C4graphGraph forms for C4 [ 288, 153 ] = XI(Rmap(144,3){3,6|6}_24)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 153 ] = XI(Rmap(144,3){3,6|6}_24).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {130, 159}, {138, 151}, {133, 165}, {135, 164}, {139, 175}, {136, 162}, {137, 163}, {138, 161}, {131, 173}, {129, 174}, {132, 181}, {143, 190}, {136, 191}, {133, 189}, {142, 180}, {130, 185}, {141, 182}, {135, 188}, {140, 178}, {144, 212}, {137, 206}, {142, 222}, {140, 216}, {141, 217}, {132, 223}, {139, 208}, {129, 221}, {129, 220}, {140, 211}, {144, 207}, {133, 224}, {131, 228}, {136, 225}, {134, 235}, {138, 231}, {136, 230}, {143, 224}, {129, 245}, {137, 241}, {128, 252}, {137, 247}, {55, 183}, {126, 254}, {124, 252}, {118, 246}, {61, 189}, {60, 188}, {59, 187}, {58, 186}, {57, 185}, {56, 184}, {68, 196}, {69, 197}, {76, 205}, {103, 230}, {101, 228}, {88, 217}, {46, 172}, {127, 253}, {103, 229}, {99, 225}, {98, 224}, {65, 195}, {41, 170}, {120, 251}, {104, 235}, {102, 229}, {59, 184}, {72, 203}, {35, 167}, {109, 233}, {32, 165}, {95, 218}, {40, 174}, {123, 253}, {117, 243}, {100, 226}, {74, 204}, {75, 205}, {33, 166}, {89, 222}, {54, 190}, {112, 248}, {74, 194}, {22, 156}, {102, 236}, {100, 238}, {77, 199}, {16, 155}, {114, 249}, {105, 226}, {99, 232}, {39, 172}, {36, 168}, {37, 169}, {83, 223}, {17, 156}, {119, 250}, {117, 248}, {111, 226}, {110, 227}, {38, 171}, {71, 202}, {97, 239}, {18, 157}, {98, 237}, {97, 238}, {70, 201}, {1, 145}, {120, 232}, {65, 209}, {78, 222}, {4, 149}, {95, 206}, {1, 147}, {6, 148}, {1, 146}, {12, 159}, {8, 155}, {2, 145}, {3, 151}, {43, 191}, {9, 156}, {114, 231}, {98, 247}, {15, 154}, {13, 152}, {11, 158}, {4, 146}, {32, 182}, {5, 147}, {1, 150}, {55, 160}, {38, 177}, {14, 153}, {10, 157}, {3, 148}, {2, 149}, {71, 208}, {6, 159}, {107, 242}, {96, 249}, {74, 211}, {2, 152}, {127, 229}, {3, 153}, {72, 210}, {5, 158}, {113, 234}, {12, 151}, {82, 201}, {75, 215}, {5, 152}, {11, 150}, {7, 154}, {13, 147}, {6, 167}, {118, 215}, {10, 171}, {8, 169}, {2, 160}, {4, 166}, {3, 161}, {9, 170}, {106, 201}, {18, 177}, {89, 250}, {16, 180}, {112, 212}, {18, 182}, {17, 181}, {91, 255}, {7, 162}, {103, 194}, {59, 158}, {73, 236}, {87, 242}, {90, 255}, {92, 249}, {79, 233}, {88, 254}, {89, 255}, {77, 234}, {82, 245}, {88, 255}, {24, 176}, {84, 252}, {85, 253}, {14, 167}, {109, 196}, {106, 195}, {105, 192}, {27, 178}, {25, 176}, {90, 243}, {21, 191}, {31, 181}, {30, 180}, {81, 251}, {91, 241}, {8, 163}, {112, 219}, {110, 197}, {28, 183}, {26, 177}, {66, 238}, {115, 223}, {67, 239}, {9, 164}, {101, 200}, {49, 156}, {19, 190}, {11, 166}, {64, 237}, {29, 179}, {7, 168}, {28, 179}, {10, 165}, {26, 171}, {96, 209}, {76, 253}, {95, 237}, {4, 