[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 288, 83 ] =
UG(ATD[288,55]).
(I) Following is a form readable by MAGMA:
g:=Graph<288|{ {48, 49}, {60, 61}, {52, 55}, {92, 95}, {124, 127}, {10, 14},
{184, 188}, {90, 94}, {34, 38}, {16, 20}, {1, 4}, {82, 87}, {65, 68}, {41, 44},
{147, 150}, {1, 7}, {185, 191}, {97, 103}, {160, 166}, {64, 71}, {74, 77}, {100,
108}, {273, 281}, {231, 239}, {4, 13}, {258, 267}, {67, 74}, {119, 126}, {1,
10}, {261, 270}, {22, 29}, {258, 270}, {118, 123}, {276, 281}, {48, 62}, {50,
60}, {115, 125}, {116, 122}, {70, 73}, {181, 186}, {1, 16}, {13, 28}, {161,
176}, {4, 22}, {71, 85}, {68, 86}, {43, 56}, {7, 19}, {261, 273}, {228, 240},
{101, 113}, {41, 61}, {8, 31}, {136, 144}, {200, 209}, {4, 31}, {231, 252}, {77,
86}, {133, 158}, {5, 25}, {40, 53}, {228, 249}, {7, 25}, {131, 157}, {163, 188},
{67, 98}, {10, 40}, {207, 237}, {19, 49}, {219, 248}, {7, 34}, {11, 46}, {13,
43}, {150, 176}, {70, 97}, {195, 235}, {196, 236}, {65, 104}, {209, 248}, {195,
234}, {95, 118}, {77, 100}, {79, 101}, {94, 116}, {17, 58}, {28, 55}, {200,
229}, {201, 228}, {76, 98}, {142, 161}, {10, 58}, {219, 235}, {95, 111}, {83,
99}, {13, 61}, {145, 161}, {2, 49}, {196, 247}, {132, 183}, {129, 181}, {19,
37}, {207, 249}, {192, 246}, {73, 127}, {82, 101}, {157, 165}, {14, 52}, {215,
237}, {138, 177}, {222, 229}, {148, 168}, {75, 118}, {85, 104}, {134, 187}, {16,
46}, {215, 233}, {209, 239}, {2, 61}, {128, 191}, {131, 188}, {27, 91}, {137,
201}, {146, 210}, {26, 88}, {183, 245}, {180, 246}, {130, 192}, {129, 194},
{134, 197}, {23, 83}, {132, 193}, {141, 203}, {23, 80}, {133, 194}, {52, 124},
{146, 218}, {156, 212}, {175, 231}, {28, 85}, {32, 106}, {180, 254}, {135, 205},
{168, 227}, {53, 121}, {56, 116}, {162, 238}, {173, 225}, {35, 109}, {20, 91},
{31, 80}, {16, 64}, {55, 103}, {19, 67}, {171, 251}, {33, 112}, {189, 236}, {34,
115}, {135, 214}, {174, 255}, {20, 70}, {149, 199}, {141, 222}, {177, 226}, {35,
119}, {137, 221}, {152, 204}, {180, 224}, {162, 247}, {189, 232}, {8, 94}, {44,
122}, {43, 125}, {25, 79}, {128, 214}, {145, 198}, {190, 233}, {3, 91}, {171,
243}, {22, 76}, {38, 124}, {130, 216}, {14, 82}, {182, 234}, {37, 121}, {133,
217}, {174, 242}, {143, 210}, {147, 206}, {5, 100}, {185, 216}, {149, 244},
{180, 213}, {20, 118}, {182, 212}, {156, 255}, {166, 197}, {165, 193}, {159,
250}, {162, 199}, {163, 198}, {168, 205}, {173, 203}, {23, 112}, {153, 254},
{171, 204}, {143, 230}, {156, 245}, {27, 113}, {153, 243}, {164, 206}, {57, 82},
{190, 213}, {149, 254}, {37, 73}, {149, 249}, {159, 242}, {31, 111}, {49, 65},
{138, 251}, {141, 252}, {147, 226}, {144, 226}, {3, 112}, {25, 109}, {159, 235},
{26, 108}, {171, 221}, {159, 232}, {167, 208}, {28, 100}, {35, 91}, {152, 224},
{32, 90}, {34, 88}, {138, 240}, {37, 94}, {186, 193}, {22, 106}, {29, 97}, {164,
216}, {33, 92}, {156, 225}, {175, 210}, {14, 112}, {167, 217}, {141, 242}, {165,
