[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 288, 70 ] =
UG(ATD[288,19]).
(I) Following is a form readable by MAGMA:
g:=Graph<288|{ {16, 17}, {264, 265}, {246, 247}, {184, 185}, {26, 27}, {1, 2},
{224, 227}, {49, 50}, {36, 39}, {1, 5}, {258, 262}, {201, 205}, {200, 204}, {97,
101}, {64, 68}, {3, 7}, {2, 6}, {112, 116}, {50, 52}, {259, 261}, {154, 156},
{263, 271}, {113, 120}, {164, 173}, {34, 40}, {85, 95}, {115, 121}, {4, 8},
{247, 251}, {196, 200}, {2, 15}, {82, 95}, {101, 104}, {119, 122}, {35, 44},
{45, 61}, {236, 252}, {134, 151}, {165, 183}, {268, 286}, {259, 273}, {3, 16},
{230, 245}, {201, 218}, {11, 24}, {10, 25}, {7, 20}, {4, 17}, {14, 27}, {12,
25}, {6, 19}, {258, 276}, {260, 274}, {5, 18}, {13, 26}, {136, 159}, {35, 59},
{231, 255}, {141, 148}, {164, 189}, {69, 95}, {263, 285}, {111, 117}, {142,
149}, {160, 187}, {164, 191}, {170, 177}, {47, 51}, {8, 21}, {10, 23}, {163,
190}, {11, 21}, {269, 275}, {46, 48}, {35, 61}, {172, 178}, {9, 22}, {140, 172},
{23, 54}, {257, 288}, {28, 62}, {258, 288}, {204, 238}, {29, 63}, {18, 49}, {67,
96}, {156, 191}, {159, 188}, {24, 60}, {18, 55}, {203, 238}, {87, 114}, {8, 46},
{94, 120}, {9, 47}, {17, 54}, {212, 243}, {26, 61}, {130, 171}, {6, 44}, {86,
124}, {7, 45}, {18, 57}, {221, 246}, {19, 56}, {22, 58}, {81, 125}, {23, 59},
{20, 57}, {5, 43}, {14, 33}, {90, 117}, {89, 118}, {128, 177}, {89, 107}, {83,
96}, {135, 180}, {74, 127}, {84, 97}, {90, 108}, {215, 225}, {91, 109}, {279,
288}, {4, 60}, {201, 241}, {31, 39}, {10, 48}, {15, 53}, {14, 52}, {11, 49},
{74, 113}, {198, 253}, {197, 254}, {65, 125}, {88, 100}, {71, 123}, {67, 126},
{207, 242}, {12, 50}, {66, 124}, {26, 36}, {13, 51}, {213, 234}, {54, 118},
{191, 255}, {190, 254}, {189, 253}, {187, 251}, {131, 195}, {8, 73}, {27, 90},
{158, 223}, {29, 95}, {185, 251}, {184, 250}, {150, 213}, {155, 216}, {156,
217}, {47, 105}, {186, 252}, {132, 194}, {178, 245}, {156, 212}, {1, 72}, {176,
249}, {143, 198}, {52, 126}, {53, 127}, {133, 207}, {157, 215}, {139, 192}, {13,
64}, {177, 252}, {149, 216}, {51, 125}, {144, 222}, {147, 221}, {137, 198},
{138, 197}, {160, 239}, {41, 121}, {189, 237}, {42, 122}, {161, 240}, {175,
254}, {163, 242}, {36, 118}, {46, 124}, {37, 119}, {166, 244}, {167, 245}, {146,
193}, {180, 231}, {174, 253}, {148, 199}, {162, 241}, {33, 116}, {144, 197},
{173, 248}, {165, 243}, {174, 248}, {34, 117}, {181, 226}, {179, 228}, {44,
123}, {31, 70}, {58, 99}, {168, 241}, {53, 111}, {3, 88}, {186, 225}, {179,
232}, {44, 119}, {128, 219}, {157, 192}, {190, 227}, {173, 240}, {30, 64}, {31,
65}, {161, 255}, {168, 246}, {169, 247}, {39, 120}, {1, 97}, {34, 67}, {41, 72},
{38, 71}, {36, 69}, {32, 66}, {138, 232}, {15, 108}, {178, 209}, {55, 84}, {42,
73}, {37, 70}, {32, 67}, {170, 201}, {33, 69}, {38, 66}, {6, 99}, {34, 71}, {7,
98}, {129, 228}, {140, 233}, {142, 235}, {15, 104}, {35, 68}, {136, 239}, {141,
234}, {175, 199}, {25, 112}, {155, 242}, {128, 234}, {182, 220}, {139, 224},
{147, 248}, {60, 80}, {175, 195}, {149, 249}, {174, 194}, {28, 113}, {30, 115},