183}, {34, 145}, {8, 187}, {70, 245}, {80, 227}, {25, 173}, {124, 200}, {68, 240}, {78, 250}, {9, 188}, {47, 153}, {92, 234}, {94, 232}, {10, 189}, {33, 150}, {24, 175}, {64, 247}, {71, 240}, {75, 252}, {81, 233}, {116, 204}, {115, 203}, {20, 173}, {107, 210}, {27, 162}, {77, 244}, {34, 152}, {117, 207}, {35, 153}, {76, 246}, {93, 231}, {20, 175}, {113, 202}, {96, 219}, {47, 148}, {37, 158}, {31, 164}, {21, 174}, {79, 244}, {22, 170}, {97, 221}, {29, 161}, {28, 160}, {5, 184}, {97, 220}, {30, 163}, {23, 170}, {15, 178}, {14, 179}, {7, 186}, {86, 235}, {13, 179}, {102, 216}, {6, 185}, {19, 172}, {80, 239}, {83, 236}, {94, 225}, {28, 221}, {123, 186}, {116, 181}, {29, 220}, {63, 254}, {43, 232}, {125, 190}, {119, 180}, {115, 176}, {99, 160}, {20, 208}, {106, 174}, {52, 240}, {48, 244}, {41, 236}, {53, 240}, {46, 235}, {44, 233}, {116, 178}, {125, 187}, {45, 234}, {120, 191}, {126, 182}, {24, 210}, {59, 241}, {51, 249}, {15, 196}, {18, 217}, {55, 251}, {86, 154}, {87, 155}, {42, 231}, {16, 222}, {61, 243}, {60, 242}, {54, 248}, {17, 223}, {12, 195}, {117, 165}, {11, 218}, {124, 173}, {23, 198}, {13, 220}, {66, 147}, {24, 202}, {25, 203}, {64, 146}, {14, 221}, {39, 244}, {32, 243}, {66, 145}, {70, 149}, {19, 199}, {73, 157}, {16, 197}, {45, 248}, {22, 192}, {23, 193}, {12, 219}, {107, 188}, {51, 228}, {27, 204}, {17, 198}, {67, 148}, {26, 194}, {96, 185}, {123, 162}, {44, 247}, {107, 176}, {56, 227}, {15, 211}, {58, 230}, {42, 246}, {21, 201}, {20, 200}, {40, 245}, {103, 186}, {48, 237}, {29, 195}, {125, 163}, {113, 175}, {111, 177}, {49, 239}, {40, 246}, {32, 254}, {36, 251}, {49, 238}, {36, 196}, {37, 197}, {65, 161}, {91, 187}, {44, 206}, {57, 219}, {56, 218}, {55, 213}, {54, 212}, {51, 209}, {50, 208}, {45, 207}, {73, 171}, {34, 193}, {50, 209}, {79, 172}, {30, 250}, {67, 167}, {43, 205}, {53, 211}, {52, 210}, {62, 216}, {63, 217}, {64, 166}, {42, 205}, {95, 184}, {90, 189}, {39, 207}, {46, 199}, {61, 214}, {68, 168}, {69, 169}, {31, 242}, {30, 241}, {112, 159}, {58, 213}, {57, 214}, {47, 192}, {41, 198}, {38, 214}, {36, 213}, {41, 216}, {70, 183}, {111, 157}, {19, 224}, {39, 212}, {87, 164}, {21, 225}, {33, 213}, {23, 227}, {22, 226}, {35, 214}, {110, 155}, {99, 149}, {48, 199}, {109, 154}, {49, 198}, {50, 202}, {53, 204}, {56, 193}, {108, 150}, {51, 200}, {43, 215}, {25, 228}, {106, 151}, {60, 193}, {27, 230}, {63, 194}, {48, 206}, {108, 146}, {62, 192}, {86, 168}, {87, 169}, {26, 229}, {52, 203}, {40, 215}, {37, 218}, {31, 262}, {42, 266}, {45, 268}, {47, 270}, {46, 269}, {62, 285}, {53, 272}, {33, 263}, {35, 261}, {44, 267}, {54, 273}, {63, 279}, {34, 264}, {38, 265}, {57, 265}, {62, 270}, {50, 256}, {60, 264}, {61, 261}, {52, 271}, {58, 263}, {84, 276}, {85, 