C4graphGraph forms for C4 [ 288, 132 ] = UG(ATD[288,255])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 132 ] = UG(ATD[288,255]).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {84, 85}, {216, 217}, {144, 145}, {10, 13}, {224, 231}, {84, 92}, {144, 152}, {176, 187}, {210, 217}, {1, 13}, {176, 191}, {224, 239}, {4, 20}, {41, 57}, {4, 21}, {32, 49}, {8, 25}, {79, 93}, {139, 153}, {40, 59}, {174, 189}, {164, 183}, {79, 92}, {78, 93}, {138, 153}, {139, 152}, {8, 28}, {32, 52}, {1, 20}, {174, 187}, {170, 191}, {33, 52}, {9, 28}, {102, 115}, {103, 114}, {170, 189}, {1, 25}, {65, 91}, {164, 190}, {33, 58}, {78, 85}, {64, 91}, {138, 145}, {65, 93}, {162, 190}, {38, 59}, {162, 191}, {41, 55}, {102, 120}, {108, 114}, {10, 21}, {64, 95}, {40, 55}, {38, 57}, {34, 61}, {103, 120}, {108, 115}, {141, 173}, {13, 44}, {95, 126}, {158, 191}, {1, 34}, {70, 101}, {64, 99}, {25, 58}, {143, 172}, {94, 122}, {64, 101}, {143, 170}, {27, 61}, {139, 173}, {139, 172}, {141, 170}, {13, 37}, {197, 237}, {25, 49}, {87, 126}, {158, 183}, {70, 108}, {9, 34}, {196, 239}, {87, 122}, {194, 239}, {197, 235}, {130, 173}, {196, 235}, {194, 237}, {222, 238}, {196, 245}, {193, 243}, {211, 225}, {204, 254}, {22, 37}, {211, 224}, {210, 225}, {218, 238}, {218, 239}, {130, 180}, {202, 252}, {196, 243}, {216, 224}, {222, 231}, {22, 45}, {16, 44}, {16, 45}, {195, 254}, {193, 252}, {202, 245}, {20, 85}, {176, 241}, {147, 209}, {51, 112}, {58, 121}, {53, 118}, {138, 201}, {142, 205}, {176, 244}, {53, 112}, {177, 244}, {18, 85}, {140, 203}, {133, 205}, {158, 214}, {158, 215}, {18, 88}, {60, 118}, {51, 121}, {20, 94}, {140, 199}, {177, 250}, {147, 216}, {131, 206}, {134, 203}, {138, 199}, {149, 216}, {156, 209}, {129, 206}, {134, 201}, {14, 94}, {49, 97}, {60, 109}, {61, 108}, {133, 212}, {31, 77}, {31, 76}, {169, 250}, {57, 106}, {129, 210}, {156, 207}, {182, 227}, {14, 88}, {131, 212}, {182, 225}, {169, 241}, {185, 225}, {56, 97}, {159, 198}, {149, 207}, {49, 106}, {184, 227}, {142, 213}, {56, 100}, {136, 212}, {57, 100}, {159, 194}, {136, 213}, {27, 69}, {61, 99}, {51, 109}, {62, 95}, {167, 198}, {62, 93}, {156, 255}, {166, 194}, {14, 107}, {34, 68}, {185, 223}, {35, 69}, {149, 243}, {10, 109}, {184, 223}, {46, 73}, {35, 68}, {14, 105}, {142, 233}, {143, 232}, {148, 243}, {142, 230}, {178, 218}, {146, 250}, {35, 74}, {179, 218}, {143, 230}, {146, 251}, {150, 255}, {33, 74}, {33, 77}, {37, 73}, {3, 109}, {166, 200}, {161, 207}, {135, 233}, {35, 76}, {179, 220}, {178, 221}, {167, 200}, {160, 207}, {135, 232}, {148, 251}, {149, 250}, {186, 202}, {132, 246}, {132, 247}, {37, 80}, {3, 117}, {171, 221}, {17, 103}, {16, 103}, {188, 203}, {171, 220}, {161, 214}, {160, 215}, {17, 105}, {40, 80}, {40, 