C4graphGraph forms for C4 [ 288, 107 ] = UG(ATD[288,130])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 107 ] = UG(ATD[288,130]).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {18, 19}, {22, 23}, {1, 2}, {225, 226}, {184, 187}, {68, 71}, {56, 59}, {1, 5}, {3, 7}, {2, 6}, {67, 70}, {136, 142}, {194, 196}, {66, 69}, {219, 220}, {274, 282}, {131, 138}, {229, 236}, {227, 234}, {134, 140}, {279, 285}, {135, 141}, {145, 155}, {130, 137}, {258, 265}, {151, 156}, {4, 8}, {2, 15}, {55, 58}, {54, 57}, {278, 281}, {228, 235}, {132, 139}, {13, 28}, {3, 16}, {259, 272}, {11, 24}, {7, 20}, {168, 188}, {198, 210}, {4, 17}, {14, 27}, {12, 25}, {6, 19}, {133, 144}, {5, 18}, {47, 56}, {13, 26}, {166, 191}, {256, 284}, {8, 21}, {270, 275}, {64, 93}, {10, 23}, {169, 180}, {9, 22}, {192, 223}, {101, 122}, {29, 61}, {212, 244}, {211, 243}, {80, 113}, {30, 60}, {73, 107}, {159, 189}, {149, 182}, {157, 190}, {24, 61}, {26, 63}, {3, 37}, {89, 127}, {72, 110}, {16, 55}, {25, 62}, {147, 180}, {5, 45}, {7, 47}, {6, 46}, {17, 56}, {19, 57}, {205, 231}, {153, 179}, {9, 34}, {208, 251}, {86, 125}, {23, 60}, {26, 54}, {20, 58}, {65, 111}, {21, 59}, {134, 168}, {4, 43}, {92, 115}, {199, 245}, {20, 32}, {79, 121}, {8, 48}, {12, 52}, {11, 51}, {10, 50}, {9, 49}, {15, 54}, {200, 241}, {93, 103}, {14, 53}, {201, 242}, {195, 248}, {24, 36}, {142, 179}, {286, 288}, {82, 109}, {88, 103}, {36, 100}, {131, 193}, {179, 241}, {135, 197}, {157, 223}, {160, 226}, {161, 227}, {181, 246}, {146, 214}, {184, 252}, {33, 100}, {178, 247}, {176, 246}, {179, 245}, {171, 236}, {172, 235}, {55, 126}, {182, 253}, {10, 70}, {63, 114}, {11, 69}, {44, 98}, {166, 232}, {183, 230}, {12, 94}, {31, 77}, {13, 95}, {162, 240}, {160, 243}, {136, 220}, {173, 249}, {141, 217}, {42, 127}, {189, 232}, {161, 244}, {14, 88}, {187, 237}, {41, 126}, {143, 216}, {3, 91}, {175, 247}, {168, 240}, {32, 121}, {37, 124}, {35, 122}, {149, 204}, {27, 64}, {38, 125}, {31, 68}, {140, 215}, {32, 124}, {150, 202}, {28, 65}, {30, 67}, {134, 219}, {161, 252}, {2, 92}, {62, 96}, {158, 192}, {160, 254}, {29, 66}, {36, 123}, {158, 255}, {40, 74}, {44, 78}, {143, 237}, {159, 253}, {170, 200}, {33, 69}, {190, 218}, {186, 222}, {185, 221}, {38, 66}, {35, 71}, {34, 70}, {41, 76}, {142, 235}, {150, 240}, {15, 104}, {42, 77}, {40, 79}, {31, 120}, {23, 112}, {128, 231}, {163, 203}, {24, 113}, {62, 87}, {60, 85}, {30, 119}, {28, 117}, {26, 115}, {46, 68}, {166, 204}, {169, 195}, {13, 102}, {61, 86}, {29, 118}, {25, 114}, {39, 75}, {162, 206}, {159, 242}, {167, 202}, {170, 199}, {38, 72}, {39, 73}, {27, 116}, {158, 241}, {164, 213}, {178, 195}, {41, 91}, {172, 222}, {170, 216}, {184, 203}, {173, 217}, {167, 210}, {171, 221}, {152, 239}, {181, 194}, {130, 