277}, {90, 282}, {91, 283}, {65, 256}, {81, 275}, {88, 283}, {89, 282}, {93, 286}, {93, 280}, {69, 259}, {80, 278}, {94, 281}, {104, 288}, {77, 260}, {75, 257}, {85, 287}, {68, 271}, {72, 259}, {84, 287}, {82, 286}, {84, 280}, {85, 281}, {78, 259}, {76, 258}, {83, 285}, {66, 278}, {73, 285}, {67, 278}, {83, 262}, {81, 263}, {71, 272}, {80, 264}, {82, 266}, {92, 260}, {69, 284}, {72, 274}, {122, 288}, {78, 274}, {94, 258}, {79, 275}, {92, 256}, {93, 257}, {74, 279}, {105, 265}, {111, 270}, {118, 276}, {123, 281}, {121, 283}, {118, 277}, {121, 282}, {104, 268}, {124, 280}, {101, 259}, {110, 264}, {109, 267}, {108, 267}, {126, 281}, {127, 279}, {122, 275}, {100, 270}, {104, 260}, {125, 273}, {121, 277}, {105, 261}, {121, 276}, {119, 280}, {102, 279}, {122, 267}, {100, 278}, {116, 262}, {114, 256}, {98, 273}, {115, 262}, {86, 288}, {119, 257}, {122, 269}, {114, 266}, {101, 284}, {126, 258}, {113, 268}, {127, 258}, {108, 275}, {120, 263}, {128, 257}, {130, 260}, {139, 269}, {131, 266}, {134, 271}, {132, 271}, {134, 269}, {130, 268}, {140, 285}, {142, 287}, {128, 274}, {141, 287}, {132, 272}, {143, 283}, {138, 286}, {133, 273}, {135, 274}, {144, 261}, {143, 282}, {134, 272}, {141, 276}, {144, 265}, {135, 284}, {142, 277}, {128, 284}, {131, 286}, {139, 288} }>;

(II) A more general form is to represent the graph as the orbit of {130, 159} under the group generated by the following permutations:

a: (1, 2)(3, 8)(5, 13)(6, 16)(9, 22)(10, 25)(11, 28)(12, 30)(14, 37)(15, 27)(17, 41)(18, 24)(19, 42)(20, 32)(21, 44)(23, 49)(26, 52)(29, 59)(31, 62)(33, 55)(34, 66)(35, 69)(36, 58)(38, 72)(39, 75)(40, 48)(43, 79)(45, 84)(46, 76)(47, 87)(50, 88)(51, 90)(53, 74)(54, 93)(56, 97)(57, 78)(60, 100)(61, 101)(63, 71)(64, 70)(65, 91)(67, 110)(68, 103)(73, 115)(77, 118)(81, 120)(82, 98)(85, 104)(86, 123)(89, 96)(92, 121)(94, 122)(95, 129)(99, 108)(102, 132)(105, 135)(106, 137)(107, 111)(109, 136)(112, 119)(113, 141)(114, 143)(116, 140)(117, 124)(125, 138)(126, 139)(127, 134)(128, 144)(130, 142)(131, 133)(146, 149)(147, 152)(148, 155)(150, 160)(151, 163)(153, 169)(154, 162)(156, 170)(157, 176)(158, 179)(159, 180)(161, 187)(164, 192)(165, 173)(166, 183)(167, 197)(168, 186)(171, 203)(172, 205)(174, 206)(175, 182)(177, 210)(181, 216)(184, 220)(185, 222)(188, 226)(189, 228)(190, 231)(191, 233)(193, 238)(194, 240)(195, 241)(196, 230)(199, 246)(200, 243)(201, 247)(202, 217)(204, 211)(207, 252)(208, 254)(209, 255)(212, 257)(214, 259)(215, 244)(218, 221)(219, 250)(223, 236)(224, 266)(225, 267)(227, 239)(229, 271)(232, 275)(234, 276)(235, 253)(237, 245)(242, 270)(248, 280)(249, 282)(251, 263)(256, 283)(258, 269)(260, 277)(261, 284)(262, 285)(264, 278)(265, 274)(268, 287)(272, 279)(273, 286)(281, 288)