81}, {186, 195}, {16, 107}, {130, 254}, {182, 202}, {131, 254}, {182, 203}, {10, 116}, {11, 117}, {11, 116}, {188, 195}, {46, 81}, {9, 137}, {126, 252}, {11, 136}, {111, 236}, {117, 246}, {127, 252}, {115, 246}, {119, 242}, {60, 186}, {60, 187}, {117, 242}, {80, 217}, {111, 230}, {126, 247}, {127, 246}, {115, 248}, {110, 226}, {11, 134}, {55, 186}, {54, 187}, {7, 137}, {43, 165}, {7, 136}, {43, 164}, {42, 165}, {9, 134}, {119, 248}, {36, 181}, {114, 227}, {119, 230}, {78, 220}, {48, 164}, {8, 157}, {74, 220}, {116, 226}, {78, 217}, {116, 227}, {36, 190}, {90, 192}, {118, 236}, {6, 157}, {91, 192}, {118, 234}, {119, 234}, {83, 242}, {2, 160}, {99, 193}, {72, 234}, {106, 200}, {107, 201}, {22, 181}, {92, 255}, {81, 242}, {72, 235}, {29, 190}, {27, 184}, {107, 200}, {2, 166}, {81, 245}, {62, 154}, {29, 184}, {6, 160}, {83, 244}, {74, 226}, {86, 255}, {114, 219}, {5, 175}, {65, 235}, {23, 189}, {22, 188}, {99, 201}, {4, 175}, {23, 188}, {106, 193}, {127, 212}, {48, 157}, {62, 147}, {127, 210}, {8, 166}, {27, 181}, {101, 213}, {2, 179}, {65, 240}, {15, 189}, {80, 226}, {51, 129}, {38, 148}, {2, 177}, {100, 215}, {5, 177}, {98, 215}, {110, 219}, {44, 154}, {101, 211}, {4, 179}, {98, 213}, {42, 157}, {100, 211}, {15, 181}, {79, 245}, {59, 129}, {58, 128}, {42, 145}, {79, 244}, {59, 128}, {38, 154}, {44, 145}, {42, 148}, {76, 140}, {76, 141}, {104, 169}, {19, 209}, {19, 208}, {21, 209}, {104, 172}, {32, 229}, {73, 140}, {105, 172}, {23, 208}, {87, 144}, {111, 168}, {97, 169}, {89, 144}, {84, 159}, {73, 133}, {111, 162}, {121, 180}, {32, 238}, {41, 231}, {39, 233}, {63, 240}, {66, 147}, {124, 173}, {77, 159}, {113, 163}, {121, 171}, {46, 253}, {97, 178}, {63, 234}, {39, 240}, {96, 183}, {82, 133}, {48, 231}, {124, 171}, {125, 165}, {23, 206}, {96, 185}, {66, 155}, {48, 233}, {41, 240}, {113, 168}, {39, 253}, {120, 162}, {21, 206}, {105, 178}, {120, 163}, {124, 167}, {122, 167}, {68, 154}, {94, 128}, {89, 135}, {87, 137}, {125, 163}, {68, 155}, {95, 128}, {82, 141}, {122, 165}, {124, 163}, {26, 251}, {91, 185}, {26, 249}, {75, 168}, {29, 249}, {77, 168}, {72, 174}, {113, 151}, {28, 251}, {96, 135}, {72, 175}, {112, 151}, {113, 153}, {96, 137}, {29, 247}, {75, 161}, {28, 247}, {112, 155}, {66, 175}, {90, 183}, {67, 174}, {12, 253}, {26, 232}, {24, 236}, {26, 238}, {84, 161}, {110, 155}, {30, 232}, {66, 180}, {54, 192}, {18, 229}, {67, 180}, {55, 192}, {110, 153}, {30, 229}, {24, 229}, {3, 253}, {19, 237}, {18, 237}, {19, 236}, {24, 281}, {3, 256}, {5, 262}, {5, 256}, {17, 279}, {12, 262}, {24, 279}, {12, 284}, {6, 277}, {15, 281}, {30, 264}, {31, 264}, {12, 277}, {7, 285}, {6, 285}, {7, 284}, {30, 259}, {31, 258}, {45, 269}, {50, 275}, {39, 261}, {47, 268}, {63, 