C4graphGraph forms for C4 [ 288, 147 ] = PL(ATD[12,2]#ATD[12,3])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 147 ] = PL(ATD[12,2]#ATD[12,3]).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {133, 149}, {132, 149}, {135, 149}, {137, 156}, {136, 158}, {139, 156}, {142, 149}, {131, 158}, {136, 168}, {137, 168}, {128, 163}, {139, 173}, {132, 163}, {131, 168}, {134, 173}, {129, 172}, {142, 163}, {141, 163}, {138, 184}, {143, 189}, {141, 184}, {130, 180}, {128, 184}, {140, 180}, {134, 189}, {138, 177}, {144, 172}, {140, 205}, {143, 201}, {134, 206}, {129, 202}, {129, 205}, {135, 201}, {130, 210}, {130, 211}, {141, 220}, {141, 222}, {135, 210}, {139, 211}, {134, 221}, {143, 210}, {136, 214}, {143, 209}, {140, 211}, {136, 232}, {139, 234}, {128, 227}, {137, 227}, {144, 250}, {132, 232}, {132, 234}, {140, 252}, {130, 247}, {133, 252}, {54, 182}, {106, 234}, {69, 197}, {36, 165}, {63, 190}, {61, 188}, {38, 167}, {88, 217}, {98, 227}, {117, 247}, {18, 150}, {62, 186}, {59, 191}, {69, 193}, {76, 200}, {92, 216}, {20, 145}, {63, 186}, {44, 169}, {78, 203}, {29, 155}, {56, 190}, {45, 171}, {39, 161}, {21, 146}, {37, 162}, {38, 174}, {51, 187}, {72, 192}, {75, 195}, {29, 148}, {48, 185}, {38, 175}, {70, 207}, {16, 154}, {126, 244}, {17, 155}, {77, 199}, {87, 221}, {94, 212}, {79, 196}, {124, 247}, {119, 252}, {83, 216}, {24, 148}, {53, 185}, {30, 146}, {97, 237}, {41, 164}, {124, 241}, {119, 250}, {87, 218}, {101, 232}, {73, 199}, {122, 244}, {98, 236}, {77, 194}, {126, 241}, {90, 213}, {94, 209}, {100, 244}, {115, 227}, {84, 197}, {102, 247}, {4, 150}, {34, 176}, {88, 202}, {70, 213}, {71, 212}, {11, 159}, {109, 249}, {3, 150}, {68, 209}, {7, 146}, {81, 196}, {87, 194}, {2, 148}, {44, 186}, {87, 193}, {93, 203}, {6, 145}, {107, 252}, {49, 166}, {45, 186}, {99, 244}, {102, 241}, {1, 153}, {63, 167}, {57, 161}, {3, 154}, {67, 218}, {54, 175}, {11, 146}, {3, 153}, {58, 160}, {14, 148}, {74, 208}, {84, 206}, {85, 207}, {90, 192}, {2, 153}, {39, 188}, {10, 145}, {98, 249}, {37, 185}, {118, 234}, {83, 207}, {91, 199}, {4, 154}, {118, 232}, {8, 150}, {7, 153}, {40, 183}, {65, 222}, {56, 167}, {70, 217}, {77, 237}, {126, 222}, {78, 238}, {5, 164}, {125, 220}, {111, 206}, {110, 207}, {14, 175}, {8, 169}, {70, 231}, {12, 174}, {4, 167}, {26, 185}, {72, 235}, {93, 254}, {5, 161}, {114, 214}, {14, 170}, {73, 237}, {1, 164}, {120, 221}, {12, 169}, {69, 224}, {95, 250}, {19, 181}, {107, 205}, {57, 159}, {16, 183}, {118, 209}, {117, 210}, {18, 181}, {76, 235}, {2, 170}, {114, 218}, {3, 171}, {12, 165}, {127, 214}, {108, 197}, {11, 161}, {121, 211}, {105, 195}, {31, 181}, {72, 226}, {79, 229}, {4, 175}, {107, 192}, {30, 181}, {9, 162}, {76, 231}, {82, 249}, {96, 203}, {7, 171}, {116, 216}, {27, 183}, {82, 254}, {8, 165}, {113, 220}, {109, 192}, {103, 202}, {27, 182}, {18, 191}, {99, 206}, {66, 236}, {78, 225}, {43, 155}, {117, 197}, {65, 241}, {19, 162}, {26, 171}, {72, 249}, {75, 