b: (2, 4)(3, 7)(5, 11)(6, 15)(9, 19)(10, 24)(12, 27)(13, 33)(14, 36)(16, 30)(17, 39)(18, 20)(22, 46)(23, 48)(25, 32)(26, 50)(28, 55)(29, 58)(31, 54)(34, 64)(35, 68)(37, 59)(38, 71)(40, 43)(41, 77)(42, 76)(44, 80)(45, 83)(47, 86)(49, 79)(51, 63)(52, 61)(53, 57)(56, 95)(60, 98)(62, 104)(65, 103)(66, 108)(67, 109)(69, 91)(70, 99)(72, 90)(73, 113)(74, 96)(75, 118)(78, 89)(81, 97)(82, 94)(85, 93)(87, 125)(88, 101)(92, 102)(100, 122)(105, 134)(106, 136)(107, 133)(110, 137)(111, 139)(112, 116)(114, 127)(115, 117)(119, 142)(120, 129)(121, 128)(123, 138)(124, 141)(126, 131)(130, 140)(132, 144)(135, 143)(145, 146)(147, 150)(148, 154)(151, 162)(152, 166)(153, 168)(155, 163)(156, 172)(157, 175)(159, 178)(160, 183)(161, 186)(164, 190)(165, 176)(167, 196)(169, 187)(170, 199)(171, 202)(173, 182)(174, 191)(177, 208)(179, 213)(181, 212)(184, 218)(185, 211)(188, 224)(189, 210)(192, 235)(193, 237)(194, 209)(195, 230)(197, 241)(198, 244)(200, 217)(201, 225)(203, 243)(204, 219)(205, 246)(206, 227)(207, 223)(214, 240)(216, 260)(220, 263)(221, 251)(222, 250)(226, 269)(228, 254)(229, 256)(231, 253)(232, 245)(233, 239)(234, 236)(238, 275)(242, 273)(247, 264)(248, 262)(249, 279)(252, 276)(255, 259)(257, 277)(258, 266)(261, 271)(265, 272)(267, 278)(268, 285)(270, 288)(274, 282)(280, 287)(281, 286)(283, 284)
c: (2, 5)(3, 9)(4, 11)(6, 17)(7, 19)(8, 21)(10, 26)(12, 31)(13, 34)(14, 23)(15, 39)(16, 40)(22, 47)(24, 50)(25, 51)(27, 54)(28, 56)(29, 60)(30, 43)(32, 63)(33, 64)(35, 41)(36, 48)(37, 70)(38, 73)(42, 78)(44, 81)(45, 53)(46, 86)(49, 67)(52, 92)(55, 95)(57, 83)(58, 98)(59, 99)(61, 102)(62, 105)(65, 107)(68, 77)(69, 82)(71, 113)(72, 114)(74, 117)(75, 119)(76, 89)(79, 109)(80, 97)(85, 121)(87, 106)(88, 126)(90, 127)(91, 94)(93, 128)(96, 115)(101, 131)(103, 133)(104, 134)(110, 129)(112, 116)(118, 142)(120, 137)(123, 143)(125, 136)(130, 132)(135, 138)(140, 144)(145, 147)(146, 150)(148, 156)(149, 158)(151, 164)(153, 170)(154, 172)(155, 174)(157, 177)(159, 181)(160, 184)(161, 188)(162, 190)(163, 191)(165, 194)(167, 198)(168, 199)(169, 201)(173, 200)(175, 208)(176, 209)(178, 212)(179, 193)(180, 215)(182, 217)(183, 218)(185, 223)(186, 224)(187, 225)(189, 229)(195, 242)(196, 244)(197, 245)(203, 249)(204, 248)(205, 250)(206, 251)(207, 211)(210, 256)(213, 237)(214, 236)(216, 261)(219, 262)(220, 264)(221, 227)(222, 246)(226, 270)(230, 273)(231, 274)(232, 241)(234, 240)(238, 278)(243, 279)(247, 263)(252, 280)(253, 282)(255, 258)(259, 266)(260, 271)(265, 285)(267, 275)(268, 272)(269, 288)(276, 287)(281, 283)(284, 286)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 153 ]
288
-1 145 146 147 150
-2 145 149 160 152
-3 148 161 151 153
-4 166 146 149 183
-5 147 158 184 152
-6 167 148 159 185