250}, {16, 105}, {178, 203}, {174, 215}, {22, 111}, {20, 109}, {18, 107}, {168, 209}, {169, 211}, {17, 106}, {181, 206}, {21, 110}, {148, 239}, {149, 238}, {144, 236}, {138, 247}, {147, 238}, {19, 108}, {176, 207}, {175, 208}, {174, 209}, {132, 251}, {137, 246}, {57, 185}, {87, 215}, {86, 214}, {85, 213}, {84, 212}, {83, 211}, {58, 186}, {106, 234}, {5, 132}, {80, 209}, {39, 164}, {81, 210}, {105, 234}, {92, 216}, {94, 218}, {93, 217}, {74, 207}, {115, 245}, {1, 137}, {119, 255}, {8, 129}, {71, 206}, {104, 225}, {70, 205}, {118, 253}, {64, 204}, {89, 213}, {117, 249}, {87, 218}, {99, 237}, {110, 224}, {111, 225}, {97, 238}, {44, 188}, {118, 230}, {119, 231}, {87, 198}, {116, 229}, {121, 232}, {123, 234}, {112, 226}, {113, 227}, {9, 154}, {122, 233}, {14, 154}, {12, 153}, {40, 190}, {114, 228}, {50, 165}, {108, 251}, {37, 189}, {85, 205}, {41, 177}, {39, 191}, {120, 225}, {127, 230}, {93, 199}, {75, 208}, {54, 170}, {44, 177}, {82, 207}, {43, 139}, {31, 188}, {81, 242}, {10, 174}, {11, 173}, {99, 197}, {7, 175}, {125, 212}, {17, 187}, {43, 128}, {33, 141}, {47, 131}, {46, 130}, {45, 129}, {108, 192}, {34, 140}, {37, 138}, {53, 133}, {63, 143}, {62, 142}, {61, 141}, {60, 140}, {59, 139}, {58, 138}, {57, 137}, {65, 243}, {95, 237}, {35, 151}, {88, 236}, {51, 135}, {50, 134}, {49, 133}, {48, 132}, {107, 223}, {90, 239}, {94, 235}, {104, 221}, {4, 178}, {6, 176}, {105, 222}, {126, 201}, {73, 241}, {100, 220}, {126, 198}, {98, 219}, {40, 146}, {42, 145}, {52, 136}, {79, 242}, {38, 152}, {102, 216}, {28, 163}, {125, 194}, {34, 226}, {98, 162}, {99, 163}, {1, 192}, {81, 144}, {101, 164}, {33, 227}, {83, 145}, {42, 233}, {48, 244}, {35, 230}, {90, 159}, {96, 165}, {97, 164}, {27, 221}, {25, 222}, {74, 130}, {90, 146}, {75, 131}, {80, 153}, {82, 155}, {106, 163}, {89, 147}, {102, 172}, {43, 224}, {81, 154}, {98, 174}, {65, 143}, {99, 173}, {117, 187}, {83, 156}, {64, 144}, {109, 189}, {118, 166}, {101, 180}, {103, 182}, {105, 184}, {84, 129}, {71, 145}, {79, 152}, {36, 252}, {78, 150}, {103, 191}, {72, 146}, {77, 151}, {76, 150}, {73, 147}, {120, 162}, {32, 253}, {74, 148}, {75, 149}, {84, 139}, {86, 183}, {91, 186}, {92, 185}, {76, 171}, {124, 155}, {22, 254}, {15, 229}, {119, 157}, {45, 193}, {47, 195}, {46, 194}, {18, 255}, {108, 129}, {78, 161}, {59, 203}, {109, 156}, {21, 231}, {69, 183}, {117, 135}, {16, 228}, {96, 148}, {51, 199}, {50, 198}, {49, 197}, {48, 196}, {29, 233}, {112, 133}, {67, 180}, {77, 181}, {113, 136}, {94, 165}, {52, 200}, {91, 167}, {85, 169}, {53, 201}, {55, 202}, {96, 157}, {100, 153}, {30, 224}, {95, 160}, {97, 158}, {51, 278}, {56, 285}, {63, 275}, {52, 261}, {53, 260}, {49, 265}, {45, 274}, {66, 256}, {76, 267}, {78, 262}, {88, 278}, {84, 262}, {67, 279}, {89, 