242 190 170 29 96
-243 52 64 97 207
-244 213 214 227 250
-245 14 135 62 130
-246 167 160 53 196
-247 77 110 38 273
-248 93 127 18 284
-249 100 116 237 139
-250 57 244 216 241
-251 143 56 67 159
-252 111 200 127 261
-253 80 267 136 149
-254 178 234 269 32
-255 220 156 114 65
-256 209 24 278 16
-257 72 183 31 86
-258 265 149 18 128
-259 288 124 213 7
-260 78 100 70 32
-261 134 19 65 252
-262 204 8 63 109
-263 91 114 137 197
-264 211 158 270 20
-265 166 232 258 185
-266 223 159 74 141
-267 253 222 50 106
-268 233 181 281 285
-269 254 180 119 274
-270 264 194 19 54
-271 1 157 168 235
-272 4 17 195 174
-273 247 228 53 229
-274 37 27 269 182
-275 234 81 226 175
-276 187 220 286 202
-277 187 232 236 193
-278 167 25 256 229
-279 198 287 145 241
-280 102 26 147 76
-281 125 268 40 20
-282 99 110 16 76
-283 154 157 153 230
-284 165 2 179 248
-285 231 268 215 142
-286 276 93 161 205
-287 36 124 279 148
-288 259 206 97 76
0

**************