C4graphGraph forms for C4 [ 288, 80 ] = UG(ATD[288,46])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 80 ] = UG(ATD[288,46]).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {48, 49}, {60, 61}, {52, 55}, {132, 135}, {10, 14}, {34, 38}, {16, 20}, {1, 4}, {217, 220}, {89, 92}, {65, 68}, {41, 44}, {1, 7}, {216, 222}, {64, 71}, {97, 102}, {145, 150}, {4, 13}, {98, 107}, {162, 171}, {1, 10}, {22, 29}, {87, 91}, {114, 126}, {116, 120}, {258, 271}, {48, 62}, {50, 60}, {198, 201}, {96, 112}, {1, 16}, {13, 28}, {4, 22}, {37, 55}, {43, 56}, {206, 221}, {204, 223}, {7, 19}, {41, 61}, {73, 95}, {261, 275}, {8, 31}, {264, 272}, {74, 83}, {4, 31}, {267, 272}, {79, 84}, {170, 177}, {5, 25}, {133, 153}, {40, 53}, {270, 275}, {7, 25}, {194, 220}, {167, 185}, {165, 186}, {197, 218}, {151, 182}, {219, 250}, {192, 225}, {156, 189}, {10, 40}, {199, 229}, {19, 49}, {158, 188}, {148, 183}, {193, 226}, {216, 252}, {7, 34}, {84, 113}, {11, 46}, {13, 43}, {135, 161}, {148, 178}, {153, 190}, {200, 225}, {149, 191}, {17, 58}, {216, 243}, {74, 97}, {28, 55}, {92, 112}, {79, 98}, {76, 98}, {205, 227}, {80, 126}, {143, 161}, {10, 58}, {194, 242}, {80, 96}, {71, 119}, {13, 61}, {95, 110}, {68, 118}, {2, 49}, {215, 228}, {192, 243}, {72, 124}, {137, 189}, {141, 185}, {91, 110}, {206, 251}, {92, 105}, {130, 183}, {19, 37}, {217, 239}, {203, 253}, {200, 255}, {69, 125}, {218, 226}, {200, 240}, {194, 250}, {14, 52}, {150, 172}, {132, 191}, {129, 188}, {218, 231}, {16, 46}, {204, 242}, {83, 109}, {2, 61}, {206, 241}, {58, 122}, {191, 255}, {131, 195}, {14, 79}, {62, 127}, {168, 233}, {174, 239}, {27, 88}, {52, 119}, {29, 94}, {32, 100}, {181, 241}, {35, 103}, {23, 80}, {131, 203}, {53, 124}, {183, 254}, {57, 112}, {173, 231}, {180, 254}, {33, 106}, {158, 213}, {20, 88}, {147, 223}, {130, 207}, {144, 221}, {156, 209}, {28, 82}, {153, 215}, {170, 228}, {26, 85}, {34, 109}, {165, 234}, {170, 229}, {16, 64}, {19, 67}, {44, 125}, {20, 70}, {45, 127}, {35, 113}, {31, 77}, {132, 214}, {152, 202}, {8, 91}, {174, 253}, {41, 122}, {129, 210}, {180, 224}, {25, 76}, {181, 224}, {179, 230}, {46, 121}, {171, 252}, {141, 213}, {152, 193}, {169, 240}, {23, 77}, {180, 238}, {151, 205}, {3, 88}, {40, 115}, {39, 124}, {134, 221}, {149, 201}, {43, 118}, {137, 212}, {150, 203}, {165, 248}, {168, 246}, {22, 73}, {144, 240}, {29, 124}, {30, 127}, {160, 195}, {5, 97}, {20, 112}, {14, 106}, {141, 233}, {133, 227}, {159, 249}, {138, 237}, {177, 214}, {143, 232}, {147, 244}, {3, 106}, {156, 245}, {172, 197}, {142, 229}, {170, 198}, {175, 195}, {129, 236}, {142, 227}, {134, 232}, {161, 207}, {27, 107}, {49, 65}, {55, 70}, {156, 237}, {165, 212}, {174, 223}, {22, 100}, {138, 248}, {159, 236}, {38, 82}, {141, 249}, {146, 230}, {162, 214}, {134, 243}, {175, 218}, {167, 210}, {31, 105}, {178, 196}, {57, 79}, {32, 87}, {34, 85}, {129, 246}, {169, 222}, {33, 89}, {5, 127}, {143, 245}, {35, 88}, {56, 67}, {37, 94}, {160, 