284}, {54, 277}, {50, 273}, {53, 273}, {47, 266}, {36, 258}, {56, 286}, {43, 269}, {36, 259}, {52, 275}, {45, 266}, {43, 268}, {63, 278}, {46, 260}, {50, 280}, {47, 261}, {47, 260}, {50, 286}, {56, 277}, {54, 280}, {15, 288}, {17, 288}, {53, 271}, {52, 271}, {82, 278}, {86, 274}, {83, 278}, {86, 275}, {69, 270}, {89, 274}, {88, 275}, {83, 280}, {82, 281}, {67, 270}, {71, 266}, {69, 266}, {71, 278}, {86, 263}, {75, 281}, {89, 267}, {67, 272}, {88, 267}, {75, 280}, {71, 272}, {70, 284}, {92, 262}, {123, 288}, {70, 282}, {90, 262}, {71, 282}, {90, 263}, {125, 288}, {123, 282}, {102, 261}, {98, 263}, {102, 259}, {125, 283}, {98, 261}, {104, 259}, {104, 263}, {123, 258}, {123, 260}, {130, 258}, {150, 279}, {131, 260}, {152, 287}, {150, 286}, {146, 286}, {146, 287}, {152, 279}, {151, 257}, {156, 257}, {132, 282}, {150, 264}, {132, 283}, {151, 264}, {208, 272}, {208, 273}, {222, 287}, {204, 270}, {223, 285}, {195, 256}, {222, 285}, {204, 271}, {197, 257}, {223, 283}, {205, 265}, {197, 256}, {214, 273}, {198, 271}, {221, 276}, {199, 270}, {204, 257}, {219, 276}, {198, 276}, {199, 276}, {219, 269}, {221, 267}, {205, 272}, {214, 265}, {241, 274}, {228, 269}, {249, 274}, {228, 267}, {248, 265}, {248, 268}, {249, 268}, {241, 265}, {228, 287}, {228, 283} }>;

(II) A more general form is to represent the graph as the orbit of {84, 85} under the group generated by the following permutations:

a: (1, 13)(2, 23)(3, 18)(4, 21)(5, 19)(6, 15)(7, 17)(8, 22)(9, 16)(10, 20)(11, 14)(12, 24)(25, 37)(26, 47)(27, 42)(28, 45)(29, 43)(30, 39)(31, 41)(32, 46)(33, 40)(34, 44)(35, 38)(36, 48)(49, 73)(50, 83)(51, 78)(52, 81)(53, 79)(54, 75)(55, 77)(56, 82)(57, 76)(58, 80)(59, 74)(60, 84)(61, 145)(62, 155)(63, 150)(64, 153)(65, 151)(66, 147)(67, 149)(68, 154)(69, 148)(70, 152)(71, 146)(72, 156)(85, 109)(86, 119)(87, 114)(88, 117)(89, 115)(90, 111)(91, 113)(92, 118)(93, 112)(94, 116)(95, 110)(96, 120)(97, 133)(98, 143)(99, 138)(100, 141)(101, 139)(102, 135)(103, 137)(104, 142)(105, 136)(106, 140)(107, 134)(108, 144)(121, 217)(122, 227)(123, 222)(124, 225)(125, 223)(126, 219)(127, 221)(128, 226)(129, 220)(130, 224)(131, 218)(132, 228)(157, 181)(158, 191)(159, 186)(160, 189)(161, 187)(162, 183)(163, 185)(164, 190)(165, 184)(166, 188)(167, 182)(168, 192)(169, 205)(170, 215)(171, 210)(172, 213)(173, 211)(174, 207)(175, 209)(176, 214)(177, 208)(178, 212)(179, 206)(180, 216)(193, 199)(194, 195)(196, 204)(198, 202)(200, 203)(229, 253)(230, 263)(231, 258)(232, 261)(233, 259)(234, 255)(235, 257)(236, 262)(237, 256)(238, 260)(239, 254)(240, 264)(241, 265)(242, 275)(243, 270)(244, 273)(245, 271)(246, 267)(247, 269)(248, 274)(249, 268)(250, 272)(251, 266)(252, 276)(277, 281)(278, 286)(279, 284)(282, 287)(285, 288)