-7 154 168 162 186
-8 187 155 169 163
-9 188 156 170 164
-10 165 189 157 171
-11 166 158 150 218
-12 159 151 195 219
-13 220 179 147 152
-14 221 167 179 153
-15 154 178 211 196
-16 155 222 180 197
-17 198 156 223 181
-18 177 157 182 217
-19 199 190 224 172
-20 200 173 175 208
-21 201 191 225 174
-22 156 170 192 226
-23 198 170 193 227
-24 176 210 202 175
-25 176 203 173 228
-26 177 171 194 229
-27 178 204 162 230
-28 221 179 160 183
-29 220 179 161 195
-30 180 250 163 241
-31 242 181 262 164
-32 165 243 254 182
-33 166 213 150 263
-34 264 145 193 152
-35 167 214 261 153
-36 168 213 196 251
-37 158 169 218 197
-38 177 265 214 171
-39 244 212 172 207
-40 245 246 215 174
-41 198 170 236 216
-42 231 266 246 205
-43 232 191 215 205
-44 233 267 247 206
-45 234 268 248 207
-46 199 235 269 172
-47 148 192 270 153
-48 199 244 237 206
-49 198 156 238 239
-50 209 256 202 208
-51 209 200 249 228
-52 210 203 271 240
-53 211 204 272 240
-54 190 212 248 273
-55 213 160 183 251
-56 193 227 184 218
-57 265 214 185 219
-58 213 186 230 263
-59 187 158 184 241
-60 242 264 188 193
-61 243 189 214 261
-62 192 270 216 285
-63 254 279 194 217
-64 166 146 247 237
-65 209 256 161 195
-66 145 278 147 238
-67 167 278 148 239
-68 168 271 196 240
-69 169 259 284 197
-70 201 245 149 183
-71 202 272 240 208
-72 210 203 259 274
-73 157 236 171 285
-74 211 279 204 194
-75 257 215 205 252
-76 253 246 258 205
-77 199 244 234 260
-78 222 259 250 274
-79 275 233 244 172
-80 264 278 227 239
-81 275 233 251 263
-82 286 266 201 245
-83 223 236 262 285
-84 276 287 280 252
-85 253 287 277 281
-86 154 288 168 235
-87 242 155 169 164
-88 254 255 217 283
-89 222 255 282 250
-90 243 189 255 282
-91 187 255 283 241
-92 234 256 249 260
-93 231 286 257 280
-94 232 225 258 281
-95 237 184 206 218
-96 209 249 185 219
-97 220 221 238 239
-98 224 247 237 273
-99 232 225 149 160
-100 278 226 270 238
-101 200 259 228 284
-102 279 236 216 229
-103 194 229 186 230
-104 288 235 268 260
-105 265 192 226 261
-106 201 151 195 174
-107 176 242 188 210
-108 275 146 267 150
-109 154 233 267 196
-110 264 155 227 197
-111 177 157 226 270
-112 212 159 248 219
-113 234 202 268 175
-114 231 266 256 249
-115 176 223 203 262
-116 178 181 204 262
-117 165 243 248 207
-118 276 277 246 215
-119 180 257 280 250
-120 232 191 251 263
-121 276 277 282 283
-122 275 288 267 269
-123 253 281 162 186
-124 200 280 173 252
-125 187 190 163 273
-126 254 258 182 281
-127 253 279 258 229
-128 257 284 252 274
-129 220 221 245 174
-130 268 159 260 185
-131 286 266 173 228
-132 223 181 271 272
-133 165 189 224 273
-134 235 269 271 272
-135 188 284 164 274
-136 191 225 162 230
-137 247 206 163 241
-138 231 286 161 151
-139 288 269 175 208
