C4graphGraph forms for C4 [ 288, 123 ] = UG(ATD[288,227])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 123 ] = UG(ATD[288,227]).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {64, 67}, {204, 207}, {104, 107}, {275, 279}, {1, 4}, {145, 148}, {1, 7}, {18, 21}, {218, 221}, {17, 25}, {182, 190}, {4, 13}, {272, 281}, {258, 267}, {242, 251}, {198, 207}, {176, 185}, {39, 45}, {246, 252}, {52, 62}, {48, 58}, {118, 124}, {133, 143}, {1, 10}, {262, 269}, {114, 126}, {272, 284}, {224, 236}, {53, 56}, {263, 266}, {85, 88}, {130, 143}, {135, 138}, {165, 168}, {183, 186}, {48, 62}, {276, 282}, {276, 283}, {175, 191}, {257, 273}, {199, 215}, {1, 16}, {40, 57}, {38, 55}, {11, 26}, {4, 22}, {256, 274}, {13, 31}, {103, 116}, {261, 278}, {7, 19}, {205, 217}, {96, 116}, {78, 90}, {111, 122}, {262, 275}, {162, 183}, {10, 28}, {262, 272}, {132, 147}, {265, 286}, {203, 220}, {201, 222}, {134, 145}, {164, 179}, {196, 220}, {260, 285}, {73, 83}, {271, 277}, {109, 119}, {74, 81}, {237, 246}, {225, 250}, {11, 23}, {259, 287}, {75, 87}, {138, 150}, {47, 50}, {202, 215}, {129, 156}, {7, 25}, {260, 282}, {229, 251}, {100, 122}, {110, 113}, {266, 277}, {65, 97}, {30, 63}, {153, 184}, {7, 37}, {30, 60}, {26, 56}, {157, 191}, {9, 42}, {197, 230}, {10, 46}, {222, 250}, {216, 252}, {81, 117}, {25, 61}, {19, 55}, {16, 52}, {157, 185}, {23, 50}, {202, 239}, {79, 106}, {24, 61}, {4, 34}, {140, 170}, {77, 106}, {92, 123}, {139, 172}, {10, 35}, {5, 47}, {132, 174}, {134, 172}, {68, 111}, {219, 240}, {128, 171}, {22, 58}, {129, 173}, {9, 36}, {210, 255}, {93, 112}, {28, 51}, {133, 170}, {5, 53}, {15, 63}, {141, 189}, {221, 236}, {198, 244}, {208, 226}, {72, 123}, {18, 39}, {70, 115}, {18, 36}, {197, 243}, {73, 127}, {205, 250}, {16, 40}, {19, 43}, {66, 123}, {193, 248}, {152, 161}, {66, 120}, {212, 239}, {8, 52}, {13, 49}, {86, 107}, {214, 235}, {82, 108}, {92, 98}, {30, 33}, {193, 254}, {67, 124}, {154, 165}, {29, 93}, {21, 84}, {49, 112}, {43, 106}, {9, 75}, {188, 254}, {37, 103}, {168, 234}, {176, 242}, {46, 109}, {182, 245}, {35, 103}, {61, 121}, {55, 115}, {130, 199}, {138, 207}, {147, 214}, {34, 100}, {186, 252}, {25, 94}, {177, 246}, {23, 95}, {132, 204}, {144, 216}, {151, 223}, {175, 231}, {63, 117}, {3, 72}, {49, 122}, {13, 70}, {58, 118}, {133, 201}, {149, 217}, {15, 66}, {22, 91}, {134, 203}, {161, 236}, {180, 249}, {60, 114}, {172, 226}, {182, 248}, {146, 221}, {50, 98}, {54, 102}, {148, 196}, {22, 71}, {168, 249}, {3, 81}, {14, 92}, {142, 220}, {56, 107}, {27, 79}, {191, 235}, {181, 225}, {128, 213}, {134, 211}, {184, 237}, {41, 127}, {131, 219}, {187, 227}, {140, 212}, {178, 234}, {16, 73}, {58, 99}, {33, 120}, {149, 204}, {176, 233}, {160, 250}, {171, 240}, {28, 64}, {31, 67}, {2, 95}, {34, 127}, {140, 209}, {183, 234}, {136, 214}, {19, 76}, {54, 105}, {145, 206}, {15, 111}, {163, 194}, {2, 100}, {31, 121}, {136, 238}, {151, 241}, {155, 253}, {47, 72}, {39, 78}, {159, 