C4graphGraph forms for C4 [ 288, 108 ] = UG(ATD[288,132])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 108 ] = UG(ATD[288,132]).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {190, 191}, {248, 249}, {77, 79}, {245, 247}, {241, 243}, {1, 2}, {176, 179}, {120, 123}, {1, 5}, {3, 7}, {2, 6}, {274, 279}, {26, 28}, {1, 6}, {275, 276}, {250, 253}, {192, 199}, {97, 102}, {193, 201}, {209, 217}, {102, 111}, {245, 252}, {244, 253}, {195, 202}, {103, 110}, {213, 223}, {247, 252}, {258, 265}, {4, 8}, {84, 88}, {115, 126}, {195, 206}, {193, 204}, {244, 250}, {260, 266}, {194, 205}, {4, 21}, {169, 184}, {74, 91}, {13, 28}, {1, 19}, {3, 17}, {2, 16}, {7, 20}, {15, 28}, {11, 24}, {12, 25}, {260, 273}, {47, 58}, {14, 27}, {4, 18}, {69, 83}, {5, 19}, {3, 20}, {258, 277}, {207, 216}, {197, 210}, {13, 26}, {68, 92}, {263, 287}, {104, 112}, {32, 57}, {173, 180}, {172, 181}, {129, 152}, {259, 280}, {271, 276}, {266, 273}, {261, 281}, {271, 275}, {265, 277}, {8, 21}, {267, 278}, {165, 184}, {10, 23}, {105, 116}, {9, 22}, {40, 55}, {99, 124}, {196, 231}, {200, 236}, {21, 48}, {215, 242}, {201, 239}, {131, 164}, {132, 163}, {66, 107}, {89, 112}, {93, 116}, {16, 61}, {222, 243}, {207, 226}, {18, 63}, {17, 62}, {140, 188}, {89, 104}, {213, 228}, {207, 254}, {87, 101}, {7, 52}, {89, 106}, {15, 60}, {11, 56}, {18, 38}, {70, 114}, {29, 41}, {93, 105}, {6, 51}, {14, 59}, {12, 57}, {17, 39}, {71, 113}, {5, 50}, {221, 234}, {219, 236}, {209, 230}, {13, 58}, {90, 98}, {142, 182}, {216, 226}, {4, 63}, {93, 102}, {95, 100}, {133, 190}, {93, 97}, {3, 62}, {31, 34}, {30, 35}, {10, 55}, {8, 53}, {94, 99}, {2, 61}, {9, 54}, {40, 104}, {154, 218}, {144, 210}, {185, 251}, {149, 208}, {157, 216}, {152, 223}, {22, 94}, {182, 254}, {9, 64}, {11, 66}, {140, 197}, {148, 221}, {14, 68}, {15, 69}, {10, 65}, {171, 224}, {62, 117}, {32, 109}, {178, 255}, {50, 127}, {48, 126}, {12, 67}, {177, 254}, {172, 227}, {171, 251}, {176, 224}, {59, 106}, {174, 255}, {173, 252}, {130, 211}, {135, 214}, {146, 192}, {175, 253}, {134, 213}, {56, 108}, {185, 237}, {57, 109}, {150, 194}, {22, 64}, {60, 106}, {23, 65}, {155, 205}, {31, 72}, {28, 69}, {30, 71}, {137, 208}, {141, 212}, {155, 194}, {24, 66}, {25, 67}, {29, 70}, {143, 212}, {53, 105}, {180, 232}, {9, 84}, {54, 107}, {129, 223}, {27, 68}, {55, 104}, {136, 215}, {161, 192}, {183, 214}, {54, 84}, {59, 89}, {134, 228}, {135, 229}, {139, 233}, {43, 77}, {161, 199}, {160, 199}, {186, 221}, {23, 127}, {39, 79}, {38, 78}, {131, 235}, {20, 125}, {49, 88}, {36, 77}, {34, 75}, {32, 73}, {162, 200}, {166, 204}, {16, 123}, {45, 70}, {37, 78}, {36, 79}, {33, 74}, {24, 115}, {21, 126}, {166, 203}, {167, 202}, {43, 69}, {19, 124}, {159, 240}, {35, 76}, {30, 113}, {29, 114}, {170, 