250}, {40, 154}, {25, 170}, {101, 214}, {47, 155}, {125, 201}, {119, 195}, {104, 220}, {81, 229}, {95, 235}, {17, 164}, {31, 170}, {104, 222}, {8, 191}, {14, 182}, {113, 201}, {26, 162}, {24, 160}, {15, 183}, {95, 231}, {73, 240}, {88, 225}, {37, 159}, {43, 145}, {77, 246}, {110, 213}, {102, 221}, {25, 165}, {102, 218}, {29, 160}, {112, 205}, {80, 237}, {12, 178}, {116, 202}, {107, 213}, {64, 254}, {82, 236}, {94, 224}, {22, 169}, {71, 248}, {34, 226}, {56, 248}, {53, 245}, {36, 228}, {32, 225}, {25, 219}, {111, 173}, {93, 159}, {48, 243}, {115, 176}, {19, 215}, {50, 246}, {49, 245}, {36, 224}, {31, 219}, {89, 157}, {42, 239}, {120, 189}, {32, 230}, {52, 242}, {106, 173}, {127, 184}, {23, 223}, {116, 188}, {52, 253}, {21, 223}, {58, 240}, {26, 208}, {122, 177}, {34, 238}, {40, 228}, {84, 152}, {62, 243}, {62, 240}, {122, 180}, {41, 230}, {49, 254}, {88, 151}, {28, 204}, {55, 231}, {53, 229}, {5, 215}, {57, 235}, {51, 225}, {31, 204}, {46, 253}, {96, 179}, {97, 178}, {17, 196}, {125, 168}, {48, 229}, {42, 255}, {32, 245}, {1, 215}, {103, 177}, {54, 224}, {33, 246}, {64, 151}, {99, 180}, {60, 228}, {116, 172}, {69, 157}, {33, 248}, {105, 176}, {57, 226}, {61, 230}, {16, 204}, {46, 242}, {44, 240}, {27, 199}, {51, 238}, {9, 215}, {44, 242}, {35, 253}, {24, 198}, {19, 204}, {110, 177}, {51, 236}, {97, 190}, {9, 233}, {126, 158}, {22, 246}, {18, 243}, {125, 156}, {41, 200}, {35, 194}, {34, 195}, {20, 245}, {35, 193}, {42, 200}, {81, 179}, {28, 255}, {112, 147}, {94, 189}, {11, 239}, {115, 151}, {63, 219}, {22, 242}, {13, 233}, {86, 178}, {24, 253}, {121, 156}, {61, 216}, {35, 198}, {64, 166}, {90, 188}, {127, 152}, {7, 239}, {123, 147}, {117, 157}, {83, 187}, {73, 160}, {53, 223}, {114, 152}, {68, 174}, {59, 208}, {56, 212}, {30, 243}, {41, 196}, {91, 182}, {22, 248}, {55, 217}, {49, 223}, {40, 198}, {37, 203}, {80, 190}, {85, 187}, {80, 191}, {124, 147}, {92, 179}, {36, 212}, {103, 151}, {64, 176}, {50, 194}, {20, 230}, {28, 239}, {95, 172}, {15, 251}, {10, 255}, {61, 200}, {23, 226}, {83, 166}, {45, 219}, {68, 178}, {54, 193}, {106, 157}, {89, 174}, {2, 251}, {66, 187}, {32, 217}, {23, 238}, {6, 255}, {1, 251}, {60, 198}, {92, 166}, {100, 158}, {99, 152}, {21, 233}, {111, 147}, {6, 251}, {45, 208}, {25, 228}, {78, 179}, {23, 233}, {15, 269}, {17, 277}, {16, 277}, {10, 268}, {39, 288}, {9, 257}, {29, 277}, {5, 268}, {28, 277}, {13, 257}, {21, 260}, {13, 286}, {15, 282}, {27, 269}, {20, 259}, {30, 260}, {6, 282}, {10, 276}, {58, 282}, {47, 269}, {46, 269}, {55, 276}, {52, 274}, {62, 280}, {33, 262}, {43, 259}, {48, 280}, {59, 273}, {39, 268}, {59, 272}, {58, 273}, {42, 257}, {13, 288}, {60, 275}, {43, 280}, {38, 275}, {50, 263}, {47, 280}, {60, 267}, {50, 261}, {33, 281}, {55, 268}, {46, 272}, {52, 266}, {47, 272}, {80, 272}, {66, 256}, {93, 286}, {65, 261}, {86, 274}, {67, 262}, {81, 276}, {65, 263}, {92, 276}, {67, 266}, {74, 259}, {89, 275}, {82, 286}, {66, 271}, {76, 