b: (2, 11)(3, 5)(4, 10)(6, 7)(8, 9)(13, 20)(14, 16)(15, 24)(18, 22)(19, 23)(25, 34)(26, 29)(27, 32)(30, 36)(33, 35)(37, 85)(38, 95)(39, 90)(40, 93)(41, 91)(42, 87)(43, 89)(44, 94)(45, 88)(46, 92)(47, 86)(48, 96)(49, 61)(50, 71)(51, 66)(52, 69)(53, 67)(54, 63)(55, 65)(56, 70)(57, 64)(58, 68)(59, 62)(60, 72)(73, 84)(75, 82)(76, 77)(78, 80)(79, 81)(97, 108)(99, 106)(100, 101)(102, 104)(103, 105)(109, 175)(110, 171)(111, 170)(112, 180)(113, 173)(114, 178)(115, 169)(116, 179)(117, 177)(118, 174)(119, 176)(120, 172)(121, 155)(122, 145)(123, 150)(124, 153)(125, 152)(126, 148)(127, 149)(128, 154)(129, 147)(130, 151)(131, 156)(132, 146)(133, 161)(134, 166)(135, 164)(136, 160)(137, 157)(138, 167)(139, 163)(140, 159)(141, 168)(142, 158)(143, 162)(144, 165)(181, 229)(182, 239)(183, 233)(184, 238)(185, 231)(186, 235)(187, 234)(188, 237)(189, 236)(190, 232)(191, 230)(192, 240)(194, 203)(195, 197)(196, 202)(198, 199)(200, 201)(205, 214)(206, 209)(207, 212)(210, 216)(213, 215)(218, 227)(219, 221)(220, 226)(222, 223)(224, 225)(241, 248)(242, 244)(243, 252)(246, 250)(247, 251)(253, 262)(254, 257)(255, 260)(258, 264)(261, 263)(266, 275)(267, 269)(268, 274)(270, 271)(272, 273)(277, 284)(278, 280)(279, 288)(282, 286)(283, 287)
c: (2, 11)(3, 6)(4, 9)(5, 7)(8, 10)(13, 25)(14, 35)(15, 30)(16, 33)(17, 31)(18, 27)(19, 29)(20, 34)(21, 28)(22, 32)(23, 26)(24, 36)(37, 49)(38, 59)(39, 54)(40, 57)(41, 55)(42, 51)(43, 53)(44, 58)(45, 52)(46, 56)(47, 50)(48, 60)(61, 85)(62, 95)(63, 90)(64, 93)(65, 91)(66, 87)(67, 89)(68, 94)(69, 88)(70, 92)(71, 86)(72, 96)(73, 97)(74, 107)(75, 102)(76, 105)(77, 103)(78, 99)(79, 101)(80, 106)(81, 100)(82, 104)(83, 98)(84, 108)(109, 157)(110, 167)(111, 162)(112, 165)(113, 163)(114, 159)(115, 161)(116, 166)(117, 160)(118, 164)(119, 158)(120, 168)(121, 145)(122, 155)(123, 150)(124, 153)(125, 151)(126, 147)(127, 149)(128, 154)(129, 148)(130, 152)(131, 146)(132, 156)(133, 169)(134, 179)(135, 174)(136, 177)(137, 175)(138, 171)(139, 173)(140, 178)(141, 172)(142, 176)(143, 170)(144, 180)(181, 229)(182, 239)(183, 234)(184, 237)(185, 235)(186, 231)(187, 233)(188, 238)(189, 232)(190, 236)(191, 230)(192, 240)(193, 217)(194, 227)(195, 222)(196, 225)(197, 223)(198, 219)(199, 221)(200, 226)(201, 220)(202, 224)(203, 218)(204, 228)(205, 241)(206, 251)(207, 246)(208, 249)(209, 247)(210, 243)(211, 245)(212, 250)(213, 244)(214, 248)(215, 242)(216, 252)(253, 277)(254, 287)(255, 282)(256, 285)(257, 283)(258, 279)(259, 281)(260, 286)(261, 280)(262, 284)(263, 278)(264, 288)(266, 275)(267, 270)(268, 273)(269, 271)(272, 274)