219}, {175, 222}, {169, 218}, {44, 88}, {168, 220}, {143, 250}, {36, 82}, {189, 203}, {170, 220}, {128, 246}, {129, 247}, {142, 249}, {186, 205}, {153, 238}, {40, 80}, {47, 87}, {46, 86}, {45, 85}, {44, 84}, {43, 83}, {42, 82}, {41, 81}, {182, 207}, {33, 91}, {130, 248}, {148, 234}, {187, 196}, {11, 139}, {110, 238}, {91, 218}, {111, 237}, {51, 176}, {72, 203}, {62, 189}, {52, 176}, {107, 239}, {117, 241}, {12, 138}, {90, 220}, {31, 152}, {53, 178}, {52, 179}, {83, 219}, {107, 227}, {124, 244}, {125, 245}, {41, 160}, {99, 234}, {101, 236}, {103, 238}, {122, 243}, {45, 167}, {42, 161}, {77, 198}, {71, 204}, {47, 164}, {98, 233}, {102, 237}, {121, 242}, {122, 241}, {125, 246}, {46, 163}, {60, 177}, {50, 191}, {101, 232}, {74, 196}, {45, 162}, {100, 235}, {73, 217}, {108, 255}, {49, 165}, {92, 200}, {76, 216}, {5, 144}, {7, 146}, {95, 202}, {80, 198}, {6, 145}, {29, 138}, {13, 149}, {73, 209}, {24, 128}, {17, 137}, {15, 151}, {14, 150}, {25, 128}, {27, 130}, {100, 253}, {103, 254}, {18, 136}, {8, 147}, {31, 132}, {30, 133}, {26, 129}, {96, 251}, {118, 237}, {108, 240}, {10, 148}, {98, 252}, {44, 140}, {42, 139}, {68, 229}, {66, 227}, {64, 225}, {118, 215}, {33, 131}, {51, 145}, {50, 144}, {47, 141}, {37, 135}, {36, 134}, {123, 217}, {41, 138}, {65, 226}, {55, 148}, {46, 141}, {34, 132}, {53, 147}, {52, 146}, {35, 133}, {67, 228}, {119, 221}, {60, 151}, {127, 211}, {59, 150}, {101, 200}, {38, 136}, {39, 137}, {58, 149}, {86, 231}, {121, 203}, {56, 139}, {90, 233}, {85, 230}, {57, 138}, {94, 234}, {95, 235}, {40, 159}, {58, 141}, {34, 154}, {35, 155}, {32, 153}, {92, 229}, {39, 158}, {37, 156}, {38, 157}, {22, 168}, {49, 143}, {48, 142}, {87, 232}, {37, 229}, {123, 187}, {127, 191}, {42, 233}, {120, 187}, {23, 211}, {112, 180}, {113, 181}, {114, 182}, {115, 183}, {120, 188}, {121, 189}, {122, 190}, {122, 191}, {56, 240}, {117, 189}, {16, 217}, {48, 249}, {126, 183}, {33, 235}, {110, 164}, {49, 250}, {96, 171}, {100, 175}, {119, 188}, {111, 163}, {116, 184}, {81, 156}, {97, 172}, {99, 174}, {119, 186}, {80, 159}, {98, 173}, {118, 185}, {72, 152}, {73, 153}, {75, 154}, {79, 158}, {76, 157}, {116, 165}, {78, 156}, {124, 174}, {51, 224}, {78, 157}, {82, 134}, {97, 181}, {75, 158}, {103, 177}, {76, 155}, {54, 239}, {105, 178}, {106, 177}, {112, 173}, {96, 190}, {108, 178}, {109, 179}, {20, 245}, {71, 166}, {70, 167}, {27, 248}, {96, 133}, {19, 244}, {44, 197}, {111, 132}, {26, 247}, {43, 198}, {110, 131}, {72, 166}, {25, 246}, {74, 187}, {81, 160}, {90, 168}, {91, 169}, {61, 206}, {87, 164}, {82, 161}, {115, 128}, {120, 140}, {86, 163}, {63, 201}, {94, 168}, {85, 162}, {95, 167}, {83, 170}, {46, 212}, {114, 142}, {88, 165}, {61, 195}, {92, 162}, {63, 193}, {118, 136}, {67, 267}, {65, 