269}, {83, 263}, {68, 284}, {95, 263}, {82, 266}, {72, 272}, {90, 260}, {80, 271}, {123, 283}, {106, 264}, {97, 261}, {110, 265}, {111, 263}, {101, 271}, {115, 281}, {102, 266}, {107, 261}, {116, 282}, {127, 271}, {124, 270}, {112, 259}, {120, 268}, {104, 287}, {122, 269}, {114, 266}, {121, 260}, {123, 262}, {116, 267}, {128, 258}, {151, 273}, {155, 273}, {128, 272}, {156, 270}, {154, 259}, {152, 258}, {183, 277}, {182, 277}, {188, 287}, {176, 276}, {177, 283}, {190, 276}, {177, 282}, {175, 257}, {186, 264}, {148, 288}, {185, 268}, {171, 274}, {165, 280}, {191, 257}, {167, 280}, {172, 275}, {193, 257}, {217, 281}, {223, 286}, {196, 262}, {213, 279}, {208, 274}, {196, 256}, {212, 284}, {193, 267}, {211, 285}, {215, 280}, {202, 282}, {200, 281}, {220, 269}, {206, 287}, {201, 280}, {205, 286}, {214, 258}, {219, 271}, {197, 272}, {210, 260}, {214, 256}, {204, 278}, {207, 275}, {209, 269}, {255, 288}, {254, 287}, {243, 273}, {229, 268}, {248, 273}, {246, 284}, {247, 285}, {240, 283}, {228, 264}, {250, 276}, {238, 257}, {248, 279}, {244, 283}, {245, 261}, {251, 267}, {250, 266}, {249, 265}, {254, 268}, {250, 270}, {252, 264}, {218, 288}, {249, 259}, {239, 276}, {233, 277}, {232, 277}, {224, 286}, {248, 263} }>;

(II) A more general form is to represent the graph as the orbit of {18, 19} under the group generated by the following permutations:

a: (2, 5)(3, 9)(4, 13)(6, 18)(7, 22)(8, 26)(10, 32)(11, 36)(12, 38)(14, 41)(15, 45)(16, 49)(17, 28)(20, 23)(21, 63)(25, 72)(27, 76)(29, 80)(30, 82)(31, 39)(34, 37)(35, 89)(40, 96)(42, 101)(43, 102)(44, 103)(46, 107)(47, 111)(48, 115)(50, 121)(51, 123)(52, 125)(53, 126)(54, 129)(55, 133)(56, 65)(57, 108)(58, 112)(59, 143)(60, 109)(61, 113)(62, 146)(64, 150)(66, 153)(67, 155)(68, 73)(69, 100)(70, 124)(71, 147)(74, 157)(75, 120)(77, 164)(78, 93)(79, 165)(81, 167)(83, 169)(84, 170)(85, 156)(86, 136)(87, 90)(88, 177)(91, 154)(92, 132)(94, 152)(95, 178)(97, 181)(98, 182)(99, 184)(104, 193)(105, 197)(106, 117)(110, 114)(116, 171)(118, 209)(119, 207)(122, 127)(128, 172)(130, 223)(131, 225)(134, 232)(135, 234)(137, 192)(138, 226)(139, 216)(140, 189)(141, 227)(142, 214)(144, 202)(145, 180)(148, 190)(149, 162)(151, 213)(158, 246)(159, 215)(160, 247)(161, 217)(163, 187)(166, 168)(173, 252)(174, 253)(175, 254)(176, 255)(179, 256)(183, 220)(185, 251)(186, 259)(188, 191)(194, 261)(195, 263)(196, 245)(198, 260)(199, 262)(200, 212)(203, 237)(204, 240)(205, 270)(206, 238)(208, 268)(218, 239)(219, 277)(221, 267)(222, 272)(224, 266)(228, 265)(229, 274)(230, 269)(231, 275)(233, 271)(235, 258)(236, 282)(241, 284)(242, 280)(243, 285)(244, 281)(249, 264)(250, 286)(257, 287)(273, 279)(276, 288)(278, 283)