{137, 231}, {186, 212}, {184, 214}, {178, 220}, {157, 243}, {29, 114}, {56, 72},
{183, 199}, {148, 229}, {191, 206}, {159, 238}, {158, 236}, {158, 237}, {145,
229}, {176, 196}, {24, 111}, {155, 236}, {169, 222}, {19, 107}, {43, 83}, {22,
110}, {21, 109}, {20, 108}, {131, 251}, {16, 105}, {159, 229}, {5, 126}, {32,
91}, {21, 110}, {17, 106}, {16, 107}, {169, 210}, {28, 96}, {42, 86}, {155,
230}, {160, 221}, {167, 218}, {165, 219}, {38, 89}, {40, 87}, {25, 153}, {97,
225}, {98, 226}, {27, 154}, {56, 185}, {70, 196}, {92, 223}, {106, 233}, {102,
226}, {103, 227}, {48, 185}, {87, 222}, {75, 194}, {109, 228}, {55, 188}, {31,
147}, {81, 221}, {11, 134}, {33, 172}, {109, 224}, {12, 130}, {79, 193}, {78,
192}, {76, 195}, {9, 153}, {116, 228}, {70, 215}, {98, 243}, {69, 214}, {79,
220}, {75, 216}, {100, 247}, {76, 217}, {78, 219}, {99, 245}, {77, 218}, {92,
203}, {119, 239}, {96, 249}, {115, 234}, {114, 233}, {42, 182}, {121, 229},
{123, 230}, {92, 253}, {93, 254}, {115, 208}, {22, 179}, {40, 141}, {41, 142},
{82, 250}, {123, 211}, {73, 227}, {124, 214}, {47, 132}, {4, 170}, {125, 205},
{37, 151}, {55, 132}, {59, 136}, {107, 223}, {39, 145}, {54, 128}, {53, 130},
{57, 129}, {62, 134}, {59, 130}, {80, 233}, {63, 132}, {122, 193}, {62, 131},
{114, 207}, {9, 183}, {94, 224}, {80, 238}, {113, 206}, {74, 139}, {37, 231},
{79, 141}, {78, 140}, {75, 137}, {74, 136}, {2, 193}, {83, 144}, {82, 150}, {83,
151}, {28, 217}, {98, 167}, {87, 146}, {84, 145}, {64, 133}, {29, 216}, {76,
138}, {94, 152}, {77, 139}, {99, 165}, {104, 174}, {105, 175}, {3, 196}, {85,
146}, {65, 134}, {56, 255}, {120, 176}, {38, 236}, {93, 151}, {92, 150}, {89,
147}, {86, 157}, {84, 152}, {90, 148}, {91, 149}, {72, 135}, {19, 195}, {94,
143}, {23, 197}, {100, 182}, {102, 180}, {103, 181}, {68, 144}, {101, 177}, {20,
194}, {126, 168}, {88, 129}, {108, 181}, {106, 176}, {91, 135}, {82, 143}, {24,
198}, {40, 246}, {101, 187}, {10, 213}, {81, 142}, {121, 166}, {32, 192}, {88,
184}, {73, 169}, {43, 203}, {45, 204}, {77, 172}, {41, 203}, {50, 208}, {46,
205}, {52, 209}, {58, 223}, {13, 235}, {58, 210}, {93, 181}, {61, 212}, {63,
213}, {110, 133}, {127, 146}, {62, 208}, {60, 211}, {85, 186}, {66, 173}, {80,
160}, {77, 188}, {63, 205}, {78, 187}, {112, 135}, {43, 210}, {68, 189}, {51,
202}, {103, 154}, {45, 211}, {49, 207}, {48, 206}, {102, 153}, {14, 266}, {12,
265}, {30, 271}, {30, 256}, {57, 278}, {85, 277}, {93, 286}, {71, 256}, {76,
267}, {79, 283}, {65, 279}, {75, 284}, {81, 268}, {86, 267}, {102, 263}, {116,
277}, {103, 260}, {100, 257}, {104, 271}, {105, 257}, {110, 263}, {112, 281},
{122, 273}, {127, 275}, {118, 280}, {117, 282}, {111, 279}, {106, 276}, {143,
270}, {145, 272}, {171, 288}, {131, 271}, {129, 268}, {150, 283}, {133, 276},
{152, 265}, {138, 280}, {137, 282}, {153, 269}, {140, 281}, {154, 258}, {152,
261}, {158, 259}, {179, 274}, {180, 273}, {183, 272}, {162, 267}, {163, 266},
{170, 259}, {166, 268}, {171, 260}, {163, 275}, {190, 270}, {182, 262}, {164,