219}, {26, 102}, {23, 106}, {28, 97}, {147, 238}, {25, 103}, {37, 91}, {134, 248}, {147, 236}, {176, 207}, {8, 136}, {87, 215}, {56, 184}, {38, 166}, {9, 139}, {83, 208}, {12, 136}, {39, 163}, {76, 202}, {29, 154}, {78, 201}, {93, 212}, {45, 167}, {11, 128}, {126, 245}, {35, 175}, {120, 244}, {6, 136}, {95, 209}, {73, 199}, {18, 157}, {54, 166}, {50, 163}, {119, 230}, {120, 233}, {75, 217}, {9, 157}, {126, 234}, {119, 226}, {11, 157}, {82, 196}, {17, 135}, {12, 155}, {87, 192}, {86, 193}, {5, 157}, {94, 198}, {85, 205}, {118, 238}, {17, 136}, {11, 145}, {86, 204}, {32, 187}, {96, 251}, {6, 154}, {36, 185}, {18, 140}, {99, 253}, {66, 220}, {62, 158}, {101, 199}, {104, 202}, {24, 187}, {65, 226}, {58, 153}, {110, 205}, {52, 145}, {101, 192}, {63, 154}, {26, 188}, {98, 196}, {93, 251}, {103, 207}, {102, 204}, {118, 220}, {8, 163}, {104, 195}, {66, 233}, {62, 146}, {109, 193}, {125, 209}, {21, 184}, {51, 158}, {47, 130}, {38, 139}, {53, 155}, {84, 250}, {117, 219}, {59, 148}, {66, 241}, {99, 208}, {121, 202}, {15, 187}, {109, 217}, {17, 164}, {66, 247}, {44, 154}, {63, 137}, {54, 128}, {50, 133}, {30, 166}, {51, 139}, {111, 215}, {2, 187}, {47, 150}, {46, 151}, {43, 146}, {115, 201}, {50, 137}, {53, 142}, {40, 148}, {44, 144}, {123, 199}, {59, 132}, {105, 214}, {42, 235}, {70, 135}, {48, 241}, {64, 130}, {47, 236}, {59, 248}, {90, 159}, {123, 190}, {21, 211}, {67, 133}, {111, 169}, {116, 178}, {125, 186}, {70, 142}, {24, 209}, {26, 211}, {122, 179}, {42, 224}, {71, 140}, {102, 173}, {80, 155}, {41, 229}, {122, 182}, {57, 244}, {60, 243}, {68, 139}, {59, 235}, {2, 211}, {103, 182}, {100, 181}, {81, 128}, {57, 232}, {23, 198}, {67, 144}, {89, 138}, {121, 173}, {65, 151}, {90, 140}, {114, 164}, {100, 179}, {105, 190}, {47, 247}, {115, 171}, {120, 160}, {113, 168}, {117, 172}, {42, 240}, {60, 224}, {36, 250}, {15, 208}, {99, 188}, {42, 245}, {33, 254}, {64, 160}, {85, 181}, {76, 172}, {73, 169}, {71, 166}, {21, 247}, {68, 167}, {15, 235}, {93, 184}, {116, 145}, {24, 254}, {75, 173}, {69, 163}, {27, 253}, {108, 138}, {95, 184}, {3, 235}, {56, 208}, {83, 185}, {107, 128}, {121, 146}, {72, 164}, {92, 176}, {94, 176}, {48, 223}, {78, 190}, {3, 247}, {32, 212}, {107, 159}, {36, 211}, {108, 155}, {74, 179}, {81, 168}, {15, 244}, {77, 182}, {115, 143}, {21, 232}, {89, 164}, {82, 175}, {113, 140}, {77, 178}, {9, 268}, {18, 277}, {24, 273}, {27, 274}, {6, 268}, {9, 259}, {18, 287}, {6, 265}, {12, 287}, {12, 283}, {30, 265}, {30, 262}, {39, 262}, {63, 286}, {63, 284}, {39, 259}, {51, 278}, {51, 286}, {54, 283}, {54, 281}, {45, 284}, {33, 276}, {45, 280}, {36, 274}, {75, 265}, {78, 268}, {78, 266}, {93, 276}, {74, 256}, {75, 263}, {72, 281}, {69, 278}, {90, 270}, {86, 259}, {81, 264}, {81, 266}, {86, 269}, {84, 271}, {69, 280}, {72, 277}, {90, 260}, {108, 270}, {104, 268}, {123, 287}, {108, 266}, {123, 284}, {101, 269}, {111, 263}, {99, 271}, {101, 265}, {104, 260}, {111, 259}, {110, 