d: (1, 2)(3, 7)(4, 8)(5, 9)(6, 10)(11, 12)(13, 160)(14, 159)(15, 162)(16, 161)(17, 168)(18, 167)(19, 165)(20, 166)(21, 157)(22, 158)(23, 164)(24, 163)(25, 179)(26, 180)(27, 176)(28, 175)(29, 174)(30, 173)(31, 172)(32, 171)(33, 178)(34, 177)(35, 169)(36, 170)(37, 215)(38, 216)(39, 212)(40, 211)(41, 210)(42, 209)(43, 208)(44, 207)(45, 214)(46, 213)(47, 205)(48, 206)(49, 220)(50, 219)(51, 222)(52, 221)(53, 228)(54, 227)(55, 225)(56, 226)(57, 217)(58, 218)(59, 224)(60, 223)(61, 244)(62, 243)(63, 246)(64, 245)(65, 252)(66, 251)(67, 249)(68, 250)(69, 241)(70, 242)(71, 248)(72, 247)(73, 98)(74, 97)(75, 103)(76, 104)(77, 105)(78, 106)(79, 99)(80, 100)(81, 101)(82, 102)(83, 108)(84, 107)(85, 200)(86, 199)(87, 197)(88, 198)(89, 204)(90, 203)(91, 202)(92, 201)(93, 193)(94, 194)(95, 196)(96, 195)(109, 285)(110, 286)(111, 288)(112, 287)(113, 279)(114, 280)(115, 278)(116, 277)(117, 284)(118, 283)(119, 282)(120, 281)(121, 238)(122, 237)(123, 230)(124, 229)(125, 236)(126, 235)(127, 240)(128, 239)(129, 231)(130, 232)(131, 233)(132, 234)(133, 261)(134, 262)(135, 254)(136, 253)(137, 256)(138, 255)(139, 264)(140, 263)(141, 259)(142, 260)(143, 258)(144, 257)(145, 156)(146, 155)(147, 148)(149, 154)(150, 153)(151, 152)(181, 191)(182, 192)(183, 188)(184, 187)(185, 186)(189, 190)(265, 266)(267, 271)(268, 272)(269, 273)(270, 274)(275, 276)
e: (1, 3)(2, 7)(4, 11)(5, 9)(8, 12)(13, 109)(14, 119)(15, 113)(16, 118)(17, 111)(18, 115)(19, 114)(20, 117)(21, 116)(22, 112)(23, 110)(24, 120)(25, 253)(26, 263)(27, 257)(28, 262)(29, 255)(30, 259)(31, 258)(32, 261)(33, 260)(34, 256)(35, 254)(36, 264)(37, 51)(38, 55)(39, 49)(40, 59)(41, 57)(42, 54)(43, 50)(44, 60)(45, 53)(46, 58)(47, 52)(48, 56)(61, 197)(62, 202)(63, 200)(64, 196)(65, 193)(66, 203)(67, 199)(68, 195)(69, 204)(70, 194)(71, 198)(72, 201)(73, 121)(74, 131)(75, 125)(76, 130)(77, 123)(78, 127)(79, 126)(80, 129)(81, 128)(82, 124)(83, 122)(84, 132)(85, 246)(86, 249)(87, 244)(88, 248)(89, 241)(90, 251)(91, 243)(92, 247)(93, 252)(94, 242)(95, 245)(96, 250)(97, 233)(98, 238)(99, 235)(100, 231)(101, 239)(102, 229)(103, 236)(104, 232)(105, 230)(106, 240)(107, 234)(108, 237)(133, 171)(134, 175)(135, 169)(136, 179)(137, 177)(138, 174)(139, 170)(140, 180)(141, 173)(142, 178)(143, 172)(144, 176)(145, 187)(146, 183)(147, 182)(148, 192)(149, 185)(150, 190)(151, 181)(152, 191)(153, 189)(154, 186)(155, 188)(156, 184)(157, 277)(158, 287)(159, 282)(160, 285)(161, 283)(162, 279)(163, 281)(164, 286)(165, 280)(166, 284)(167, 278)(168, 288)(205, 221)(206, 226)(207, 223)(208, 219)(209, 227)(210, 217)(211, 224)(212, 220)(213, 218)(214, 228)(215, 222)(216, 225)(265, 267)(266, 271)(268, 275)(269, 273)(272, 276)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 132 ]
288
-1 34 13 25 20
-2 166 177 179 160
-3 253 256 117 109
-4 179 20 21 175
-5 177 256 262 175
-6 277 157 160 285
-7 136 137 284 285