b: (1, 2)(3, 24)(4, 28)(5, 92)(6, 137)(7, 11)(8, 13)(9, 67)(10, 140)(12, 150)(14, 147)(15, 192)(16, 36)(17, 163)(18, 185)(19, 57)(20, 69)(21, 95)(22, 30)(23, 60)(25, 78)(26, 129)(27, 73)(29, 189)(31, 148)(32, 183)(33, 58)(34, 70)(35, 79)(37, 61)(38, 156)(39, 64)(40, 71)(41, 136)(42, 90)(43, 65)(44, 62)(45, 115)(46, 130)(47, 173)(48, 102)(49, 279)(50, 134)(51, 175)(52, 76)(53, 89)(54, 108)(55, 100)(56, 99)(59, 237)(63, 84)(66, 109)(68, 74)(72, 83)(75, 93)(77, 239)(80, 167)(81, 101)(82, 256)(85, 112)(86, 124)(87, 98)(88, 238)(91, 113)(94, 240)(96, 188)(97, 236)(103, 149)(104, 223)(105, 252)(107, 221)(110, 263)(111, 224)(114, 262)(116, 241)(117, 178)(118, 232)(119, 254)(120, 288)(121, 230)(122, 242)(123, 228)(125, 270)(126, 220)(127, 260)(128, 243)(131, 217)(132, 216)(133, 213)(135, 247)(138, 141)(139, 143)(142, 177)(144, 164)(145, 146)(151, 152)(153, 202)(154, 180)(155, 214)(157, 287)(158, 229)(159, 233)(160, 231)(161, 222)(162, 218)(165, 168)(169, 259)(170, 251)(171, 261)(172, 244)(174, 215)(176, 246)(179, 282)(181, 276)(186, 227)(187, 203)(190, 206)(191, 204)(193, 281)(194, 250)(195, 249)(196, 266)(197, 285)(198, 219)(199, 208)(200, 267)(201, 269)(205, 226)(207, 284)(209, 280)(210, 271)(211, 272)(212, 275)(225, 286)(234, 264)(235, 283)(245, 274)(248, 265)(253, 277)(255, 268)(257, 278)(258, 273)
c: (2, 137)(3, 140)(4, 147)(5, 192)(6, 57)(7, 60)(8, 73)(9, 189)(10, 58)(11, 61)(12, 78)(13, 71)(14, 90)(15, 130)(16, 134)(17, 89)(18, 108)(20, 23)(21, 39)(22, 109)(25, 44)(26, 68)(27, 239)(28, 35)(29, 173)(30, 175)(31, 63)(32, 112)(34, 37)(36, 113)(38, 93)(40, 236)(41, 87)(42, 237)(43, 238)(45, 223)(46, 54)(47, 85)(48, 241)(49, 232)(50, 55)(51, 86)(52, 262)(53, 260)(56, 213)(59, 164)(62, 177)(64, 152)(65, 151)(66, 217)(67, 247)(69, 141)(70, 138)(72, 103)(74, 229)(75, 231)(76, 218)(77, 143)(79, 144)(80, 252)(81, 242)(82, 254)(83, 263)(84, 261)(88, 146)(91, 215)(92, 246)(94, 150)(95, 145)(96, 282)(97, 139)(98, 222)(99, 233)(100, 227)(101, 203)(102, 206)(104, 250)(105, 219)(106, 269)(107, 129)(110, 191)(111, 156)(114, 188)(115, 284)(116, 148)(117, 230)(118, 249)(119, 208)(120, 275)(121, 133)(122, 163)(123, 136)(124, 226)(125, 199)(126, 198)(127, 187)(128, 149)(131, 205)(132, 158)(135, 183)(142, 283)(153, 161)(154, 159)(155, 160)(157, 274)(162, 172)(165, 202)(166, 265)(167, 280)(168, 228)(169, 195)(170, 194)(171, 190)(174, 186)(176, 185)(178, 180)(179, 244)(181, 216)(182, 272)(184, 271)(193, 286)(196, 200)(197, 277)(201, 210)(204, 258)(207, 268)(209, 264)(211, 248)(212, 245)(214, 278)(220, 234)(221, 276)(224, 257)(225, 270)(235, 240)(243, 273)(251, 255)(253, 259)(256, 281)(266, 287)(267, 288)(279, 285)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 107 ]
288
-1 2 5 137 192
-2 1 15 92 6
-3 91 37 16 7
-4 178 17 8 43
-5 132 1 45 18
-6 176 2 46 19