256}, {117, 283}, {117, 282}, {96, 273}, {114, 260}, {116, 258}, {114, 264}, {152, 287}, {149, 283}, {152, 278}, {131, 277}, {131, 288}, {161, 258}, {183, 274}, {191, 276}, {189, 269}, {176, 257}, {149, 288}, {177, 260}, {189, 267}, {162, 277}, {177, 262}, {162, 282}, {171, 273}, {180, 271}, {186, 263}, {174, 272}, {186, 261}, {197, 262}, {196, 257}, {222, 280}, {222, 279}, {219, 272}, {216, 276}, {237, 288}, {197, 266}, {213, 261}, {194, 275}, {210, 263}, {203, 275}, {213, 269}, {200, 273}, {249, 288}, {210, 267}, {206, 274}, {221, 256}, {227, 257}, {242, 279}, {230, 257}, {246, 285}, {242, 286}, {246, 282}, {238, 256}, {249, 279}, {234, 282}, {237, 285}, {255, 270}, {228, 278}, {239, 285}, {252, 264}, {255, 267}, {239, 280}, {251, 258}, {252, 261}, {231, 284}, {225, 285}, {228, 281}, {234, 279}, {231, 281}, {225, 286} }>;

(II) A more general form is to represent the graph as the orbit of {48, 49} under the group generated by the following permutations:

a: (1, 2)(4, 49)(5, 50)(6, 51)(7, 61)(8, 62)(9, 63)(10, 211)(11, 212)(12, 213)(13, 19)(14, 21)(15, 20)(16, 187)(17, 188)(18, 189)(22, 65)(23, 66)(24, 64)(25, 60)(26, 58)(27, 59)(28, 67)(29, 68)(30, 69)(31, 48)(32, 46)(33, 47)(34, 41)(35, 42)(36, 40)(37, 43)(38, 44)(39, 45)(52, 184)(53, 185)(54, 186)(55, 56)(70, 208)(71, 209)(72, 210)(73, 226)(74, 227)(75, 228)(76, 243)(77, 241)(78, 242)(79, 232)(80, 233)(81, 234)(82, 144)(83, 142)(84, 143)(85, 122)(86, 123)(87, 121)(88, 235)(89, 236)(90, 237)(91, 146)(92, 147)(93, 145)(94, 118)(95, 119)(96, 120)(97, 133)(98, 134)(99, 135)(100, 151)(101, 152)(102, 153)(103, 224)(104, 225)(105, 223)(106, 247)(107, 248)(108, 249)(109, 229)(110, 230)(111, 231)(112, 244)(113, 245)(114, 246)(115, 250)(116, 251)(117, 252)(124, 167)(125, 166)(126, 168)(127, 163)(128, 165)(129, 164)(130, 254)(131, 255)(132, 253)(136, 158)(137, 157)(138, 159)(139, 154)(140, 156)(141, 155)(148, 274)(149, 275)(150, 276)(160, 273)(161, 271)(162, 272)(169, 218)(170, 217)(171, 219)(172, 216)(173, 215)(174, 214)(175, 240)(176, 238)(177, 239)(178, 206)(179, 205)(180, 207)(181, 182)(190, 204)(191, 203)(192, 202)(193, 199)(194, 201)(195, 200)(196, 221)(197, 222)(198, 220)(256, 257)(259, 284)(260, 285)(261, 283)(262, 280)(263, 281)(264, 282)(265, 278)(266, 279)(267, 277)(268, 286)(269, 287)(270, 288)
b: (2, 136)(3, 157)(5, 106)(6, 187)(7, 10)(8, 61)(9, 235)(11, 88)(12, 211)(13, 31)(14, 25)(15, 268)(17, 49)(18, 247)(19, 58)(20, 46)(21, 287)(23, 97)(24, 265)(26, 155)(27, 128)(28, 77)(29, 100)(30, 254)(32, 154)(33, 127)(34, 40)(35, 145)(36, 283)(37, 122)(38, 148)(39, 224)(41, 91)(42, 259)(43, 105)(44, 87)(45, 276)(47, 140)(48, 164)(51, 248)(52, 103)(53, 85)(54, 274)(55, 182)(56, 190)(57, 202)(59, 139)(60, 163)(62, 89)(63, 212)(65, 135)(66, 277)(67, 153)(68, 132)(69, 243)(70, 151)(71, 130)(72, 241)(74, 198)(75, 273)(76, 79)(78, 208)(80, 102)(81, 253)(82, 178)(83, 201)(84, 172)(86, 245)(90, 236)(92, 146)(93, 284)(94, 