257}, {71, 265}, {74, 260}, {89, 278}, {91, 267}, {67, 274}, {71, 278}, {84, 261}, {86, 263}, {91, 266}, {75, 286}, {79, 282}, {74, 273}, {85, 270}, {68, 281}, {85, 264}, {79, 273}, {86, 265}, {98, 258}, {101, 263}, {121, 283}, {96, 259}, {96, 260}, {123, 287}, {121, 285}, {105, 271}, {123, 285}, {122, 284}, {108, 266}, {103, 256}, {123, 284}, {113, 278}, {112, 279}, {108, 267}, {127, 279}, {108, 261}, {100, 270}, {75, 288}, {124, 279}, {120, 275}, {100, 264}, {101, 265}, {104, 262}, {118, 281}, {109, 285}, {111, 287}, {104, 281}, {105, 283}, {110, 284}, {97, 274}, {120, 267}, {114, 262}, {119, 258}, {109, 283}, {112, 264}, {113, 265}, {90, 288}, {106, 278}, {115, 270}, {142, 271}, {131, 256}, {133, 258}, {129, 264}, {138, 256}, {137, 258}, {131, 271}, {144, 284}, {144, 285}, {128, 270}, {142, 283}, {135, 287}, {133, 287}, {138, 279} }>;

(II) A more general form is to represent the graph as the orbit of {133, 149} under the group generated by the following permutations:

a: (3, 15)(4, 27)(6, 7)(8, 46)(9, 41)(10, 11)(12, 52)(13, 61)(17, 19)(18, 47)(20, 21)(23, 32)(24, 25)(26, 79)(29, 31)(30, 43)(34, 88)(35, 36)(37, 81)(38, 91)(45, 58)(50, 71)(55, 57)(56, 77)(63, 73)(65, 113)(67, 68)(70, 72)(75, 116)(82, 83)(84, 106)(85, 98)(87, 94)(89, 108)(92, 93)(99, 139)(100, 137)(102, 143)(103, 105)(109, 110)(112, 133)(114, 118)(119, 129)(121, 122)(124, 135)(125, 126)(127, 132)(138, 142)(145, 146)(147, 287)(148, 170)(149, 279)(150, 269)(151, 176)(152, 234)(153, 251)(154, 183)(155, 181)(156, 244)(157, 197)(158, 168)(159, 276)(160, 219)(161, 268)(162, 196)(163, 184)(164, 215)(165, 253)(166, 254)(167, 199)(169, 242)(171, 282)(172, 250)(173, 206)(174, 266)(175, 182)(177, 283)(178, 274)(179, 203)(180, 211)(185, 229)(186, 240)(187, 236)(188, 288)(189, 221)(190, 237)(191, 272)(192, 213)(193, 224)(194, 212)(195, 202)(198, 228)(200, 257)(201, 241)(204, 277)(205, 252)(207, 249)(208, 273)(209, 218)(210, 247)(214, 232)(216, 286)(217, 226)(220, 222)(223, 245)(225, 238)(227, 270)(230, 233)(231, 235)(239, 255)(243, 280)(246, 248)(256, 271)(258, 264)(259, 260)(261, 278)(262, 281)(263, 265)(267, 275)(284, 285)
b: (2, 5)(3, 9)(4, 13)(6, 17)(7, 19)(8, 23)(10, 29)(11, 31)(12, 34)(14, 39)(15, 41)(16, 42)(18, 21)(20, 47)(22, 51)(24, 55)(25, 57)(27, 61)(32, 46)(33, 66)(35, 70)(36, 72)(37, 45)(38, 75)(40, 76)(44, 78)(48, 74)(49, 80)(50, 85)(52, 88)(53, 59)(54, 90)(56, 82)(58, 81)(60, 95)(62, 96)(63, 93)(64, 97)(65, 100)(67, 103)(68, 105)(69, 107)(71, 98)(73, 92)(77, 83)(84, 112)(86, 115)(87, 110)(89, 119)(91, 116)(94, 109)(99, 124)(101, 128)(102, 122)(104, 131)(106, 133)(108, 129)(113, 137)(114, 138)(117, 140)(118, 142)(120, 144)(121, 143)(123, 134)(135, 139)(136, 141)(145, 155)(146, 181)(147, 206)(148, 268)(149, 234)(150, 233)(151, 274)(152, 279)(153, 215)(154, 257)(156, 201)(157, 252)(158, 222)(159, 219)(160, 276)(161, 170)(162, 171)(163, 232)(164, 251)(165, 226)(166, 237)(167, 286)(168, 220)(169, 