-7 3 47 20 175
-8 4 48 129 21
-9 22 154 34 49
-10 23 70 50 174
-11 24 69 51 173
-12 25 94 52 153
-13 102 26 28 95
-14 88 154 27 53
-15 2 104 229 54
-16 55 3 105 228
-17 187 56 4 106
-18 255 5 19 107
-19 57 6 18 108
-20 58 7 32 109
-21 110 231 59 8
-22 23 111 254 9
-23 22 112 60 10
-24 11 36 113 61
-25 12 222 114 62
-26 13 115 63 54
-27 221 14 116 64
-28 13 117 163 65
-29 66 233 61 118
-30 67 224 60 119
-31 77 188 68 120
-32 121 253 124 20
-33 100 69 227 141
-34 70 226 140 9
-35 122 71 151 230
-36 100 24 123 252
-37 189 3 124 138
-38 66 125 72 152
-39 191 73 75 164
-40 79 146 190 74
-41 177 91 126 76
-42 77 145 233 127
-43 4 224 128 139
-44 78 177 188 98
-45 5 193 129 274
-46 68 6 194 130
-47 56 7 195 131
-48 132 244 8 196
-49 133 265 9 197
-50 165 198 134 10
-51 11 199 135 278
-52 12 200 136 261
-53 133 14 201 260
-54 57 15 26 170
-55 58 202 16 126
-56 47 59 17 285
-57 137 19 185 54
-58 55 138 20 186
-59 56 203 139 21
-60 23 30 85 140
-61 24 29 86 141
-62 25 96 87 142
-63 143 275 26 114
-64 144 27 93 204
-65 143 111 243 28
-66 69 256 38 29
-67 70 180 279 30
-68 46 71 31 284
-69 11 33 66 183
-70 34 67 205 10
-71 35 68 145 206
-72 110 146 38 272
-73 147 39 107 241
-74 148 40 130 207
-75 39 149 131 208
-76 267 171 150 41
-77 181 151 31 42
-78 44 150 161 262
-79 121 242 40 152
-80 209 113 271 153
-81 154 242 144 210
-82 155 266 207 109
-83 145 156 211 263
-84 212 139 129 262
-85 169 213 60 205
-86 125 214 61 183
-87 198 215 62 218
-88 14 278 103 236
-89 147 213 269 127
-90 146 159 260 239
-91 167 3 41 186
-92 2 115 216 185
-93 199 103 217 64
-94 165 12 235 218
-95 13 160 237 263
-96 165 157 148 62
-97 158 238 261 164
-98 44 162 174 219
-99 237 173 163 197
-100 33 220 36 153
-101 122 180 271 164
-102 13 266 172 216
-103 88 191 93 182
-104 221 287 15 225
-105 222 234 16 184
-106 264 234 17 163
-107 223 18 73 261
-108 192 19 129 251
-109 156 189 82 20
-110 265 224 72 21
-111 22 225 65 263
-112 23 133 226 259
-113 24 80 136 227
-114 266 25 63 228
-115 245 26 92 281
-116 267 27 282 229
-117 187 135 28 249
-118 253 166 29 230
-119 231 255 157 30
-120 268 225 162 31
-121 232 79 260 32
-122 35 101 233 269
-123 36 234 283 262
-124 155 37 270 32
-125 212 38 194 86
-126 55 198 201 41
-127 89 271 42 230
-128 231 258 272 43
-129 45 84 8 108
-130 46 137 74 250
-131 47 138 193 75
-132 48 5 139 251
-133 144 112 49 53
-134 168 50 140 219
-135 51 117 141 197
-136 220 113 52 142
-137 1 57 246 130
-138 58 37 247 131
-139 132 59 84 43
-140 34 134 60 215
-141 33 135 61 217
-142 179 136 235 62
-143 237 216 63 65
-144 133 81 236 64
-145 155 71 83 42
-146 90 214 72 40
-147 89 180 73 238
-148 288 74 96 239
-149 182 204 238 75
-150 78 202 240 76
-151 77 35 156 273
-152 79 38 258 239
-153 12 100 80 179