218}, {50, 178}, {96, 224}, {123, 251}, {89, 219}, {126, 250}, {44, 169}, {17,
151}, {11, 140}, {17, 150}, {46, 166}, {18, 155}, {89, 208}, {81, 216}, {57,
176}, {47, 165}, {105, 227}, {86, 220}, {66, 200}, {40, 163}, {78, 194}, {111,
226}, {5, 139}, {104, 230}, {96, 238}, {79, 193}, {6, 151}, {126, 239}, {58,
168}, {9, 154}, {62, 173}, {38, 181}, {122, 233}, {29, 136}, {90, 207}, {80,
197}, {39, 178}, {30, 139}, {123, 238}, {125, 232}, {11, 157}, {79, 217}, {63,
169}, {115, 229}, {117, 227}, {99, 244}, {39, 191}, {59, 163}, {74, 211}, {76,
214}, {12, 151}, {81, 205}, {88, 196}, {51, 173}, {86, 200}, {8, 151}, {53,
170}, {62, 158}, {17, 179}, {87, 245}, {74, 232}, {111, 205}, {115, 208}, {107,
207}, {9, 172}, {98, 199}, {44, 137}, {12, 170}, {50, 148}, {45, 139}, {11,
172}, {63, 152}, {59, 147}, {109, 197}, {5, 172}, {52, 157}, {51, 154}, {41,
128}, {122, 211}, {125, 212}, {40, 130}, {50, 152}, {46, 133}, {35, 143}, {102,
203}, {23, 185}, {106, 196}, {108, 194}, {6, 169}, {41, 134}, {84, 231}, {96,
211}, {29, 169}, {43, 158}, {66, 247}, {62, 139}, {66, 245}, {108, 219}, {110,
217}, {104, 208}, {120, 192}, {55, 142}, {90, 227}, {8, 178}, {102, 220}, {54,
140}, {38, 154}, {58, 134}, {110, 210}, {53, 136}, {107, 214}, {18, 172}, {47,
145}, {66, 253}, {98, 221}, {75, 244}, {32, 224}, {119, 183}, {42, 233}, {57,
250}, {127, 187}, {15, 202}, {92, 153}, {60, 249}, {59, 254}, {26, 223}, {24,
221}, {21, 211}, {93, 155}, {42, 236}, {48, 247}, {103, 160}, {2, 202}, {75,
131}, {45, 229}, {21, 223}, {59, 241}, {36, 239}, {120, 179}, {109, 161}, {54,
230}, {70, 150}, {60, 236}, {26, 203}, {95, 142}, {64, 145}, {42, 251}, {106,
187}, {24, 202}, {47, 253}, {15, 220}, {99, 176}, {116, 160}, {57, 238}, {67,
148}, {84, 140}, {97, 185}, {114, 170}, {83, 138}, {42, 241}, {48, 235}, {71,
155}, {2, 223}, {101, 184}, {47, 242}, {68, 154}, {113, 174}, {21, 244}, {105,
136}, {127, 158}, {56, 220}, {65, 166}, {21, 253}, {32, 202}, {114, 153}, {80,
188}, {119, 155}, {85, 184}, {64, 175}, {92, 179}, {36, 212}, {73, 184}, {3,
241}, {76, 190}, {71, 181}, {68, 182}, {93, 174}, {103, 148}, {124, 143}, {15,
250}, {77, 187}, {69, 178}, {72, 191}, {121, 142}, {30, 230}, {88, 160}, {87,
175}, {78, 182}, {83, 170}, {121, 128}, {123, 130}, {36, 223}, {72, 179}, {69,
190}, {117, 137}, {113, 140}, {126, 131}, {3, 253}, {15, 241}, {56, 199}, {27,
280}, {9, 271}, {6, 271}, {6, 268}, {18, 287}, {12, 284}, {30, 268}, {12, 287},
{18, 263}, {30, 265}, {27, 259}, {24, 257}, {9, 274}, {24, 260}, {63, 286}, {54,
277}, {63, 283}, {33, 260}, {54, 284}, {51, 286}, {39, 277}, {39, 274}, {51,
262}, {45, 283}, {33, 282}, {45, 278}, {36, 280}, {72, 265}, {78, 268}, {69,
262}, {78, 266}, {89, 272}, {75, 256}, {89, 274}, {93, 273}, {93, 275}, {69,
266}, {72, 263}, {87, 256}, {84, 269}, {81, 269}, {81, 271}, {84, 267}, {105,
265}, {110, 271}, {99, 257}, {114, 273}, {117, 278}, {102, 259}, {102, 256},
{107, 268}, {117, 274}, {120, 275}, {105, 262}, {120, 279}, {96, 282}, {107,