270}, {64, 274}, {85, 259}, {75, 284}, {80, 263}, {86, 264}, {125, 287}, {117, 278}, {119, 285}, {109, 256}, {113, 257}, {81, 288}, {121, 261}, {147, 274}, {154, 280}, {158, 284}, {143, 268}, {144, 276}, {147, 279}, {149, 273}, {150, 275}, {159, 282}, {146, 277}, {153, 286}, {145, 281}, {172, 288}, {130, 269}, {151, 280}, {137, 283}, {145, 261}, {151, 259}, {135, 286}, {188, 285}, {185, 283}, {186, 281}, {170, 271}, {174, 262}, {180, 284}, {169, 260}, {175, 256}, {179, 256}, {181, 257}, {183, 258}, {160, 279}, {171, 272}, {156, 288}, {184, 260}, {198, 263}, {208, 273}, {201, 264}, {196, 262}, {218, 280}, {202, 265}, {227, 288}, {222, 285}, {206, 267}, {213, 272}, {204, 266}, {210, 276}, {210, 282}, {214, 286}, {195, 265}, {193, 266}, {208, 283}, {223, 272}, {199, 279}, {194, 275}, {220, 271}, {205, 281}, {214, 258}, {192, 277}, {219, 270}, {206, 278}, {212, 268}, {215, 269}, {209, 268}, {211, 269}, {222, 256}, {197, 282}, {251, 283}, {231, 262}, {236, 270}, {230, 259}, {225, 263}, {239, 264}, {241, 278}, {246, 287}, {230, 268}, {240, 282}, {226, 270}, {243, 285}, {228, 267}, {231, 264}, {224, 272}, {238, 286}, {225, 274}, {232, 284}, {242, 261}, {249, 257}, {248, 257}, {255, 262}, {225, 287}, {242, 269} }>;

(II) A more general form is to represent the graph as the orbit of {190, 191} under the group generated by the following permutations:

a: (1, 2)(3, 35)(4, 28)(5, 61)(7, 155)(8, 15)(9, 110)(10, 12)(11, 200)(13, 63)(14, 161)(16, 19)(17, 30)(18, 26)(20, 76)(21, 69)(22, 238)(23, 67)(24, 236)(25, 65)(27, 82)(29, 40)(31, 237)(32, 234)(33, 88)(34, 102)(36, 248)(37, 98)(38, 247)(39, 113)(41, 104)(42, 68)(43, 48)(44, 235)(45, 240)(46, 86)(47, 239)(49, 74)(50, 206)(51, 145)(52, 205)(53, 151)(54, 164)(55, 138)(56, 162)(57, 148)(58, 201)(59, 199)(60, 147)(62, 133)(64, 103)(66, 101)(70, 159)(71, 137)(72, 185)(73, 99)(75, 97)(77, 249)(78, 252)(79, 257)(80, 114)(81, 112)(83, 126)(84, 131)(85, 108)(87, 107)(89, 160)(90, 135)(91, 165)(92, 139)(93, 154)(94, 153)(95, 197)(96, 189)(100, 140)(105, 280)(106, 279)(109, 221)(111, 132)(115, 219)(116, 218)(117, 190)(118, 152)(119, 256)(120, 253)(121, 171)(122, 241)(123, 244)(124, 217)(125, 216)(127, 267)(128, 270)(129, 136)(130, 134)(141, 264)(142, 198)(143, 196)(144, 195)(146, 194)(149, 193)(150, 192)(156, 173)(157, 245)(158, 181)(166, 283)(167, 282)(168, 286)(169, 184)(170, 183)(172, 284)(174, 209)(175, 188)(176, 281)(177, 274)(178, 259)(179, 186)(180, 288)(182, 263)(187, 250)(191, 278)(202, 210)(203, 251)(204, 208)(207, 287)(211, 228)(212, 231)(213, 269)(214, 220)(215, 223)(222, 285)(224, 261)(225, 254)(226, 246)(227, 232)(229, 233)(230, 255)(242, 272)(258, 271)(262, 268)(265, 276)(266, 273)(275, 277)