238)(172, 267)(173, 287)(174, 195)(175, 288)(176, 178)(177, 218)(179, 240)(180, 247)(182, 188)(183, 200)(184, 214)(185, 208)(186, 203)(187, 246)(189, 285)(190, 254)(191, 223)(192, 224)(193, 213)(194, 207)(196, 282)(197, 205)(198, 231)(199, 216)(202, 266)(204, 239)(209, 283)(210, 211)(212, 249)(217, 253)(221, 284)(225, 242)(227, 265)(228, 235)(229, 273)(230, 269)(236, 248)(241, 244)(243, 260)(245, 272)(250, 275)(255, 277)(256, 262)(258, 278)(259, 280)(261, 264)(263, 270)(271, 281)
c: (1, 3, 40, 36, 69, 106, 111, 133, 107, 72, 76, 9)(2, 4, 60, 94, 117, 139, 123, 119, 90, 57, 42, 19)(5, 7, 16, 25, 54, 89, 134, 135, 140, 109, 95, 13)(6, 18, 24, 56, 108, 118, 124, 137, 110, 34, 61, 37)(8, 35, 71, 84, 132, 112, 98, 70, 23, 41, 26, 15)(10, 30, 29, 63, 91, 68, 102, 125, 122, 105, 116, 93)(11, 28, 31, 14, 38, 120, 143, 130, 121, 144, 75, 39)(12, 87, 113, 99, 142, 129, 82, 55, 21, 17, 45, 27)(20, 48, 58, 80, 52, 33, 65, 136, 138, 115, 83, 78)(22, 50, 101, 127, 128, 85, 51, 32, 53, 79, 59, 46)(43, 62, 73, 97, 67, 104, 126, 131, 103, 64, 92, 96)(44, 77, 86, 114, 141, 100, 66, 88, 49, 81, 74, 47)(145, 243, 160, 190, 266, 281, 241, 168, 177, 176, 216, 203)(146, 277, 219, 182, 174, 221, 201, 180, 283, 172, 286, 268)(147, 258, 213, 226, 200, 162, 251, 150, 198, 212, 197, 234)(148, 167, 267, 209, 247, 156, 284, 195, 188, 159, 255, 181)(149, 205, 249, 231, 233, 164, 171, 183, 165, 193, 278, 206)(151, 166, 179, 259, 280, 240, 237, 274, 262, 222, 158, 256)(152, 163, 264, 236, 217, 223, 196, 208, 269, 169, 194, 265)(153, 154, 228, 224, 157, 173, 287, 252, 192, 235, 257, 215)(155, 186, 199, 178, 218, 220, 244, 271, 202, 254, 276, 260)(161, 239, 204, 170, 175, 275, 189, 210, 211, 285, 250, 288)(184, 270, 187, 225, 245, 229, 273, 272, 242, 246, 263, 214)(185, 282, 191, 253, 248, 261, 232, 279, 227, 207, 238, 230)
d: (1, 2, 14, 54, 69, 117, 130, 140, 107, 90, 39, 5)(3, 25, 38, 94, 106, 135, 121, 119, 72, 13, 11, 19)(4, 36, 89, 143, 139, 133, 109, 75, 57, 9, 7, 31)(6, 29, 27, 35, 108, 102, 99, 112, 110, 116, 55, 41)(8, 12, 68, 118, 132, 142, 105, 34, 23, 21, 30, 18)(10, 17, 15, 24, 91, 87, 84, 124, 122, 129, 70, 61)(16, 40, 60, 120, 134, 111, 123, 144, 95, 76, 42, 28)(20, 43, 47, 46, 52, 67, 114, 127, 138, 103, 88, 32)(22, 86, 104, 136, 128, 66, 64, 78, 53, 74, 62, 80)(26, 45, 63, 56, 71, 113, 125, 137, 98, 82, 93, 37)(33, 101, 141, 131, 115, 51, 49, 96, 48, 59, 44, 97)(50, 65, 126, 100, 85, 83, 92, 81, 79, 58, 73, 77)(145, 155, 269, 253, 266, 218, 152, 279, 177, 202, 217, 230)(146, 181, 150, 165, 174, 209, 234, 149, 283, 195, 226, 233)(147, 284, 172, 231, 200, 255, 277, 183, 198, 267, 221, 206)(148, 182, 193, 197, 247, 180, 205, 213, 188, 268, 164, 251)(151, 225, 245, 259, 280, 272, 242, 274, 262, 214, 184, 256)(153, 170, 175, 224, 157, 210, 211, 252, 192, 288, 161, 215)(154, 228, 275, 189, 173, 287, 285, 250, 235, 257, 239, 204)(156, 258, 249, 286, 159, 162, 171, 219, 167, 212, 278, 201)(158, 270, 187, 166, 179, 229, 273, 240, 237, 246, 263, 222)(160, 199, 194, 261, 241, 244, 264, 207, 216, 276, 196, 282)(163, 271, 176, 238, 223, 260, 243, 191, 169, 178, 281, 232)(168, 227, 236, 254, 203, 185, 208, 186, 190, 248, 265, 220)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 147 ]