-8 166 25 157 28
-9 34 134 137 28
-10 13 116 21 109
-11 134 136 116 117
-12 253 277 262 284
-13 44 1 37 10
-14 88 94 105 107
-15 189 288 181 281
-16 44 45 103 107
-17 288 103 279 105
-18 88 237 85 229
-19 209 236 237 208
-20 1 4 94 85
-21 209 4 206 10
-22 45 188 37 181
-23 188 189 206 208
-24 279 236 281 229
-25 1 58 49 8
-26 232 238 249 251
-27 69 181 61 184
-28 247 8 9 251
-29 190 247 249 184
-30 264 232 259 229
-31 77 264 258 76
-32 49 238 52 229
-33 77 58 52 74
-34 1 68 61 9
-35 68 69 74 76
-36 190 181 258 259
-37 22 13 80 73
-38 154 57 59 148
-39 253 233 261 240
-40 55 80 59 81
-41 55 231 57 240
-42 165 145 157 148
-43 165 268 269 164
-44 154 13 145 16
-45 22 266 16 269
-46 253 81 73 260
-47 266 268 260 261
-48 231 233 157 164
-49 25 106 97 32
-50 275 286 280 273
-51 121 112 129 109
-52 33 275 271 32
-53 112 271 118 273
-54 187 277 192 280
-55 192 40 41 186
-56 286 100 277 97
-57 100 38 106 41
-58 33 121 25 128
-59 38 40 128 129
-60 187 118 109 186
-61 99 34 27 108
-62 154 147 93 95
-63 234 278 240 284
-64 99 101 91 95
-65 91 235 93 240
-66 155 147 180 175
-67 180 270 272 174
-68 154 34 155 35
-69 35 266 27 270
-70 101 282 108 284
-71 266 278 282 272
-72 234 235 174 175
-73 133 46 37 140
-74 33 220 35 226
-75 168 280 281 161
-76 35 140 31 141
-77 33 168 159 31
-78 220 93 85 217
-79 244 245 92 93
-80 37 226 40 217
-81 242 46 245 40
-82 133 278 281 141
-83 242 244 278 280
-84 92 159 161 85
-85 78 18 84 20
-86 275 255 263 274
-87 122 144 126 137
-88 275 14 267 18
-89 144 135 267 274
-90 192 183 262 263
-91 192 64 185 65
-92 79 255 84 262
-93 78 79 62 65
-94 122 14 128 20
-95 126 62 128 64
-96 135 137 183 185
-97 56 178 169 49
-98 213 215 261 263
-99 201 61 193 64
-100 56 57 211 215
-101 211 70 213 64
-102 115 259 261 120
-103 114 16 17 120
-104 169 259 172 263
-105 178 14 17 172
-106 57 200 49 193
-107 200 14 201 16
-108 70 114 115 61
-109 3 60 51 10
-110 155 226 153 219
-111 168 236 162 230
-112 155 51 151 53
-113 168 151 163 153
-114 103 227 108 219
-115 102 246 248 108
-116 11 226 227 10
-117 11 242 3 246
-118 234 60 236 53
-119 242 234 248 230
-120 102 103 162 163
-121 58 180 171 51
-122 165 167 94 87
-123 288 258 260 282
-124 167 171 173 163
-125 165 288 283 163
-126 247 95 87 252
-127 210 212 246 252
-128 58 59 94 95
-129 210 59 51 206
-130 254 180 258 173
-131 254 212 260 206
-132 246 247 282 283
-133 212 82 73 205
-134 11 201 203 9
-135 89 232 233 96
-136 11 212 213 7
-137 7 96 9 87
-138 199 145 201 153
-139 172 173 152 153
-140 199 203 73 76
-141 82 170 173 76
-142 233 213 205 230
-143 232 170 172 230
-144 89 145 152 87
-145 44 144 138 42
-146 286 287 250 251
-147 66 209 62 216
-148 243 38 42 251
-149 243 216 250 207
-150 264 286 255 279