b: (2, 5)(3, 9)(4, 13)(6, 19)(7, 22)(8, 26)(10, 32)(11, 36)(12, 40)(14, 45)(15, 48)(16, 50)(17, 54)(18, 58)(20, 64)(21, 28)(23, 73)(24, 77)(25, 80)(27, 85)(29, 89)(30, 91)(31, 93)(33, 35)(34, 97)(37, 101)(38, 47)(39, 107)(41, 112)(43, 115)(44, 117)(46, 118)(49, 121)(51, 124)(52, 94)(53, 129)(55, 57)(56, 134)(59, 70)(60, 142)(61, 144)(62, 84)(63, 149)(65, 153)(66, 79)(67, 159)(68, 162)(69, 126)(71, 169)(72, 116)(74, 133)(75, 172)(76, 131)(78, 87)(81, 180)(82, 139)(83, 183)(86, 185)(88, 189)(90, 192)(95, 194)(96, 196)(98, 199)(99, 176)(100, 205)(102, 132)(103, 207)(104, 138)(105, 152)(106, 114)(108, 213)(109, 148)(110, 216)(113, 218)(119, 222)(120, 122)(123, 191)(125, 225)(127, 217)(128, 198)(130, 230)(135, 236)(136, 141)(137, 239)(140, 241)(143, 242)(145, 244)(146, 168)(147, 247)(150, 167)(151, 249)(154, 181)(155, 235)(156, 232)(157, 164)(158, 227)(160, 173)(161, 233)(163, 237)(165, 203)(166, 184)(170, 258)(171, 262)(174, 224)(175, 186)(177, 182)(178, 223)(179, 234)(187, 190)(188, 243)(193, 273)(195, 276)(197, 278)(200, 229)(201, 208)(202, 275)(204, 260)(206, 210)(209, 211)(212, 215)(214, 219)(220, 277)(221, 256)(226, 238)(228, 240)(231, 251)(245, 274)(246, 263)(248, 259)(250, 261)(252, 279)(253, 281)(255, 272)(257, 280)(264, 283)(265, 271)(267, 282)(268, 269)(270, 286)(284, 288)
c: (2, 6)(3, 12)(4, 15)(5, 19)(7, 67)(8, 69)(9, 40)(10, 88)(11, 98)(13, 48)(14, 86)(16, 145)(17, 138)(18, 151)(20, 25)(21, 28)(22, 159)(23, 49)(24, 252)(26, 126)(27, 46)(29, 137)(30, 131)(31, 135)(32, 189)(33, 35)(34, 37)(36, 199)(38, 280)(39, 41)(43, 147)(44, 148)(45, 185)(47, 257)(50, 244)(51, 61)(52, 267)(53, 83)(54, 104)(55, 84)(56, 90)(57, 62)(58, 249)(59, 264)(60, 63)(64, 80)(65, 165)(66, 173)(68, 163)(70, 283)(71, 110)(72, 286)(73, 121)(74, 155)(75, 156)(76, 91)(77, 279)(78, 154)(79, 160)(81, 158)(82, 161)(85, 118)(87, 181)(89, 239)(92, 111)(93, 236)(94, 282)(95, 96)(97, 101)(99, 210)(100, 190)(102, 200)(103, 204)(105, 219)(106, 201)(107, 112)(108, 220)(109, 117)(113, 164)(114, 208)(115, 247)(116, 270)(119, 188)(120, 186)(122, 175)(123, 281)(124, 144)(125, 246)(127, 250)(128, 245)(129, 183)(130, 212)(132, 229)(133, 235)(134, 192)(136, 259)(139, 233)(140, 221)(141, 248)(142, 149)(143, 211)(146, 228)(150, 231)(152, 214)(153, 203)(157, 218)(162, 237)(166, 238)(167, 251)(168, 240)(169, 216)(170, 178)(171, 202)(172, 232)(174, 276)(176, 206)(177, 193)(179, 278)(180, 227)(182, 273)(184, 226)(187, 205)(191, 253)(194, 196)(195, 224)(197, 234)(198, 274)(207, 260)(209, 242)(213, 277)(215, 230)(217, 261)(222, 243)(223, 258)(225, 263)(241, 256)(254, 266)(255, 271)(262, 275)(265, 272)(268, 269)(284, 288)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 108 ]
288
-1 2 5 6 19
-2 1 16 6 61
-3 17 7 62 20
-4 18 8 63 21
-5 1 144 50 19
-6 1 2 145 51