246}, {2, 104}, {150, 252}, {14, 101}, {36, 72}, {152, 244}, {158, 242}, {34, 79}, {153, 247}, {46, 94}, {6, 117}, {57, 74}, {52, 71}, {43, 88}, {20, 103}, {24, 109}, {46, 91}, {159, 234}, {164, 209}, {37, 82}, {154, 226}, {159, 231}, {29, 100}, {60, 69}, {190, 196}, {36, 95}, {42, 81}, {28, 96}, {186, 198}, {6, 123}, {40, 85}, {146, 239}, {31, 97}, {42, 84}, {12, 115}, {26, 101}, {153, 230}, {35, 163}, {44, 173}, {64, 193}, {3, 129}, {90, 216}, {63, 189}, {57, 187}, {80, 212}, {98, 230}, {87, 211}, {113, 245}, {119, 243}, {44, 169}, {69, 192}, {51, 181}, {32, 167}, {121, 254}, {59, 179}, {106, 226}, {18, 155}, {83, 217}, {116, 254}, {76, 199}, {114, 249}, {59, 182}, {118, 248}, {2, 141}, {11, 155}, {33, 177}, {113, 225}, {21, 132}, {53, 164}, {121, 232}, {99, 241}, {8, 155}, {118, 229}, {32, 180}, {77, 217}, {56, 173}, {88, 205}, {71, 208}, {99, 244}, {115, 228}, {124, 235}, {21, 141}, {82, 202}, {77, 213}, {120, 224}, {113, 232}, {86, 204}, {99, 249}, {27, 128}, {51, 175}, {95, 195}, {84, 200}, {59, 166}, {93, 195}, {87, 200}, {119, 232}, {3, 163}, {61, 156}, {68, 229}, {8, 170}, {59, 153}, {5, 166}, {43, 136}, {68, 224}, {102, 194}, {49, 151}, {37, 130}, {35, 139}, {42, 131}, {38, 141}, {11, 167}, {50, 158}, {14, 163}, {68, 233}, {55, 154}, {40, 133}, {75, 228}, {12, 189}, {6, 180}, {69, 247}, {69, 243}, {102, 208}, {89, 238}, {17, 169}, {32, 152}, {120, 192}, {124, 196}, {29, 164}, {104, 209}, {74, 240}, {105, 211}, {6, 187}, {54, 139}, {45, 144}, {32, 157}, {12, 178}, {97, 223}, {27, 165}, {17, 211}, {105, 171}, {76, 142}, {17, 210}, {98, 161}, {93, 158}, {82, 145}, {127, 188}, {39, 227}, {94, 154}, {86, 146}, {84, 144}, {78, 138}, {104, 174}, {41, 238}, {96, 167}, {38, 238}, {114, 186}, {54, 255}, {110, 167}, {73, 130}, {126, 181}, {75, 135}, {91, 151}, {88, 148}, {80, 156}, {125, 177}, {41, 228}, {48, 253}, {102, 168}, {112, 190}, {12, 195}, {53, 228}, {112, 162}, {105, 189}, {101, 179}, {5, 210}, {119, 160}, {47, 247}, {111, 183}, {48, 233}, {97, 184}, {87, 142}, {66, 152}, {9, 210}, {96, 187}, {85, 137}, {8, 213}, {64, 157}, {110, 179}, {89, 135}, {110, 176}, {122, 165}, {70, 166}, {30, 255}, {79, 174}, {33, 195}, {67, 160}, {78, 173}, {125, 158}, {45, 201}, {29, 248}, {76, 169}, {14, 232}, {27, 253}, {24, 255}, {108, 139}, {65, 166}, {57, 208}, {92, 181}, {80, 188}, {107, 135}, {94, 178}, {108, 129}, {24, 247}, {108, 131}, {62, 209}, {65, 177}, {51, 194}, {15, 253}, {109, 159}, {65, 178}, {71, 180}, {91, 175}, {117, 128}, {44, 218}, {20, 227}, {45, 213}, {116, 140}, {26, 227}, {101, 156}, {85, 172}, {80, 169}, {70, 188}, {20, 239}, {86, 170}, {83, 174}, {23, 233}, {60, 194}, {62, 193}, {20, 270}, {41, 269}, {44, 264}, {38, 268}, {74, 270}, {89, 273}, {77, 263}, {89, 275}, {90, 270}, {83, 262}, {90, 261}, {126, 285}, {125, 280}, {125, 278}, {126, 258}, {137, 271}, {137, 270}, {142, 265}, {149, 285}, {150, 286}, {131, 264}, {136, 259}, {149, 281}, {144, 