272}, {110, 275}, {114, 269}, {144, 275}, {164, 288}, {144, 277}, {132, 279},
{129, 277}, {146, 263}, {132, 284}, {135, 287}, {129, 283}, {135, 283}, {167,
262}, {146, 288}, {186, 265}, {183, 258}, {177, 263}, {186, 269}, {164, 284},
{167, 287}, {189, 260}, {162, 280}, {177, 267}, {189, 256}, {195, 259}, {192,
257}, {213, 276}, {201, 264}, {195, 258}, {198, 260}, {204, 270}, {201, 266},
{218, 281}, {213, 278}, {209, 281}, {206, 261}, {222, 270}, {215, 261}, {243,
288}, {206, 282}, {222, 266}, {215, 257}, {218, 259}, {204, 272}, {198, 280},
{255, 288}, {252, 285}, {240, 276}, {248, 286}, {240, 279}, {252, 279}, {243,
285}, {237, 285}, {248, 264}, {225, 272}, {237, 286}, {225, 276}, {234, 285},
{255, 264}, {234, 278}, {246, 267}, {228, 282}, {246, 264} }>;
(II) A more general form is to represent the graph as the orbit of {48, 49}
under the group generated by the following permutations:
a: (4, 7)(5, 8)(6, 9)(10, 16)(11, 17)(12, 18)(13, 19)(14, 20)(15, 21)(22,
34)(23, 35)(24, 36)(25, 31)(26, 32)(27, 33)(28, 37)(29, 38)(30, 39)(40, 64)(41,
65)(42, 66)(43, 67)(44, 68)(45, 69)(46, 58)(47, 59)(48, 60)(49, 61)(50, 62)(51,
63)(52, 70)(53, 71)(54, 72)(55, 73)(56, 74)(57, 75)(76, 115)(77, 116)(78,
117)(79, 111)(80, 109)(81, 110)(82, 118)(83, 119)(84, 120)(85, 121)(86, 122)(87,
123)(88, 106)(89, 107)(90, 108)(91, 112)(92, 113)(93, 114)(94, 100)(95, 101)(96,
102)(97, 124)(98, 125)(99, 126)(103, 127)(104, 128)(105, 129)(130, 175)(131,
176)(132, 177)(133, 168)(134, 166)(135, 167)(136, 181)(137, 182)(138, 183)(139,
178)(140, 179)(141, 180)(142, 184)(143, 185)(144, 186)(145, 163)(146, 164)(147,
165)(148, 158)(149, 159)(150, 157)(151, 172)(152, 173)(153, 174)(154, 169)(155,
170)(156, 171)(160, 187)(161, 188)(162, 189)(190, 229)(191, 230)(192, 231)(193,
226)(194, 227)(195, 228)(199, 232)(200, 233)(201, 234)(202, 223)(203, 224)(204,
225)(205, 217)(206, 218)(207, 219)(208, 214)(209, 215)(210, 216)(211, 220)(212,
221)(213, 222)(235, 249)(236, 247)(237, 248)(238, 256)(239, 257)(240, 258)(241,
253)(242, 254)(243, 255)(244, 250)(245, 251)(246, 252)(259, 282)(260, 280)(261,
281)(262, 283)(263, 284)(264, 285)(265, 277)(266, 278)(267, 279)(268, 274)(269,
275)(270, 276) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(4, 49)(5, 50)(6, 51)(7, 61)(8, 62)(9, 63)(10, 223)(11, 224)(12,
225)(13, 19)(14, 21)(15, 20)(16, 202)(17, 203)(18, 204)(22, 65)(23, 66)(24,
64)(25, 60)(26, 58)(27, 59)(28, 67)(29, 68)(30, 69)(31, 48)(32, 46)(33, 47)(34,
41)(35, 42)(36, 40)(37, 43)(38, 44)(39, 45)(52, 211)(53, 212)(54, 213)(55,
74)(56, 73)(57, 75)(70, 220)(71, 221)(72, 222)(76, 104)(77, 103)(78, 105)(79,
249)(80, 247)(81, 248)(82, 244)(83, 245)(84, 246)(85, 98)(86, 97)(87, 99)(88,
134)(89, 135)(90, 133)(91, 241)(92, 242)(93, 243)(94, 158)(95, 159)(96,
157)(100, 148)(101, 149)(102, 150)(106, 166)(107, 167)(108, 168)(109, 236)(110,
237)(111, 235)(112, 253)(113, 254)(114, 255)(115, 128)(116, 127)(117, 129)(118,