-154 14 81 259 9
-155 145 124 82 273
-156 83 270 151 109
-157 190 223 96 119
-158 255 192 97 241
-159 242 253 90 189
-160 243 254 226 95
-161 78 244 227 252
-162 206 240 98 120
-163 99 203 28 106
-164 101 213 39 97
-165 280 50 94 96
-166 232 191 204 118
-167 210 91 202 280
-168 209 188 134 240
-169 211 180 85 195
-170 199 200 216 54
-171 221 236 76 274
-172 275 222 102 235
-173 11 99 249 217
-174 209 215 10 98
-175 257 247 7 208
-176 276 246 6 207
-177 44 282 41 283
-178 4 203 247 195
-179 245 142 153 241
-180 67 101 147 169
-181 77 246 194 206
-182 253 277 103 149
-183 277 69 86 230
-184 187 203 105 252
-185 221 57 92 268
-186 264 222 58 91
-187 17 237 117 184
-188 44 287 168 31
-189 232 37 159 109
-190 276 157 40 218
-191 166 103 257 39
-192 1 223 158 108
-193 45 267 257 131
-194 46 125 181 196
-195 178 47 169 248
-196 256 48 194 262
-197 99 135 49 272
-198 210 126 50 87
-199 245 93 170 51
-200 170 281 52 241
-201 242 126 280 53
-202 55 167 150 282
-203 178 59 184 163
-204 166 278 149 64
-205 231 286 70 85
-206 287 71 181 162
-207 176 275 82 74
-208 75 251 175 274
-209 80 168 269 174
-210 198 167 81 260
-211 243 169 83 285
-212 244 125 84 284
-213 89 279 85 164
-214 146 256 258 86
-215 280 140 174 87
-216 143 102 92 170
-217 93 281 173 141
-218 288 190 94 87
-219 220 134 271 98
-220 100 136 269 219
-221 27 104 171 185
-222 25 105 172 186
-223 286 157 192 107
-224 110 286 30 43
-225 111 104 226 120
-226 34 112 225 160
-227 33 113 234 161
-228 264 114 235 16
-229 15 268 236 116
-230 35 127 183 118
-231 128 205 119 21
-232 121 166 189 277
-233 122 277 29 42
-234 123 105 106 227
-235 94 172 228 142
-236 88 144 171 229
-237 99 143 187 95
-238 147 257 149 97
-239 276 90 148 152
-240 168 150 162 283
-241 200 179 158 73
-242 79 201 81 159
-243 211 160 273 65
-244 212 48 161 283
-245 199 179 115 261
-246 176 137 181 284
-247 178 138 175 285
-248 279 195 273 263
-249 265 259 117 173
-250 276 266 270 130
-251 132 267 108 208
-252 264 36 161 184
-253 159 182 118 32
-254 22 287 268 160
-255 288 158 18 119
-256 66 214 196 284
-257 191 193 238 175
-258 265 214 128 152
-259 154 112 249 272
-260 121 210 90 53
-261 245 52 107 97
-262 78 123 84 196
-263 111 83 248 95
-264 106 228 186 252
-265 110 49 258 249
-266 102 114 82 250
-267 116 193 251 76
-268 254 185 229 120
-269 209 220 89 122
-270 275 156 124 250
-271 101 80 127 219
-272 72 259 128 197
-273 155 243 248 151
-274 45 171 282 208
-275 270 172 63 207
-276 176 190 239 250
-277 232 233 182 183
-278 88 204 281 51
-279 67 213 248 285
-280 165 167 201 215
-281 200 278 115 217
-282 177 202 116 274
-283 177 123 244 240
-284 68 212 256 246
-285 56 211 279 247
-286 288 223 224 205
-287 188 254 104 206
-288 286 255 148 218
0

**************