276}, {161, 274}, {162, 273}, {166, 277}, {162, 278}, {171, 287}, {168, 285},
{167, 285}, {161, 284}, {188, 257}, {200, 264}, {206, 269}, {202, 270}, {220,
280}, {219, 287}, {214, 272}, {202, 269}, {222, 281}, {202, 256}, {217, 277},
{199, 266}, {218, 279}, {215, 282}, {209, 284}, {208, 287}, {210, 260}, {204,
283}, {209, 264}, {200, 274}, {211, 270}, {230, 262}, {240, 272}, {237, 265},
{250, 286}, {242, 278}, {248, 285}, {226, 261}, {225, 264}, {244, 282}, {240,
287}, {252, 275}, {239, 286}, {232, 283}, {235, 280}, {237, 281}, {244, 256},
{235, 284}, {241, 266}, {232, 278}, {244, 267}, {250, 261}, {249, 262} }>;
(II) A more general form is to represent the graph as the orbit of {16, 17}
under the group generated by the following permutations:
a: (1, 2, 6, 19, 56, 72)(3, 10, 32, 57, 130, 71)(4, 8, 21, 11, 24, 60)(5, 15,
44, 107, 185, 135)(7, 23, 66, 129, 12, 34)(9, 28, 75, 159, 252, 182)(13, 39, 95,
172, 266, 154)(14, 27, 26, 36, 69, 33)(16, 48, 91, 18, 53, 123)(17, 46, 109, 49,
111, 211)(20, 59, 38, 88, 25, 67)(22, 62, 137, 238, 177, 42)(29, 77, 163, 258,
51, 120)(30, 70, 150, 78, 162, 260)(31, 82, 140, 241, 103, 64)(35, 89, 184, 112,
126, 108)(37, 92, 187, 273, 210, 271)(40, 98, 197, 173, 268, 265)(41, 97, 193,
99, 195, 255)(43, 104, 119, 223, 251, 180)(45, 54, 124, 228, 50, 117)(47, 113,
216, 188, 275, 262)(52, 90, 61, 118, 214, 116)(55, 127, 230, 105, 206, 149)(58,
131, 231, 203, 101, 122)(63, 139, 242, 288, 202, 176)(65, 143, 233, 201, 227,
133)(68, 147, 250, 281, 168, 181)(73, 110, 134, 198, 80, 170)(74, 155, 257, 269,
249, 132)(76, 161, 121, 225, 79, 165)(81, 152, 87, 167, 254, 164)(83, 174, 239,
158, 247, 102)(84, 146, 245, 175, 191, 142)(85, 178, 199, 156, 235, 145)(86,
179, 208, 282, 204, 128)(93, 189, 221, 261, 222, 285)(94, 114, 218, 190, 276,
125)(96, 194, 136, 236, 100, 153)(106, 205, 224, 207, 279, 270)(115, 215, 283,
219, 267, 274)(138, 240, 166, 264, 141, 243)(144, 248, 286, 237, 246, 226)(148,
212, 280, 272, 277, 209)(151, 253, 160, 259, 169, 263)(157, 232, 287, 244, 200,
234)(171, 256, 196, 213, 192, 278)(183, 217, 284, 229, 186, 220) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 5)(3, 9)(4, 13)(6, 18)(7, 22)(8, 26)(10, 31)(11, 35)(12, 37)(14, 42)(15,
43)(16, 47)(17, 51)(19, 55)(20, 58)(21, 61)(23, 65)(24, 68)(25, 70)(27, 73)(28,
74)(29, 38)(30, 80)(32, 85)(33, 86)(34, 87)(36, 46)(39, 48)(41, 101)(44, 49)(45,
110)(50, 119)(52, 122)(53, 83)(54, 125)(56, 84)(57, 99)(59, 134)(60, 64)(62,
136)(63, 89)(66, 95)(67, 146)(69, 124)(71, 114)(72, 97)(75, 158)(76, 77)(78,
166)(79, 168)(81, 128)(82, 173)(88, 183)(90, 169)(91, 186)(92, 174)(93, 171)(94,
191)(96, 127)(98, 179)(100, 199)(102, 200)(104, 203)(106, 202)(107, 132)(108,
210)(109, 212)(111, 144)(112, 215)(115, 160)(116, 157)(117, 222)(118, 205)(120,
206)(121, 187)(123, 207)(126, 193)(129, 165)(130, 151)(131, 159)(133, 211)(135,
225)(137, 237)(138, 218)(139, 217)(140, 244)(141, 246)(142, 177)(143, 164)(145,
185)(147, 213)(148, 247)(149, 252)(150, 248)(152, 255)(153, 196)(154, 227)(156,