260}, {148, 256}, {147, 260}, {146, 267}, {137, 274}, {143, 274}, {150, 264}, {143, 272}, {147, 268}, {191, 285}, {185, 287}, {190, 280}, {171, 268}, {185, 279}, {160, 277}, {161, 281}, {184, 256}, {162, 283}, {162, 286}, {203, 266}, {214, 279}, {192, 258}, {201, 267}, {199, 259}, {223, 283}, {206, 264}, {203, 268}, {231, 288}, {223, 277}, {215, 284}, {221, 278}, {207, 258}, {197, 267}, {202, 261}, {219, 276}, {215, 280}, {205, 287}, {218, 265}, {243, 288}, {219, 271}, {206, 283}, {192, 278}, {206, 280}, {197, 274}, {218, 269}, {198, 273}, {200, 273}, {222, 263}, {212, 269}, {200, 276}, {220, 257}, {235, 266}, {237, 271}, {244, 279}, {229, 257}, {237, 261}, {245, 287}, {241, 282}, {242, 284}, {241, 257}, {251, 265}, {245, 256}, {240, 263}, {216, 288}, {251, 259}, {225, 281}, {230, 284}, {231, 282}, {222, 288}, {224, 286}, {236, 275} }>;

(II) A more general form is to represent the graph as the orbit of {64, 67} under the group generated by the following permutations:

a: (2, 3)(4, 10)(5, 11)(6, 12)(7, 16)(8, 17)(9, 18)(13, 28)(14, 29)(15, 30)(19, 40)(20, 41)(21, 42)(22, 46)(23, 47)(24, 48)(25, 52)(26, 53)(27, 54)(31, 64)(32, 65)(33, 66)(34, 35)(37, 73)(38, 74)(39, 75)(43, 85)(44, 86)(45, 87)(49, 51)(55, 57)(58, 109)(59, 110)(60, 111)(61, 62)(68, 69)(70, 96)(71, 94)(72, 95)(76, 133)(77, 134)(78, 135)(79, 139)(80, 140)(81, 141)(82, 83)(89, 90)(92, 93)(97, 157)(98, 158)(99, 159)(100, 163)(101, 164)(102, 165)(103, 127)(104, 129)(105, 128)(106, 172)(107, 173)(108, 174)(112, 181)(113, 182)(114, 183)(115, 187)(116, 188)(117, 189)(118, 119)(121, 193)(122, 194)(123, 195)(124, 160)(125, 161)(126, 162)(131, 132)(136, 137)(142, 201)(143, 199)(144, 200)(145, 217)(146, 218)(147, 219)(148, 205)(149, 206)(150, 207)(151, 175)(152, 177)(153, 176)(154, 208)(155, 210)(156, 209)(166, 167)(169, 170)(178, 180)(184, 185)(190, 225)(191, 223)(192, 224)(196, 250)(197, 251)(198, 252)(202, 262)(203, 263)(204, 264)(211, 213)(214, 271)(215, 272)(216, 273)(220, 222)(227, 228)(229, 243)(230, 242)(231, 241)(232, 248)(233, 247)(234, 249)(235, 277)(236, 278)(237, 279)(238, 270)(239, 269)(240, 268)(244, 246)(253, 255)(256, 287)(257, 288)(258, 286)(259, 274)(260, 276)(261, 275)(265, 267)(280, 281)(283, 285)
b: (1, 4)(2, 163)(3, 95)(5, 210)(6, 155)(7, 13)(8, 180)(9, 47)(10, 34)(11, 117)(12, 156)(14, 141)(15, 227)(16, 22)(17, 166)(18, 123)(19, 31)(20, 111)(21, 92)(23, 81)(24, 228)(25, 70)(26, 63)(27, 96)(28, 79)(29, 139)(30, 56)(32, 213)(33, 173)(35, 100)(36, 72)(37, 49)(38, 232)(39, 66)(40, 58)(41, 109)(42, 50)(43, 67)(44, 177)(45, 152)(46, 127)(48, 57)(51, 174)(52, 71)(53, 255)(54, 164)(55, 121)(59, 211)(60, 107)(61, 115)(62, 208)(64, 106)(65, 169)(68, 270)(69, 135)(73, 91)(74, 233)(75, 247)(76, 97)(77, 157)(78, 120)(80, 178)(82, 112)(83, 175)(84, 98)(85, 118)(86, 114)(87, 153)(88, 124)(89, 243)(90, 224)(93, 108)(94, 188)(99, 133)(101, 189)(102, 209)(103, 122)(104, 194)(105, 179)(110, 171)(113, 268)(116, 