179)(95, 199)(96, 173)(99, 266)(101, 209)(104, 244)(108, 188)(109, 115)(110, 229)(111, 240)(112, 121)(113, 150)(114, 223)(116, 175)(117, 250)(118, 214)(119, 207)(120, 195)(123, 184)(124, 181)(125, 192)(126, 204)(129, 270)(131, 233)(134, 278)(138, 158)(141, 288)(142, 205)(143, 193)(144, 215)(147, 260)(149, 185)(152, 232)(156, 269)(161, 226)(162, 220)(165, 286)(166, 183)(167, 191)(168, 203)(170, 256)(171, 217)(174, 264)(176, 230)(177, 238)(180, 262)(186, 225)(194, 282)(197, 271)(200, 263)(206, 281)(210, 255)(213, 237)(216, 280)(218, 258)(221, 228)(231, 251)(234, 242)(239, 252)(246, 275)(261, 285)
c: (4, 7)(5, 8)(6, 9)(10, 16)(11, 17)(12, 18)(13, 19)(14, 20)(15, 21)(22, 34)(23, 35)(24, 36)(25, 31)(26, 32)(27, 33)(28, 37)(29, 38)(30, 39)(40, 64)(41, 65)(42, 66)(43, 67)(44, 68)(45, 69)(46, 58)(47, 59)(48, 60)(49, 61)(50, 62)(51, 63)(52, 70)(53, 71)(54, 72)(73, 109)(74, 110)(75, 111)(76, 105)(77, 103)(78, 104)(79, 112)(80, 113)(81, 114)(82, 94)(83, 95)(84, 96)(85, 100)(86, 101)(87, 102)(88, 106)(89, 107)(90, 108)(91, 97)(92, 98)(93, 99)(115, 160)(116, 161)(117, 162)(118, 144)(119, 142)(120, 143)(121, 153)(122, 151)(123, 152)(124, 166)(125, 167)(126, 168)(127, 163)(128, 164)(129, 165)(130, 148)(131, 149)(132, 150)(133, 146)(134, 147)(135, 145)(136, 157)(137, 158)(138, 159)(139, 154)(140, 155)(141, 156)(169, 217)(170, 218)(171, 219)(172, 214)(173, 215)(174, 216)(175, 198)(176, 196)(177, 197)(178, 207)(179, 205)(180, 206)(184, 208)(185, 209)(186, 210)(187, 211)(188, 212)(189, 213)(190, 202)(191, 203)(192, 204)(193, 199)(194, 200)(195, 201)(220, 240)(221, 238)(222, 239)(223, 243)(224, 241)(225, 242)(226, 229)(227, 230)(228, 231)(232, 244)(233, 245)(234, 246)(235, 247)(236, 248)(237, 249)(250, 273)(251, 271)(252, 272)(253, 276)(254, 274)(255, 275)(259, 265)(260, 266)(261, 267)(277, 283)(278, 284)(279, 285)
d: (1, 4, 13, 28, 55, 37, 19, 7)(2, 5, 14, 29, 56, 38, 20, 8)(3, 6, 15, 30, 57, 39, 21, 9)(10, 22, 43, 82, 70, 91, 49, 25)(11, 23, 44, 83, 71, 92, 50, 26)(12, 24, 45, 84, 72, 93, 51, 27)(16, 31, 61, 97, 52, 94, 67, 34)(17, 32, 62, 98, 53, 95, 68, 35)(18, 33, 63, 99, 54, 96, 69, 36)(40, 73, 118, 175, 135, 87, 48, 76)(41, 74, 119, 176, 133, 85, 46, 77)(42, 75, 120, 177, 134, 86, 47, 78)(58, 100, 146, 196, 142, 110, 65, 103)(59, 101, 147, 197, 143, 111, 66, 104)(60, 102, 145, 198, 144, 109, 64, 105)(79, 124, 184, 139, 88, 136, 187, 127)(80, 125, 185, 140, 89, 137, 188, 128)(81, 126, 186, 141, 90, 138, 189, 129)(106, 154, 208, 166, 112, 163, 211, 157)(107, 155, 209, 167, 113, 164, 212, 158)(108, 156, 210, 168, 114, 165, 213, 159)(115, 169, 220, 195, 132, 192, 223, 172)(116, 170, 221, 193, 130, 190, 224, 173)(117, 171, 222, 194, 131, 191, 225, 174)(121, 178, 229, 256, 226, 207, 153, 181)(122, 179, 230, 257, 227, 205, 151, 182)(123, 180, 231, 258, 228, 206, 152, 183)(148, 199, 238, 218, 161, 215, 241, 202)(149, 200, 239, 219, 162, 216, 242, 203)(150, 201, 240, 217, 160, 214, 243, 204)(232, 259, 247, 268, 235, 265, 244, 262)(233, 260, 248, 269, 236, 266, 245, 263)(234, 261, 249, 270, 237, 267, 246, 264)(250, 277, 276, 286, 253, 283, 273, 280)(251, 278, 274, 287, 254, 284, 271, 281)(252, 279, 275, 288, 255, 285, 272, 282)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 80 ]