224)(161, 261)(162, 178)(163, 262)(167, 232)(170, 235)(172, 267)(175, 257)(176,
269)(180, 264)(181, 260)(182, 266)(184, 272)(188, 195)(189, 198)(190, 258)(192,
277)(194, 223)(197, 279)(201, 280)(204, 263)(208, 239)(209, 273)(216, 236)(219,
268)(220, 241)(221, 234)(226, 274)(228, 243)(229, 251)(230, 242)(231, 265)(233,
256)(238, 271)(240, 250)(245, 278)(249, 275)(254, 288)(259, 284)(270, 276)(281,
282)(283, 285)(286, 287)
C4[ 288, 70 ]
288
-1 2 5 72 97
-2 1 15 6 193
-3 88 16 7 196
-4 60 170 17 8
-5 1 126 18 43
-6 44 99 2 19
-7 45 3 20 98
-8 46 4 73 21
-9 22 47 183 153
-10 23 25 48 213
-11 24 134 49 21
-12 265 25 50 130
-13 26 235 51 64
-14 33 266 27 52
-15 2 104 53 108
-16 3 17 105 107
-17 4 16 106 54
-18 55 57 5 49
-19 56 6 107 195
-20 57 7 194 108
-21 11 110 8 109
-22 110 58 179 9
-23 59 10 54 197
-24 11 198 111 60
-25 12 112 10 153
-26 13 36 27 61
-27 154 90 14 26
-28 113 62 96 217
-29 114 95 216 63
-30 256 115 271 64
-31 70 147 39 65
-32 66 67 91 192
-33 14 69 116 172
-34 67 71 40 117
-35 44 68 59 61
-36 69 26 39 118
-37 231 70 151 119
-38 66 89 71 236
-39 145 36 31 120
-40 34 246 141 87
-41 121 203 72 142
-42 122 182 73 86
-43 210 5 203 83
-44 35 123 6 119
-45 211 61 204 7
-46 124 48 205 8
-47 132 105 51 9
-48 46 206 185 10
-49 11 50 18 207
-50 12 49 52 208
-51 13 47 125 202
-52 209 14 126 50
-53 111 15 127 130
-54 23 17 128 118
-55 132 188 18 84
-56 255 72 19 185
-57 278 18 129 20
-58 22 99 210 223
-59 23 35 136 130
-60 24 211 80 4
-61 45 35 212 26
-62 134 28 131 208
-63 132 213 29 205
-64 133 13 68 30
-65 134 125 279 31
-66 124 38 173 32
-67 34 126 96 32
-68 144 35 189 64
-69 33 36 214 95
-70 37 215 31 196
-71 34 123 256 38
-72 1 56 135 41
-73 169 227 8 42
-74 113 136 127 139
-75 137 194 216 284
-76 267 138 195 217
-77 188 139 172 218
-78 187 192 140 219
-79 220 193 283 141
-80 233 60 160 238
-81 221 125 268 142
-82 143 95 150 250
-83 144 96 151 43
-84 55 145 97 152
-85 277 146 95 186
-86 124 157 267 42
-87 222 146 114 40
-88 100 3 129 184
-89 147 38 107 118
-90 27 148 117 108
-91 135 149 32 109
-92 253 223 203 150
-93 286 254 181 151
-94 143 224 152 120
-95 69 82 29 85
-96 67 28 83 249
-97 1 101 225 84
-98 243 167 226 7
-99 165 58 245 6
-100 88 257 247 182
-101 187 177 104 97
-102 180 226 153 263
-103 154 181 227 260
-104 101 15 271 174
-105 47 257 16 175
-106 176 276 233 17
-107 89 223 16 19
-108 90 15 181 20
-109 91 224 228 21
-110 22 133 21 263
-111 24 279 117 53
-112 25 135 116 281
-113 28 74 206 120
-114 233 29 207 87
-115 121 234 30 208
-116 33 112 277 228
-117 34 111 90 282
-118 89 36 280 54
-119 44 122 37 239
-120 176 113 39 94
-121 166 115 41 229
-122 193 42 119 273
-123 44 211 71 230
-124 66 46 214 86
-125 81 51 205 65
-126 67 168 5 52
-127 275 146 74 53
-128 177 234 54 219
-129 88 57 268 228
-130 12 59 171 53
-131 62 271 195 251
-132 55 47 194 63
-133 110 276 64 207
-134 11 62 151 65
-135 112 91 180 72
-136 59 159 74 239
-137 198 231 282 75
-138 232 280 76 197
-139 77 224 192 74