250)(119, 251)(120, 252)(121, 125)(122, 124)(123, 126)(130, 239)(131, 238)(132,
240)(136, 182)(137, 181)(138, 183)(139, 178)(140, 180)(141, 179)(142, 232)(143,
233)(144, 234)(145, 260)(146, 261)(147, 259)(151, 173)(152, 172)(153, 174)(154,
169)(155, 171)(156, 170)(160, 187)(161, 189)(162, 188)(163, 280)(164, 281)(165,
282)(175, 257)(176, 256)(177, 258)(184, 199)(185, 200)(186, 201)(190, 230)(191,
229)(192, 231)(193, 228)(194, 227)(195, 226)(196, 197)(205, 219)(206, 218)(207,
217)(208, 214)(209, 216)(210, 215)(262, 268)(263, 270)(264, 269)(265, 266)(271,
286)(272, 287)(273, 288)(274, 283)(275, 285)(276, 284)(277, 278)
c: (2, 3)(4, 10)(5, 11)(6, 12)(7, 16)(8, 17)(9, 18)(13, 14)(19, 20)(22, 40)(23,
41)(24, 42)(25, 46)(26, 47)(27, 48)(28, 52)(29, 53)(30, 54)(31, 58)(32, 59)(33,
60)(34, 64)(35, 65)(36, 66)(37, 70)(38, 71)(39, 72)(43, 82)(44, 83)(45, 84)(49,
91)(50, 92)(51, 93)(56, 57)(61, 112)(62, 113)(63, 114)(67, 118)(68, 119)(69,
120)(74, 75)(76, 130)(77, 131)(78, 132)(79, 133)(80, 134)(81, 135)(85, 124)(86,
126)(87, 125)(88, 145)(89, 146)(90, 147)(94, 150)(95, 148)(96, 149)(97, 121)(98,
123)(99, 122)(100, 157)(101, 158)(102, 159)(103, 142)(104, 143)(105, 144)(106,
163)(107, 164)(108, 165)(109, 166)(110, 167)(111, 168)(115, 175)(116, 176)(117,
177)(127, 184)(128, 185)(129, 186)(137, 138)(139, 140)(152, 153)(154, 155)(160,
161)(169, 170)(173, 174)(178, 179)(182, 183)(187, 188)(190, 192)(193, 194)(196,
198)(199, 238)(200, 239)(201, 240)(202, 241)(203, 242)(204, 243)(206, 207)(208,
210)(211, 244)(212, 245)(213, 246)(214, 216)(218, 219)(220, 250)(221, 251)(222,
252)(223, 253)(224, 254)(225, 255)(226, 227)(229, 231)(232, 256)(233, 257)(234,
258)(235, 259)(236, 260)(237, 261)(247, 280)(248, 281)(249, 282)(262, 275)(263,
274)(264, 276)(265, 277)(266, 279)(267, 278)(268, 284)(269, 283)(270, 285)(271,
287)(272, 288)(273, 286)
d: (1, 4)(2, 5)(3, 6)(7, 13)(8, 14)(9, 15)(10, 31)(11, 32)(12, 33)(16, 22)(17,
23)(18, 24)(19, 28)(20, 29)(21, 30)(25, 61)(26, 62)(27, 63)(34, 43)(35, 44)(36,
45)(37, 55)(38, 56)(39, 57)(40, 111)(41, 109)(42, 110)(46, 106)(47, 107)(48,
108)(49, 100)(50, 101)(51, 102)(52, 94)(53, 95)(54, 96)(58, 80)(59, 81)(60,
79)(64, 76)(65, 77)(66, 78)(67, 85)(68, 86)(69, 87)(70, 97)(71, 98)(72, 99)(73,
103)(74, 104)(75, 105)(82, 178)(83, 179)(84, 180)(88, 158)(89, 159)(90, 157)(91,
169)(92, 170)(93, 171)(112, 151)(113, 152)(114, 153)(115, 125)(116, 124)(117,
126)(118, 136)(119, 137)(120, 138)(121, 142)(122, 143)(123, 144)(127, 160)(128,
161)(129, 162)(130, 226)(131, 227)(132, 228)(133, 196)(134, 197)(135, 198)(139,
223)(140, 224)(141, 225)(145, 214)(146, 215)(147, 216)(148, 184)(149, 186)(150,
185)(154, 220)(155, 221)(156, 222)(163, 205)(164, 206)(165, 207)(166, 187)(167,
189)(168, 188)(172, 202)(173, 203)(174, 204)(175, 190)(176, 191)(177, 192)(181,
199)(182, 200)(183, 201)(193, 249)(194, 247)(195, 248)(208, 232)(209, 234)(210,