288
-1 215 251 153 164
-2 148 170 251 153
-3 154 171 150 153
-4 154 167 150 175
-5 268 215 161 164
-6 145 255 282 251
-7 146 171 239 153
-8 165 169 191 150
-9 233 257 215 162
-10 276 145 255 268
-11 146 159 161 239
-12 165 178 169 174
-13 286 233 288 257
-14 148 170 182 175
-15 269 183 282 251
-16 154 277 204 183
-17 155 277 196 164
-18 243 191 181 150
-19 181 204 215 162
-20 145 245 259 230
-21 233 146 223 260
-22 242 169 246 248
-23 233 223 226 238
-24 198 253 148 160
-25 165 170 228 219
-26 171 162 185 208
-27 199 269 182 183
-28 255 277 204 239
-29 155 277 148 160
-30 243 146 181 260
-31 170 181 204 219
-32 245 225 217 230
-33 246 248 281 262
-34 176 226 238 195
-35 198 253 193 194
-36 165 212 224 228
-37 159 203 162 185
-38 275 167 174 175
-39 188 288 268 161
-40 154 198 183 228
-41 200 196 164 230
-42 200 255 257 239
-43 155 145 280 259
-44 242 169 240 186
-45 171 186 208 219
-46 242 253 269 272
-47 155 269 280 272
-48 243 280 185 229
-49 166 254 223 245
-50 246 194 261 263
-51 187 225 236 238
-52 242 253 266 274
-53 223 245 185 229
-54 224 182 193 175
-55 231 276 268 217
-56 167 190 212 248
-57 235 159 226 161
-58 160 282 240 273
-59 191 272 273 208
-60 198 275 267 228
-61 188 200 216 230
-62 243 280 240 186
-63 167 190 186 219
-64 176 166 254 151
-65 222 261 241 263
-66 187 256 236 271
-67 266 218 262 274
-68 209 178 281 174
-69 157 224 193 197
-70 231 213 217 207
-71 265 212 278 248
-72 235 192 226 249
-73 199 160 237 240
-74 259 260 273 208
-75 286 288 195 250
-76 231 200 235 257
-77 199 246 237 194
-78 179 203 225 238
-79 282 196 229 273
-80 190 191 237 272
-81 276 179 196 229
-82 286 254 236 249
-83 187 166 216 207
-84 206 261 152 197
-85 187 264 270 207
-86 265 178 263 274
-87 221 193 194 218
-88 202 225 151 217
-89 275 157 278 174
-90 188 288 213 192
-91 199 266 267 182
-92 166 276 179 216
-93 286 254 159 203
-94 209 189 212 224
-95 231 235 172 250
-96 179 203 259 260
-97 178 190 237 274
-98 236 258 227 249
-99 244 180 206 152
-100 264 244 158 270
-101 232 265 214 263
-102 221 247 218 241
-103 177 256 202 151
-104 220 222 281 262
-105 176 271 195 283
-106 157 234 278 173
-107 213 192 205 252
-108 266 267 261 197
-109 192 249 283 285
-110 177 213 207 284
-111 287 147 173 206
-112 264 147 279 205
-113 220 265 201 278
-114 214 152 218 262
-115 176 270 227 151
-116 188 202 172 216
-117 210 157 247 197
-118 209 232 234 281
-119 258 195 250 252
-120 275 221 189 267
-121 156 211 283 285
-122 177 244 180 284
-123 287 147 284 285
-124 147 279 247 241
-125 220 156 168 201
-126 222 244 158 241
-127 279 214 184 152
-128 270 227 184 163
-129 264 202 172 205
