[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 288, 120 ]. See Glossary for some
detail.
UG(ATD[288, 218]) = UG(ATD[288, 219]) = UG(ATD[288, 220])
= MG(Rmap(288,178) { 12, 12| 12}_ 24) = DG(Rmap(288,178) { 12, 12| 12}_ 24) =
MG(Rmap(288,187) { 12, 12| 12}_ 24)
= DG(Rmap(288,187) { 12, 12| 12}_ 24) = DG(Rmap(288,253) { 12, 24| 24}_ 12) =
DG(Rmap(288,254) { 12, 24| 8}_ 12)
= BGCG(R_ 12( 5, 10), C_ 6, {1, 2}) = BGCG(UG(ATD[144,72]); K1;6) = AT[288,
57]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | 0 | - | - | 0 | - | 0 1 | - | - | - |
| 2 | - | - | - | - | 0 | - | - | 0 | 13 18 | - | - | - |
| 3 | - | - | - | 11 12 | 12 17 | - | - | - | - | - | - | - |
| 4 | 0 | - | 12 13 | - | - | - | - | - | - | 0 | - | - |
| 5 | - | 0 | 7 12 | - | - | - | - | - | - | - | 6 | - |
| 6 | - | - | - | - | - | - | - | - | - | 11 12 | 12 17 | - |
| 7 | 0 | - | - | - | - | - | - | - | - | 4 | - | 0 1 |
| 8 | - | 0 | - | - | - | - | - | - | - | - | 10 | 7 12 |
| 9 | 0 23 | 6 11 | - | - | - | - | - | - | - | - | - | - |
| 10 | - | - | - | 0 | - | 12 13 | 20 | - | - | - | - | - |
| 11 | - | - | - | - | 18 | 7 12 | - | 14 | - | - | - | - |
| 12 | - | - | - | - | - | - | 0 23 | 12 17 | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | 0 | 0 | - | 0 | - | 0 | - | - | - |
| 2 | - | - | - | - | 12 | 0 | - | 0 | 9 | - | - | - |
| 3 | - | - | - | 12 | - | 12 | 18 | 21 | - | - | - | - |
| 4 | 0 | - | 12 | - | - | - | - | - | - | 0 | - | 0 |
| 5 | 0 | 12 | - | - | - | - | - | - | - | - | 9 | 21 |
| 6 | - | 0 | 12 | - | - | - | - | - | - | 15 | 15 | - |
| 7 | 0 | - | 6 | - | - | - | - | - | - | 4 | - | 22 |
| 8 | - | 0 | 3 | - | - | - | - | - | - | 10 | 1 | - |
| 9 | 0 | 15 | - | - | - | - | - | - | - | - | 10 | 1 |
| 10 | - | - | - | 0 | - | 9 | 20 | 14 | - | - | - | - |
| 11 | - | - | - | - | 15 | 9 | - | 23 | 14 | - | - | - |
| 12 | - | - | - | 0 | 3 | - | 2 | - | 23 | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 23 | - | 0 | 0 | - | - | - | - | - | - | - | - |
| 2 | - | - | - | 12 | - | - | - | - | - | 0 10 | 0 | - |
| 3 | 0 | - | - | - | - | - | 11 | - | 11 | 23 | - | - |
| 4 | 0 | 12 | - | - | 0 | - | 15 | - | - | - | - | - |
| 5 | - | - | - | 0 | 1 23 | - | - | - | - | - | 16 | - |
| 6 | - | - | - | - | - | - | 3 13 | 0 | - | - | 15 | - |
| 7 | - | - | 13 | 9 | - | 11 21 | - | - | - | - | - | - |
| 8 | - | - | - | - | - | 0 | - | - | 2 | 10 | - | 10 |
| 9 | - | - | 13 | - | - | - | - | 22 | 1 23 | - | - | - |
| 10 | - | 0 14 | 1 | - | - | - | - | 14 | - | - | - | - |
| 11 | - | 0 | - | - | 8 | 9 | - | - | - | - | - | 23 |
| 12 | - | - | - | - | - | - | - | 14 | - | - | 1 | 1 23 |