288
-1 4 16 7 10
-2 187 211 49 61
-3 88 235 247 106
-4 22 1 13 31
-5 25 157 127 97
-6 154 265 136 268
-7 1 34 25 19
-8 91 136 31 163
-9 157 268 259 139
-10 1 14 58 40
-11 46 145 157 128
-12 155 287 136 283
-13 4 28 61 43
-14 79 106 52 10
-15 187 244 235 208
-16 1 46 20 64
-17 58 135 136 164
-18 287 277 157 140
-19 67 37 49 7
-20 88 112 70 16
-21 232 211 247 184
-22 100 4 29 73
-23 77 198 80 106
-24 187 209 254 273
-25 103 5 7 76
-26 188 211 102 85
-27 88 253 107 274
-28 55 13 82 97
-29 22 154 124 94
-30 166 265 127 262
-31 77 4 105 8
-32 187 100 212 87
-33 89 254 276 106
-34 38 7 85 109
-35 88 113 103 175
-36 211 250 185 274
-37 55 91 94 19
-38 34 166 82 139
-39 124 259 163 262
-40 115 148 53 10
-41 44 122 61 229
-42 245 224 235 240
-43 56 13 146 118
-44 154 144 125 41
-45 167 280 127 284
-46 11 121 16 151
-47 236 247 150 130
-48 223 49 62 241
-49 2 48 19 65
-50 133 60 137 163
-51 286 278 158 139
-52 55 145 14 119
-53 155 124 40 142
-54 166 281 128 283
-55 37 70 28 52
-56 67 184 43 208
-57 232 79 112 244
-58 122 17 10 153
-59 132 235 148 248
-60 243 224 50 61
-61 2 13 60 41
-62 146 48 158 127
-63 154 286 137 284
-64 16 71 160 130
-65 68 49 226 151
-66 220 233 247 241
-67 56 133 144 19
-68 167 139 118 65
-69 278 125 280 163
-70 55 135 20 142
-71 166 140 64 119
-72 277 124 281 164
-73 22 199 169 95
-74 179 256 83 97
-75 265 173 217 263
-76 25 202 172 98
-77 23 178 182 31
-78 266 190 201 268
-79 57 14 84 98
-80 23 155 126 96
-81 264 266 168 128
-82 38 28 196 175
-83 74 185 109 208
-84 79 113 271 250
-85 34 26 181 205
-86 269 193 204 259
-87 91 192 215 32
-88 35 3 27 20
-89 33 92 138 164
-90 159 270 260 140
-91 110 37 8 87
-92 176 89 112 105
-93 276 212 184 251
-94 176 198 37 29
-95 110 209 73 184
-96 112 80 251 273
-97 102 5 28 74
-98 79 107 196 76
-99 253 188 271 208
-100 22 179 181 32
-101 199 265 192 269
-102 26 204 173 97
-103 35 25 182 207
-104 202 268 260 195
-105 190 92 214 31
-106 33 23 3 14
-107 27 159 128 98
-108 155 266 138 270
-109 34 83 193 217
-110 91 256 95 205
-111 169 215 259 263
-112 57 92 96 20
-113 35 168 84 140
-114 264 126 260 164
-115 143 201 171 40
-116 145 178 258 120
-117 172 282 283 219
-118 220 68 238 43
-119 71 226 52 230
-120 233 244 116 160
-121 46 146 202 173
-122 58 179 182 41
-123 199 287 190 284
-124 39 72 29 53
-125 44 209 69 186
-126 80 234 245 114
-127 45 5 62 30
-128 11 81 107 54
-129 188 210 246 236
-130 47 183 64 207
-131 277 288 203 195
-132 135 59 191 214
-133 67 50 227 153
-134 221 232 243 248
-135 132 70 17 161
-136 12 6 17 8
-137 189 212 50 63
-138 89 237 248 108
-139 68 38 51 9
-140 90 113 71 18
-141 233 213 249 185