-151 264 112 113 257
-152 144 287 279 139
-153 110 113 138 139
-154 44 68 38 62
-155 66 110 68 112
-156 209 255 257 207
-157 48 6 8 42
-158 191 214 215 183
-159 77 198 84 194
-160 2 6 215 207
-161 214 84 75 207
-162 111 190 191 120
-163 113 124 125 120
-164 190 48 183 43
-165 122 125 42 43
-166 2 200 194 8
-167 198 122 200 124
-168 77 111 113 75
-169 104 250 97 241
-170 143 189 191 141
-171 121 220 221 124
-172 143 104 105 139
-173 124 139 130 141
-174 187 67 189 72
-175 66 4 5 72
-176 187 244 191 241
-177 2 244 5 250
-178 221 105 97 218
-179 220 2 4 218
-180 66 121 67 130
-181 22 36 15 27
-182 202 203 225 227
-183 90 158 96 164
-184 223 27 29 227
-185 91 223 225 96
-186 55 202 60 195
-187 176 60 174 54
-188 22 23 203 195
-189 23 15 170 174
-190 36 29 162 164
-191 176 158 170 162
-192 55 90 91 54
-193 99 243 106 252
-194 166 159 237 239
-195 188 254 256 186
-196 243 245 235 239
-197 256 235 257 237
-198 276 167 159 271
-199 276 138 270 140
-200 166 167 106 107
-201 99 134 138 107
-202 245 182 186 252
-203 188 134 182 140
-204 254 257 270 271
-205 133 265 272 142
-206 23 129 21 131
-207 156 149 160 161
-208 23 19 272 273
-209 156 147 19 21
-210 225 127 129 217
-211 100 101 224 225
-212 133 136 127 131
-213 101 136 98 142
-214 265 158 161 273
-215 100 158 160 98
-216 147 224 149 217
-217 78 210 80 216
-218 178 179 238 239
-219 110 276 114 269
-220 78 179 171 74
-221 276 178 267 171
-222 231 287 238 285
-223 184 283 185 285
-224 231 211 216 239
-225 210 211 182 185
-226 110 80 116 74
-227 114 116 182 184
-228 287 267 269 283
-229 24 18 30 32
-230 143 111 119 142
-231 222 48 224 41
-232 143 135 26 30
-233 135 48 39 142
-234 72 63 118 119
-235 72 196 65 197
-236 111 24 19 118
-237 18 194 19 197
-238 222 26 218 32
-239 224 194 196 218
-240 39 41 63 65
-241 176 265 169 274
-242 81 83 117 119
-243 148 149 193 196
-244 176 177 79 83
-245 79 81 202 196
-246 132 115 127 117
-247 132 126 28 29
-248 265 268 115 119
-249 26 268 29 274
-250 177 146 169 149
-251 146 26 148 28
-252 202 126 127 193
-253 12 46 3 39
-254 204 195 130 131
-255 156 92 150 86
-256 3 5 195 197
-257 156 204 151 197
-258 123 36 31 130
-259 36 102 104 30
-260 46 123 47 131
-261 47 102 39 98
-262 12 90 92 5
-263 90 104 86 98
-264 150 30 151 31
-265 214 248 205 241
-266 45 47 69 71
-267 88 89 221 228
-268 47 248 249 43
-269 45 228 43 219
-270 67 199 69 204
-271 198 204 52 53
-272 67 71 205 208
-273 214 50 53 208
-274 89 249 86 241
-275 88 50 52 86
-276 198 199 221 219
-277 12 56 6 54
-278 71 82 83 63
-279 24 17 150 152
-280 50 83 75 54
-281 24 15 82 75
-282 132 123 70 71
-283 132 223 125 228
-284 12 70 7 63
-285 222 223 6 7
-286 56 146 50 150
-287 222 146 228 152
-288 123 15 125 17
0

**************