165)(119, 238)(125, 264)(126, 204)(128, 167)(129, 195)(130, 151)(131, 158)(132, 181)(134, 182)(136, 160)(137, 229)(138, 192)(140, 168)(142, 184)(143, 241)(144, 161)(145, 190)(146, 186)(147, 225)(148, 196)(149, 285)(150, 278)(154, 254)(159, 269)(162, 202)(170, 249)(172, 248)(176, 240)(183, 239)(185, 263)(187, 253)(191, 217)(193, 226)(197, 273)(198, 267)(199, 223)(200, 230)(201, 244)(203, 245)(205, 235)(206, 280)(207, 258)(212, 234)(214, 250)(215, 283)(216, 236)(218, 246)(219, 242)(220, 256)(221, 252)(222, 279)(231, 262)(237, 265)(251, 271)(257, 274)(259, 277)(260, 281)(261, 286)(266, 287)(272, 282)(275, 288)(276, 284)
c: (1, 2)(4, 100)(5, 102)(6, 101)(7, 141)(8, 140)(9, 139)(10, 95)(11, 96)(12, 94)(13, 122)(14, 123)(15, 121)(16, 104)(17, 105)(18, 103)(19, 38)(20, 39)(21, 37)(22, 29)(23, 28)(24, 30)(25, 189)(26, 187)(27, 188)(31, 111)(32, 110)(33, 109)(35, 36)(40, 107)(41, 106)(42, 108)(43, 238)(44, 240)(45, 239)(46, 195)(47, 194)(48, 193)(50, 51)(52, 209)(53, 208)(54, 210)(56, 57)(58, 248)(59, 249)(60, 247)(61, 63)(64, 233)(65, 234)(66, 232)(67, 68)(70, 165)(71, 164)(72, 163)(73, 174)(74, 173)(75, 172)(76, 268)(77, 269)(78, 270)(79, 127)(80, 128)(81, 129)(82, 84)(85, 135)(86, 133)(87, 134)(88, 89)(91, 93)(97, 183)(98, 181)(99, 182)(112, 151)(113, 152)(114, 153)(115, 154)(116, 155)(117, 156)(119, 120)(124, 229)(125, 231)(126, 230)(130, 132)(137, 138)(142, 203)(143, 204)(144, 202)(145, 200)(146, 201)(147, 199)(148, 273)(149, 272)(150, 271)(157, 176)(158, 175)(159, 177)(160, 224)(161, 225)(162, 223)(166, 168)(169, 171)(179, 180)(184, 186)(190, 241)(191, 242)(192, 243)(196, 257)(197, 258)(198, 256)(205, 275)(206, 276)(207, 274)(212, 213)(214, 259)(215, 260)(216, 261)(217, 262)(218, 263)(219, 264)(221, 222)(226, 228)(235, 251)(236, 250)(237, 252)(244, 245)(253, 254)(265, 266)(277, 286)(278, 288)(279, 287)(280, 282)(284, 285)
d: (2, 210)(3, 155)(4, 7)(5, 141)(6, 227)(8, 163)(9, 95)(10, 16)(11, 81)(12, 228)(13, 19)(14, 213)(15, 173)(17, 100)(18, 72)(20, 180)(21, 47)(22, 37)(23, 42)(24, 174)(25, 34)(26, 117)(27, 156)(28, 40)(29, 211)(30, 107)(31, 43)(32, 270)(33, 135)(35, 52)(38, 166)(39, 123)(41, 178)(44, 111)(45, 92)(46, 73)(48, 108)(49, 76)(50, 84)(51, 133)(53, 189)(54, 209)(55, 70)(56, 63)(57, 96)(58, 82)(59, 268)(60, 86)(61, 79)(62, 139)(64, 85)(65, 238)(66, 78)(67, 88)(68, 264)(69, 204)(71, 103)(74, 167)(75, 195)(77, 232)(80, 165)(83, 109)(87, 93)(89, 177)(90, 152)(91, 130)(94, 127)(97, 136)(98, 144)(99, 202)(101, 128)(102, 140)(104, 255)(105, 164)(106, 121)(110, 240)(112, 142)(113, 263)(114, 146)(116, 208)(118, 145)(119, 217)(120, 138)(122, 169)(124, 148)(125, 273)(126, 267)(129, 253)(131, 233)(132, 247)(134, 248)(137, 157)(143, 175)(147, 153)(149, 243)(150, 224)(151, 199)(154, 188)(158, 200)(159, 262)(160, 205)(161, 216)(162, 265)(168, 212)(170, 194)(171, 179)(172, 193)(176, 219)(181, 201)(182, 203)(183, 218)(184, 214)(185, 271)(186, 221)(190, 220)(191, 274)(192, 207)(197, 285)(198, 278)(206, 229)(215, 241)(222, 225)(223, 259)(226, 254)(230, 260)(231, 272)(234, 269)(235, 256)(236, 252)(237, 279)(239, 249)(242, 276)(244, 261)(245, 266)(246, 275)(251, 283)(257, 280)(277, 287)(281, 288)(282, 284)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 123 ]