-140 78 233 281 172
-141 79 234 148 40
-142 81 235 149 41
-143 198 82 94 270
-144 68 222 83 197
-145 39 84 272 229
-146 127 193 85 87
-147 89 221 248 31
-148 199 90 141 229
-149 91 216 249 142
-150 92 213 82 283
-151 134 37 93 83
-152 265 94 84 261
-153 25 102 269 9
-154 156 103 27 258
-155 242 236 216 230
-156 154 212 191 217
-157 243 192 215 86
-158 223 236 237 259
-159 188 136 238 229
-160 187 221 80 239
-161 255 240 284 274
-162 267 278 273 241
-163 242 275 266 190
-164 276 189 191 173
-165 99 243 183 219
-166 121 244 277 268
-167 245 218 98 285
-168 246 126 241 285
-169 210 222 247 73
-170 177 201 4 259
-171 287 288 260 130
-172 33 77 178 140
-173 66 248 240 164
-174 253 104 248 194
-175 199 254 105 195
-176 106 249 196 120
-177 101 170 128 252
-178 209 220 245 172
-179 22 232 228 274
-180 231 102 135 273
-181 103 93 226 108
-182 220 100 42 262
-183 165 199 272 9
-184 88 214 250 185
-185 56 48 184 251
-186 212 225 85 252
-187 78 101 160 251
-188 55 77 257 159
-189 253 68 237 164
-190 254 270 227 163
-191 156 255 206 164
-192 78 157 139 32
-193 122 2 79 146
-194 132 20 75 174
-195 19 76 131 175
-196 176 200 3 70
-197 23 144 254 138
-198 143 253 24 137
-199 266 148 183 175
-200 264 204 196 274
-201 170 205 218 241
-202 256 269 270 51
-203 92 238 41 43
-204 45 200 238 283
-205 46 201 125 63
-206 113 48 191 269
-207 242 133 114 49
-208 287 115 50 62
-209 264 178 52 284
-210 58 169 260 43
-211 45 123 60 270
-212 243 156 61 186
-213 234 150 63 10
-214 69 124 184 272
-215 157 70 225 282
-216 155 149 29 75
-217 156 277 28 76
-218 77 167 201 279
-219 165 78 287 128
-220 79 178 280 182
-221 81 147 246 160
-222 144 169 281 87
-223 58 92 158 107
-224 94 139 227 109
-225 264 215 97 186
-226 102 181 261 98
-227 190 103 224 73
-228 179 116 129 109
-229 121 145 148 159
-230 155 123 245 262
-231 255 37 180 137
-232 179 278 138 283
-233 80 114 106 140
-234 213 115 128 141
-235 13 280 284 142
-236 155 158 38 252
-237 265 189 158 281
-238 80 159 203 204
-239 286 136 160 119
-240 287 161 173 272
-241 266 168 201 162
-242 155 278 163 207
-243 165 157 212 98
-244 166 256 267 282
-245 99 167 178 230
-246 221 168 247 40
-247 100 169 246 251
-248 147 173 174 285
-249 176 149 96 262
-250 286 82 184 261
-251 187 247 185 131
-252 275 177 236 186
-253 198 189 92 174
-254 190 93 175 197
-255 231 56 191 161
-256 244 202 71 30
-257 100 188 288 105
-258 154 276 288 262
-259 158 170 261 273
-260 210 103 171 274
-261 226 259 250 152
-262 258 182 249 230
-263 110 102 271 285
-264 209 265 200 225
-265 264 12 237 152
-266 199 14 163 241
-267 244 162 86 76
-268 286 166 81 129
-269 275 202 206 153
-270 143 211 190 202
-271 104 30 131 263
-272 145 214 183 240
-273 122 180 259 162
-274 200 179 161 260
-275 269 127 163 252
-276 133 258 106 164
-277 166 116 85 217
-278 242 232 57 162
-279 111 288 218 65
-280 220 235 138 118
-281 112 222 237 140
-282 244 137 215 117
-283 232 79 204 150
-284 209 235 161 75
-285 167 168 248 263
-286 268 93 239 250
-287 171 240 208 219
-288 257 279 258 171
0