233)(211, 230)(212, 229)(213, 231)(217, 236)(218, 237)(219, 235)(238, 277)(239,
278)(240, 279)(241, 271)(242, 272)(243, 273)(244, 265)(245, 266)(246, 267)(250,
274)(251, 275)(252, 276)(253, 268)(254, 269)(255, 270)(256, 262)(257, 263)(258,
264)(259, 286)(260, 287)(261, 288)(280, 283)(281, 285)(282, 284)
C4[ 288, 83 ]
288
-1 4 16 7 10
-2 223 202 49 61
-3 253 112 91 241
-4 22 1 13 31
-5 100 25 139 172
-6 169 268 271 151
-7 1 34 25 19
-8 178 94 151 31
-9 154 172 271 274
-10 1 14 58 40
-11 46 157 172 140
-12 287 170 151 284
-13 4 28 61 43
-14 112 82 52 10
-15 220 202 250 241
-16 1 46 20 64
-17 58 179 150 151
-18 155 287 172 263
-19 67 37 49 7
-20 91 70 16 118
-21 253 211 244 223
-22 4 29 106 76
-23 112 80 83 185
-24 221 202 257 260
-25 79 5 7 109
-26 88 223 203 108
-27 91 113 280 259
-28 55 100 13 85
-29 22 136 169 97
-30 265 268 139 230
-31 111 80 4 8
-32 90 202 224 106
-33 112 92 260 282
-34 88 38 115 7
-35 143 91 119 109
-36 212 223 280 239
-37 121 94 73 19
-38 154 34 124 181
-39 178 277 191 274
-40 53 130 163 10
-41 44 134 61 128
-42 233 236 251 241
-43 56 13 125 158
-44 122 169 137 41
-45 278 139 283 229
-46 11 133 166 16
-47 165 242 253 145
-48 235 49 247 62
-49 2 48 19 65
-50 178 60 148 152
-51 154 286 173 262
-52 55 14 124 157
-53 121 136 170 40
-54 277 140 284 230
-55 103 28 52 142
-56 220 199 116 43
-57 176 82 238 250
-58 134 168 17 10
-59 254 147 163 241
-60 236 50 61 249
-61 2 13 60 41
-62 48 158 139 173
-63 286 169 283 152
-64 145 16 71 175
-65 166 68 49 104
-66 253 200 245 247
-67 148 19 74 98
-68 154 182 86 65
-69 178 266 190 262
-70 73 150 20 97
-71 155 181 85 64
-72 265 179 191 263
-73 37 70 127 184
-74 77 67 232 211
-75 244 256 118 131
-76 22 190 214 98
-77 187 100 74 86
-78 266 268 182 194
-79 101 25 193 217
-80 23 188 31 197
-81 269 205 216 271
-82 57 101 14 87
-83 99 23 170 138
-84 231 267 269 140
-85 71 104 28 184
-86 77 220 68 200
-87 245 256 82 175
-88 34 26 160 196
-89 272 208 219 274
-90 94 227 207 32
-91 35 3 27 20
-92 33 179 95 153
-93 275 155 174 273
-94 90 37 116 8
-95 111 92 118 142
-96 211 224 238 282
-97 70 103 29 185
-98 67 199 221 76
-99 176 244 257 83
-100 77 5 28 108
-101 79 113 82 184
-102 220 256 203 259
-103 55 148 160 97
-104 85 65 208 230
-105 265 136 227 262
-106 22 187 196 32
-107 268 214 272 207
-108 100 26 194 219
-109 35 25 161 197
-110 275 210 271 217
-111 226 95 205 31
-112 33 23 3 14
-113 101 27 140 174
-114 170 269 273 153
-115 34 125 229 208
-116 56 122 94 160
-117 278 137 227 274
-118 123 95 20 75
-119 155 35 126 183
-120 275 179 279 192
-121 37 128 53 142
-122 44 211 233 116
-123 238 118 130 251
-124 143 38 127 52
-125 232 212 115 43
-126 239 250 119 131
-127 187 124 158 73
-128 121 191 214 41
-129 277 181 194 283
-130 123 192 40 216
-131 188 157 126 75
-132 279 193 183 284
-133 46 158 194 217
-134 187 58 41 197
-135 287 214 205 283
-136 144 105 29 53
-137 44 221 201 117
-138 177 83 240 251
-139 45 5 62 30
-140 11 113 84 54