-7 3 146 52 20
-8 4 147 53 21
-9 22 84 64 54
-10 55 23 148 65
-11 66 56 24 139
-12 67 57 25 138
-13 58 26 28 149
-14 68 59 27 150
-15 69 60 28 151
-16 2 123 61 217
-17 3 137 39 62
-18 4 136 38 63
-19 1 244 124 5
-20 3 245 125 7
-21 4 48 126 8
-22 168 94 9 64
-23 211 127 10 65
-24 11 66 115 128
-25 12 67 246 128
-26 13 247 28 129
-27 68 14 248 130
-28 13 69 15 26
-29 70 114 138 41
-30 133 35 113 71
-31 132 34 72 152
-32 57 73 109 153
-33 91 235 74 131
-34 132 154 31 75
-35 133 155 30 76
-36 77 79 134 82
-37 78 156 135 229
-38 78 157 136 18
-39 79 158 137 17
-40 55 80 104 159
-41 81 138 160 29
-42 233 82 139 161
-43 77 198 69 83
-44 88 84 140 197
-45 167 70 85 162
-46 212 86 141 163
-47 58 141 87 164
-48 126 249 21 142
-49 88 143 165 250
-50 144 191 5 127
-51 176 145 224 6
-52 176 146 179 7
-53 178 147 105 8
-54 84 107 239 9
-55 104 148 40 10
-56 11 139 108 240
-57 12 138 32 109
-58 13 47 149 141
-59 89 14 106 150
-60 177 15 106 151
-61 2 16 195 206
-62 189 3 17 117
-63 201 4 193 18
-64 22 225 9 274
-65 23 226 270 10
-66 11 24 227 107
-67 12 25 267 228
-68 14 92 27 229
-69 15 28 83 43
-70 45 167 114 29
-71 166 113 204 30
-72 166 203 31 152
-73 209 217 32 153
-74 33 187 91 196
-75 154 34 158 284
-76 155 35 157 216
-77 198 79 36 43
-78 156 157 37 38
-79 77 36 158 39
-80 198 159 40 263
-81 156 288 160 41
-82 134 36 161 42
-83 69 170 43 219
-84 44 88 9 54
-85 45 259 162 230
-86 231 264 46 163
-87 232 101 47 164
-88 44 165 49 84
-89 112 59 104 106
-90 220 233 168 98
-91 33 169 74 218
-92 68 200 162 229
-93 102 105 116 97
-94 22 99 168 234
-95 100 167 202 235
-96 133 190 171 251
-97 102 93 181 172
-98 90 233 173 252
-99 124 234 94 174
-100 253 235 95 175
-101 232 200 236 87
-102 111 93 237 97
-103 110 177 254 238
-104 55 89 112 40
-105 178 93 116 53
-106 89 177 59 60
-107 66 227 239 54
-108 56 178 255 240
-109 57 179 256 32
-110 103 238 131 164
-111 132 102 237 163
-112 89 180 104 173
-113 257 71 181 30
-114 70 182 29 142
-115 24 126 128 183
-116 165 93 105 184
-117 189 278 62 241
-118 136 215 237 185
-119 188 221 186 285
-120 187 188 123 140
-121 242 189 203 261
-122 243 190 191 241
-123 187 16 217 120
-124 99 244 19 174
-125 287 245 246 20
-126 48 115 183 21
-127 23 211 191 50
-128 24 25 246 115
-129 223 26 247 152
-130 211 27 269 248
-131 33 110 235 164
-132 34 111 31 163
-133 35 190 30 96
-134 36 213 82 228
-135 286 37 214 229
-136 38 215 18 118
-137 17 39 283 208
-138 12 57 29 41
-139 11 56 233 42
-140 44 188 120 197
-141 46 47 58 212
-142 48 114 182 249
-143 212 268 49 250
-144 210 276 5 50
-145 6 281 51 261
-146 277 192 7 52
-147 279 8 53 274
-148 55 221 234 10
-149 13 58 273 208
-150 275 14 59 194
-151 15 60 280 259
-152 223 72 129 31
-153 286 73 238 32
-154 34 280 75 218