288
-1 4 16 7 10
-2 100 104 95 141
-3 81 72 129 163
-4 22 1 34 13
-5 166 210 47 53
-6 187 123 180 117
-7 1 25 37 19
-8 155 213 170 52
-9 210 36 42 75
-10 1 35 46 28
-11 23 155 167 26
-12 178 189 115 195
-13 4 70 49 31
-14 232 101 92 163
-15 66 253 111 63
-16 1 40 73 52
-17 210 211 25 169
-18 155 36 39 21
-19 55 7 43 76
-20 103 270 227 239
-21 132 18 84 141
-22 58 91 4 71
-23 11 233 50 95
-24 255 247 61 109
-25 17 61 94 7
-26 11 56 101 227
-27 165 253 79 128
-28 51 96 64 10
-29 100 93 248 164
-30 33 255 60 63
-31 121 67 13 97
-32 167 157 180 152
-33 177 30 195 120
-34 100 79 4 127
-35 103 139 163 10
-36 72 18 95 9
-37 103 82 7 130
-38 55 268 238 141
-39 45 78 18 227
-40 133 57 16 85
-41 269 127 238 228
-42 81 84 9 131
-43 88 136 106 19
-44 264 169 173 218
-45 144 201 213 39
-46 91 94 10 109
-47 5 247 50 72
-48 253 233 58 62
-49 122 13 112 151
-50 23 47 158 98
-51 181 28 194 175
-52 16 71 62 8
-53 56 5 228 164
-54 255 102 105 139
-55 154 38 115 19
-56 26 107 173 53
-57 187 40 74 208
-58 22 99 48 118
-59 166 179 182 153
-60 69 114 194 30
-61 121 24 156 25
-62 209 48 193 52
-63 189 15 117 30
-64 67 157 28 193
-65 166 177 178 97
-66 123 15 152 120
-67 124 160 31 64
-68 111 233 224 229
-69 243 60 192 247
-70 166 188 13 115
-71 22 180 52 208
-72 123 3 36 47
-73 16 83 127 130
-74 57 81 270 240
-75 135 228 9 87
-76 199 169 19 142
-77 213 106 217 263
-78 90 39 138 173
-79 34 27 106 174
-80 188 156 212 169
-81 3 117 74 42
-82 145 37 202 108
-83 73 217 174 262
-84 144 200 42 21
-85 88 137 40 172
-86 146 170 204 107
-87 200 211 75 142
-88 148 205 85 43
-89 275 135 238 273
-90 78 270 216 261
-91 22 46 151 175
-92 123 14 181 98
-93 112 158 29 195
-94 154 46 178 25
-95 23 2 36 195
-96 187 167 28 116
-97 223 184 31 65
-98 92 50 161 230
-99 244 58 249 241
-100 34 122 2 29
-101 156 14 179 26
-102 168 194 54 208
-103 35 37 116 20
-104 209 2 107 174
-105 189 211 171 54
-106 77 79 226 43
-107 56 135 104 86
-108 82 139 129 131
-109 24 46 159 119
-110 176 167 113 179
-111 122 68 15 183
-112 190 49 93 162
-113 110 232 245 225
-114 60 126 249 186
-115 55 12 70 228
-116 254 103 96 140
-117 81 6 128 63
-118 58 124 248 229
-119 232 243 160 109
-120 33 66 224 192
-121 232 254 61 31
-122 165 100 111 49
-123 66 92 6 72
-124 67 235 118 196
-125 177 278 158 280
-126 114 181 258 285
-127 34 188 73 41
-128 213 27 171 117
-129 156 3 173 108
-130 143 199 37 73
-131 264 42 108 219
-132 147 204 174 21
-133 143 201 170 40
-134 145 211 203 172
-135 89 138 107 75
-136 214 259 238 43
-137 270 271 85 274
-138 78 135 150 207
-139 35 172 108 54
-140 209 212 170 116
-141 2 189 38 21
-142 220 265 76 87
-143 133 272 130 274