-141 242 222 203 252
-142 55 121 95 161
-143 210 35 124 230
-144 275 277 136 226
-145 198 47 161 64
-146 210 288 218 263
-147 59 226 150 206
-148 67 168 103 50
-149 199 254 244 249
-150 176 70 147 17
-151 12 6 17 8
-152 224 50 204 63
-153 243 254 92 114
-154 68 38 51 9
-155 71 93 18 119
-156 255 212 245 225
-157 11 165 52 131
-158 133 127 62 43
-159 242 232 235 250
-160 88 166 103 116
-161 176 145 109 142
-162 199 247 280 238
-163 198 188 59 40
-164 288 216 206 284
-165 47 157 193 218
-166 46 160 65 197
-167 287 217 262 208
-168 58 148 205 227
-169 44 6 29 63
-170 12 114 83 53
-171 221 243 204 251
-172 11 5 18 9
-173 203 225 51 62
-174 242 255 113 93
-175 231 210 64 87
-176 99 57 150 161
-177 267 138 226 263
-178 69 39 50 8
-179 92 17 72 120
-180 254 213 224 246
-181 38 71 129 186
-182 78 68 212 234
-183 132 245 258 119
-184 188 101 73 85
-185 23 191 216 97
-186 265 181 269 193
-187 77 134 127 106
-188 80 184 163 131
-189 232 256 236 260
-190 233 69 213 76
-191 39 72 128 185
-192 246 257 130 120
-193 132 165 79 186
-194 78 133 129 108
-195 234 235 258 259
-196 88 236 247 106
-197 166 134 80 109
-198 145 280 260 163
-199 56 149 162 98
-200 66 209 86 229
-201 264 266 137 228
-202 2 24 15 32
-203 102 26 173 141
-204 171 270 272 152
-205 111 135 168 81
-206 147 282 261 164
-207 90 237 249 107
-208 89 167 104 115
-209 200 248 281 239
-210 110 143 146 175
-211 122 74 96 21
-212 156 36 125 182
-213 276 190 278 180
-214 135 128 107 76
-215 233 257 237 261
-216 81 130 185 164
-217 110 133 79 167
-218 165 146 259 281
-219 89 235 248 108
-220 56 102 15 86
-221 24 137 171 98
-222 266 270 141 229
-223 2 36 26 21
-224 180 96 152 32
-225 276 156 173 272
-226 111 144 177 147
-227 90 168 105 117
-228 201 249 282 240
-229 45 200 222 115
-230 143 104 30 54
-231 84 239 175 252
-232 189 125 159 74
-233 122 190 215 42
-234 278 182 195 285
-235 48 159 195 219
-236 189 60 42 196
-237 286 215 207 285
-238 57 123 96 162
-239 209 231 36 126
-240 276 279 138 228
-241 3 15 59 42
-242 47 159 141 174
-243 288 171 153 285
-244 99 149 75 21
-245 66 156 183 87
-246 264 267 180 192
-247 66 48 162 196
-248 209 264 286 219
-249 60 149 228 207
-250 57 15 126 159
-251 123 138 171 42
-252 231 279 141 285
-253 66 3 47 21
-254 59 180 149 153
-255 264 156 288 174
-256 189 102 75 87
-257 99 24 192 215
-258 267 270 183 195
-259 102 27 195 218
-260 33 198 24 189
-261 215 270 206 273
-262 167 69 105 51
-263 177 146 72 18
-264 255 201 246 248
-265 72 105 30 186
-266 78 222 69 201
-267 177 246 258 84
-268 78 6 30 107
-269 81 114 84 186
-270 222 258 204 261
-271 110 81 6 9
-272 89 225 204 107
-273 114 93 281 261
-274 89 39 117 9
-275 110 144 93 120
-276 213 225 281 240
-277 144 39 129 54
-278 45 234 213 117
-279 132 240 120 252
-280 198 36 27 162
-281 209 276 218 273
-282 33 96 206 228
-283 45 135 63 129
-284 132 12 54 164
-285 243 234 237 252
-286 237 248 51 63
-287 12 167 135 18
-288 243 255 146 164
0