-140 178 211 216 285
-141 276 287 182 217
-142 287 222 277 180
-143 190 224 282 283
-144 265 212 261 207
-145 66 1 34 2
-146 1 4 64 108
-147 66 1 13 5
-148 67 3 47 6
-149 99 2 4 70
-150 11 33 1 108
-151 12 3 138 106
-152 34 2 13 5
-153 35 3 14 47
-154 15 7 86 109
-155 110 16 8 87
-156 22 49 17 9
-157 111 18 73 10
-158 11 37 59 5
-159 12 112 6 130
-160 55 99 2 28
-161 3 138 29 65
-162 123 136 27 7
-163 125 137 8 30
-164 135 9 31 87
-165 133 117 10 32
-166 11 33 4 64
-167 67 35 14 6
-168 68 36 7 86
-169 69 37 8 87
-170 22 23 41 9
-171 26 38 73 10
-172 46 79 39 19
-173 25 124 20 131
-174 40 106 129 21
-175 24 113 139 20
-176 24 25 115 107
-177 111 26 38 18
-178 15 27 116 140
-179 13 14 28 29
-180 16 30 119 142
-181 132 17 116 31
-182 126 18 141 32
-183 55 4 70 28
-184 56 59 5 95
-185 57 6 96 130
-186 123 58 103 7
-187 91 59 125 8
-188 135 60 107 9
-189 133 90 61 10
-190 143 125 19 54
-191 136 21 43 120
-192 22 47 105 62
-193 23 34 56 60
-194 26 103 63 74
-195 12 29 106 65
-196 68 36 15 109
-197 110 69 37 16
-198 23 49 17 41
-199 77 46 48 19
-200 101 124 51 20
-201 70 82 106 21
-202 24 113 71 50
-203 25 115 72 52
-204 27 116 74 53
-205 42 75 43 76
-206 44 48 137 95
-207 45 144 39 117
-208 71 50 139 20
-209 50 51 96 65
-210 24 72 52 107
-211 15 74 140 53
-212 144 112 39 54
-213 33 55 36 58
-214 35 57 38 61
-215 40 118 75 43
-216 102 62 41 140
-217 88 18 63 141
-218 11 56 37 95
-219 12 57 112 96
-220 13 29 129 97
-221 14 28 129 97
-222 78 89 16 142
-223 132 115 17 83
-224 143 133 19 98
-225 99 136 94 21
-226 22 100 111 105
-227 110 23 56 80
-228 101 25 51 131
-229 102 26 103 127
-230 58 103 136 27
-231 114 93 138 42
-232 99 94 43 120
-233 44 79 81 109
-234 77 45 113 92
-235 46 134 104 86
-236 102 83 73 41
-237 48 95 64 98
-238 66 100 49 97
-239 67 80 49 97
-240 68 71 52 53
-241 91 59 137 30
-242 60 107 31 87
-243 90 61 117 32
-244 77 79 48 39
-245 70 82 40 129
-246 40 118 42 76
-247 44 137 64 98
-248 45 112 117 54
-249 92 114 51 96
-250 78 89 30 119
-251 55 36 81 120
-252 124 84 128 75
-253 123 127 85 76
-254 88 126 63 32
-255 88 89 90 91
-256 92 114 50 65
-257 93 128 75 119
-258 126 94 127 76
-259 78 101 69 72
-260 77 92 104 130
-261 144 35 61 105
-262 115 83 116 31
-263 33 58 81 120
-264 110 34 80 60
-265 144 57 38 105
-266 114 82 42 131
-267 44 122 108 109
-268 45 113 104 130
-269 122 46 134 139
-270 100 111 47 62
-271 132 68 134 52
-272 132 134 71 53
-273 133 125 54 98
-274 78 135 72 128
-275 122 79 81 108
-276 121 84 118 141
-277 121 85 118 142
-278 66 67 100 80
-279 102 127 63 74
-280 124 93 84 119
-281 123 126 94 85
-282 121 143 89 90
-283 88 121 143 91
-284 101 69 135 128
-285 83 62 73 140
-286 82 93 138 131
-287 84 85 141 142
-288 122 104 139 86
0

**************