-142 70 227 53 229
-143 232 245 115 161
-144 44 67 221 240
-145 11 116 150 52
-146 121 62 43 230
-147 244 223 236 238
-148 178 59 40 183
-149 288 201 191 283
-150 145 47 203 172
-151 46 182 205 65
-152 287 278 202 193
-153 133 58 190 215
-154 44 6 29 63
-155 12 80 53 108
-156 209 189 245 237
-157 11 5 18 9
-158 188 213 51 62
-159 90 236 249 107
-160 195 64 120 219
-161 143 135 258 207
-162 277 214 171 282
-163 69 39 50 8
-164 89 114 17 72
-165 212 234 248 186
-166 38 71 30 54
-167 45 210 68 185
-168 233 113 81 246
-169 111 222 73 240
-170 198 177 228 229
-171 115 162 273 252
-172 117 150 76 197
-173 121 231 102 75
-174 253 223 239 272
-175 35 82 195 218
-176 92 257 94 207
-177 170 214 260 262
-178 77 148 116 196
-179 100 122 74 230
-180 254 224 238 271
-181 100 224 85 241
-182 77 122 103 151
-183 254 148 130 274
-184 56 93 95 21
-185 167 36 83 141
-186 165 125 261 263
-187 2 24 15 32
-188 99 26 158 129
-189 156 267 137 269
-190 78 123 105 153
-191 132 276 255 149
-192 243 101 225 87
-193 226 86 152 109
-194 220 242 275 250
-195 104 160 131 175
-196 178 257 82 98
-197 266 172 218 262
-198 23 201 170 94
-199 101 123 73 229
-200 255 225 240 273
-201 198 78 115 149
-202 121 104 152 76
-203 253 275 150 131
-204 242 102 223 86
-205 110 227 85 151
-206 221 251 241 274
-207 176 103 161 130
-208 99 56 15 83
-209 24 156 125 95
-210 167 267 129 263
-211 2 36 26 21
-212 165 93 137 32
-213 158 269 261 141
-214 132 177 105 162
-215 111 228 87 153
-216 243 276 222 252
-217 220 239 75 109
-218 231 226 175 197
-219 160 117 250 272
-220 66 194 118 217
-221 144 134 256 206
-222 169 279 280 216
-223 48 147 204 174
-224 180 60 181 42
-225 286 200 192 285
-226 193 119 218 65
-227 133 257 205 142
-228 278 170 215 281
-229 199 170 41 142
-230 146 179 257 119
-231 281 173 218 284
-232 143 57 134 21
-233 66 168 141 120
-234 165 279 126 282
-235 3 15 59 42
-236 47 147 159 129
-237 156 288 138 285
-238 256 147 180 118
-239 280 217 174 285
-240 144 200 169 42
-241 66 48 181 206
-242 286 279 204 194
-243 134 60 192 216
-244 57 15 147 120
-245 143 156 126 42
-246 168 282 129 285
-247 66 3 47 21
-248 165 134 59 138
-249 288 279 159 141
-250 36 84 194 219
-251 93 258 96 206
-252 264 171 216 261
-253 99 27 203 174
-254 33 24 180 183
-255 200 267 191 270
-256 110 221 238 74
-257 176 227 196 230
-258 116 161 271 251
-259 111 39 9 86
-260 177 90 114 104
-261 275 213 186 252
-262 177 39 30 197
-263 111 210 75 186
-264 81 114 272 252
-265 101 6 30 75
-266 78 81 108 197
-267 210 189 255 272
-268 78 104 6 9
-269 101 189 213 86
-270 275 90 255 108
-271 99 180 258 84
-272 264 267 174 219
-273 24 200 171 96
-274 36 27 183 206
-275 203 270 194 261
-276 33 191 93 216
-277 72 18 162 131
-278 69 51 228 152
-279 242 222 234 249
-280 45 222 69 239
-281 231 72 228 54
-282 234 246 117 162
-283 12 149 117 54
-284 231 45 123 63
-285 246 225 237 239
-286 242 225 51 63
-287 12 123 18 152
-288 149 237 249 131
0

**************