-130 210 211 180 247
-131 168 256 158 271
-132 232 234 149 163
-133 287 258 149 252
-134 221 189 173 206
-135 210 287 201 149
-136 232 168 158 214
-137 156 168 258 227
-138 177 256 279 184
-139 156 211 234 173
-140 211 180 205 252
-141 220 222 184 163
-142 149 271 283 163
-143 209 210 189 201
-144 172 250 284 285
-145 6 20 10 43
-146 11 7 30 21
-147 111 112 123 124
-148 2 24 14 29
-149 132 133 135 142
-150 3 4 18 8
-151 88 103 115 64
-152 99 114 127 84
-153 1 2 3 7
-154 3 4 16 40
-155 47 17 29 43
-156 121 125 137 139
-157 89 69 106 117
-158 100 136 126 131
-159 11 57 37 93
-160 24 58 29 73
-161 11 57 5 39
-162 26 37 19 9
-163 132 128 141 142
-164 1 5 17 41
-165 12 25 36 8
-166 92 49 83 64
-167 56 4 38 63
-168 125 136 137 131
-169 22 44 12 8
-170 2 14 25 31
-171 45 3 26 7
-172 144 116 95 129
-173 111 134 106 139
-174 12 89 68 38
-175 14 4 38 54
-176 34 115 105 64
-177 110 122 103 138
-178 12 68 86 97
-179 78 81 92 96
-180 99 122 140 130
-181 18 19 30 31
-182 14 91 27 54
-183 15 16 27 40
-184 127 138 128 141
-185 26 37 48 53
-186 44 45 62 63
-187 66 83 51 85
-188 90 39 61 116
-189 143 134 94 120
-190 56 80 63 97
-191 80 59 18 8
-192 90 72 107 109
-193 35 69 54 87
-194 77 35 50 87
-195 34 105 75 119
-196 79 81 17 41
-197 69 84 117 108
-198 24 35 60 40
-199 77 91 27 73
-200 61 41 42 76
-201 143 113 135 125
-202 88 103 116 129
-203 78 37 93 96
-204 16 28 19 31
-205 112 107 129 140
-206 99 111 134 84
-207 110 70 83 85
-208 45 26 59 74
-209 143 68 94 118
-210 143 135 117 130
-211 121 139 140 130
-212 56 36 71 94
-213 110 90 70 107
-214 101 114 136 127
-215 1 5 19 9
-216 92 61 83 116
-217 55 88 70 32
-218 67 102 114 87
-219 45 25 63 31
-220 113 125 104 141
-221 134 102 87 120
-222 104 126 141 65
-223 23 49 53 21
-224 36 69 94 54
-225 88 78 51 32
-226 23 34 57 72
-227 115 137 128 98
-228 25 36 60 40
-229 79 48 81 53
-230 61 41 20 32
-231 55 70 95 76
-232 132 101 136 118
-233 23 13 9 21
-234 132 106 139 118
-235 57 72 95 76
-236 66 82 51 98
-237 77 80 73 97
-238 23 34 78 51
-239 11 28 7 42
-240 44 58 62 73
-241 102 124 126 65
-242 22 44 46 52
-243 48 18 62 30
-244 99 100 122 126
-245 49 20 53 32
-246 22 33 77 50
-247 102 124 117 130
-248 22 33 56 71
-249 82 72 98 109
-250 144 95 75 119
-251 1 2 15 6
-252 133 107 140 119
-253 24 35 46 52
-254 49 82 93 64
-255 6 28 42 10
-256 66 103 138 131
-257 13 9 42 76
-258 133 137 119 98
-259 74 96 20 43
-260 30 74 96 21
-261 50 84 108 65
-262 33 67 114 104
-263 101 50 86 65
-264 100 112 85 129
-265 101 113 71 86
-266 67 91 52 108
-267 91 60 108 120
-268 55 5 39 10
-269 46 47 15 27
-270 100 115 128 85
-271 66 105 131 142
-272 46 47 80 59
-273 79 58 59 74
-274 67 52 86 97
-275 89 38 60 120
-276 55 81 92 10
-277 16 17 28 29
-278 89 113 71 106
-279 112 124 127 138
-280 47 48 62 43
-281 33 68 104 118
-282 79 58 15 6
-283 121 105 109 142
-284 110 122 144 123
-285 121 144 123 109
-286 13 82 93 75
-287 111 133 123 135
-288 13 90 39 75
0

**************