-155 35 194 205 76
-156 78 288 37 81
-157 78 38 216 76
-158 79 39 75 284
-159 80 40 282 240
-160 199 81 279 41
-161 199 82 192 42
-162 45 200 92 85
-163 132 111 46 86
-164 110 47 87 131
-165 88 49 116 184
-166 71 203 72 204
-167 45 70 202 95
-168 22 220 90 94
-169 91 260 184 218
-170 220 83 271 219
-171 224 96 272 251
-172 288 181 227 97
-173 112 180 98 252
-174 99 255 124 262
-175 253 100 222 256
-176 179 224 51 52
-177 254 103 60 106
-178 255 105 53 108
-179 176 256 52 109
-180 232 112 173 284
-181 113 257 172 97
-182 254 114 207 142
-183 258 126 214 115
-184 165 169 116 260
-185 237 118 283 251
-186 221 281 205 119
-187 123 74 196 120
-188 140 119 120 285
-189 121 203 62 117
-190 122 133 191 96
-191 122 190 50 127
-192 199 277 146 161
-193 266 201 204 63
-194 275 155 150 205
-195 265 202 61 206
-196 187 231 74 262
-197 44 210 282 140
-198 77 80 43 263
-199 279 192 160 161
-200 101 92 236 162
-201 264 193 63 239
-202 265 167 95 195
-203 121 166 189 72
-204 166 266 71 193
-205 155 281 194 186
-206 267 278 61 195
-207 254 182 226 216
-208 137 149 283 273
-209 268 73 217 230
-210 144 276 282 197
-211 23 269 127 130
-212 143 46 268 141
-213 134 223 228 272
-214 286 135 258 183
-215 242 136 269 118
-216 157 226 207 76
-217 209 123 16 73
-218 154 91 169 280
-219 170 236 83 270
-220 90 168 170 271
-221 234 148 119 186
-222 243 256 175 285
-223 213 129 272 152
-224 176 171 51 272
-225 287 64 263 274
-226 270 216 207 65
-227 66 288 172 107
-228 67 134 267 213
-229 68 135 37 92
-230 209 268 259 85
-231 264 86 196 262
-232 101 180 284 87
-233 90 139 42 98
-234 99 221 148 94
-235 33 100 95 131
-236 101 200 270 219
-237 111 102 118 185
-238 110 286 103 153
-239 264 201 107 54
-240 56 159 282 108
-241 122 243 278 117
-242 121 269 215 261
-243 122 222 241 285
-244 253 124 19 250
-245 125 247 20 252
-246 287 25 125 128
-247 245 26 129 252
-248 257 27 249 130
-249 48 257 248 142
-250 143 253 244 49
-251 171 96 283 185
-252 245 247 173 98
-253 100 244 250 175
-254 177 103 182 207
-255 178 108 174 262
-256 222 179 109 175
-257 113 181 248 249
-258 265 277 214 183
-259 280 85 151 230
-260 266 169 184 273
-261 121 242 145 281
-262 231 255 174 196
-263 198 287 80 225
-264 231 201 239 86
-265 277 202 258 195
-266 193 204 260 273
-267 67 278 206 228
-268 143 209 212 230
-269 242 211 215 130
-270 236 226 65 219
-271 220 275 276 170
-272 223 213 224 171
-273 266 149 260 208
-274 147 279 225 64
-275 276 150 194 271
-276 275 144 210 271
-277 265 146 192 258
-278 267 117 206 241
-279 199 147 160 274
-280 154 259 151 218
-281 145 205 261 186
-282 210 159 240 197
-283 137 185 251 208
-284 232 158 180 75
-285 188 243 222 119
-286 135 214 238 153
-287 125 246 225 263
-288 156 81 172 227
0

**************