-144 45 84 216 260
-145 134 82 148 206
-146 221 267 239 86
-147 132 268 214 260
-148 88 145 256 196
-149 204 281 217 285
-150 264 286 138 252
-151 91 223 49 241
-152 66 244 161 32
-153 59 247 184 230
-154 55 165 94 226
-155 11 253 18 8
-156 101 80 61 129
-157 191 64 185 32
-158 242 125 93 50
-159 231 234 246 109
-160 67 277 250 119
-161 236 281 152 98
-162 286 112 183 283
-163 35 3 14 194
-164 209 179 29 53
-165 154 122 168 27
-166 59 70 5 65
-167 11 110 96 32
-168 165 102 234 249
-169 44 80 17 76
-170 133 8 140 86
-171 268 105 128 240
-172 134 226 139 85
-173 44 56 78 129
-174 132 79 104 83
-175 231 91 191 51
-176 110 242 233 185
-177 33 125 246 65
-178 12 234 94 65
-179 110 101 59 164
-180 71 6 249 32
-181 92 126 225 51
-182 190 245 59 248
-183 111 234 162 186
-184 256 237 97 153
-185 176 287 157 279
-186 198 114 183 252
-187 57 6 227 96
-188 254 80 70 127
-189 12 105 63 141
-190 112 280 182 196
-191 157 235 175 285
-192 69 278 258 120
-193 254 248 62 64
-194 102 60 51 163
-195 33 12 93 95
-196 220 124 190 148
-197 243 267 230 274
-198 244 207 273 186
-199 215 259 130 76
-200 276 84 273 87
-201 45 133 222 267
-202 82 215 239 261
-203 220 134 266 268
-204 132 149 86 207
-205 88 287 217 250
-206 264 145 280 283
-207 198 258 138 204
-208 57 102 71 226
-209 104 62 140 164
-210 255 5 17 9
-211 134 17 105 87
-212 80 269 140 239
-213 77 45 128 8
-214 136 279 147 235
-215 199 202 280 284
-216 144 90 288 252
-217 77 83 149 205
-218 44 221 265 269
-219 276 271 240 131
-220 257 203 196 142
-221 146 278 236 218
-222 288 201 250 263
-223 277 151 283 97
-224 286 68 236 120
-225 113 181 281 250
-226 154 106 172 208
-227 187 26 39 20
-228 115 41 53 75
-229 68 257 118 251
-230 284 98 153 197
-231 288 159 282 175
-232 121 14 113 119
-233 176 23 68 48
-234 178 168 159 183
-235 266 124 191 214
-236 275 221 224 161
-237 246 271 184 261
-238 89 136 38 41
-239 146 212 202 20
-240 171 74 219 263
-241 99 257 282 151
-242 176 158 251 284
-243 288 69 119 197
-244 99 198 279 152
-245 287 113 256 182
-246 177 159 237 252
-247 24 47 69 153
-248 182 193 29 118
-249 99 168 114 180
-250 222 225 160 205
-251 242 265 259 229
-252 246 150 216 186
-253 155 15 48 27
-254 121 188 116 193
-255 210 24 30 54
-256 245 148 184 274
-257 220 229 273 241
-258 267 126 192 207
-259 199 287 136 251
-260 144 147 282 285
-261 90 278 202 237
-262 275 269 83 272
-263 77 222 266 240
-264 44 150 206 131
-265 286 218 251 142
-266 277 235 203 263
-267 146 201 258 197
-268 147 38 203 171
-269 212 41 218 262
-270 90 137 74 20
-271 277 137 237 219
-272 143 281 262 284
-273 198 89 200 257
-274 143 256 137 197
-275 89 279 236 262
-276 200 282 283 219
-277 266 223 160 271
-278 221 125 192 261
-279 275 244 214 185
-280 190 125 215 206
-281 225 149 161 272
-282 231 276 260 241
-283 276 223 162 206
-284 242 215 272 230
-285 191 126 149 260
-286 265 224 150 162
-287 245 259 205 185
-288 231 243 222 216
0

**************