C4graphGraph forms for C4 [ 288, 155 ] = XI(Rmap(144,15){6,6|6}_6)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 155 ] = XI(Rmap(144,15){6,6|6}_6).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {135, 188}, {128, 188}, {134, 187}, {133, 195}, {136, 216}, {129, 208}, {143, 222}, {136, 217}, {128, 211}, {134, 210}, {140, 212}, {133, 220}, {141, 212}, {137, 211}, {144, 241}, {128, 226}, {140, 239}, {144, 244}, {137, 238}, {129, 236}, {139, 250}, {130, 240}, {140, 254}, {130, 241}, {130, 246}, {140, 249}, {136, 255}, {143, 247}, {131, 255}, {128, 253}, {143, 240}, {47, 175}, {19, 146}, {28, 158}, {29, 159}, {74, 200}, {84, 214}, {110, 237}, {120, 251}, {94, 218}, {20, 145}, {47, 170}, {45, 168}, {69, 192}, {87, 209}, {91, 221}, {20, 147}, {100, 227}, {46, 169}, {85, 210}, {70, 206}, {19, 154}, {59, 178}, {30, 148}, {53, 191}, {52, 190}, {49, 187}, {31, 149}, {18, 153}, {44, 167}, {64, 203}, {32, 172}, {116, 248}, {109, 225}, {101, 233}, {99, 239}, {35, 175}, {34, 174}, {33, 173}, {67, 207}, {31, 146}, {43, 166}, {65, 204}, {67, 206}, {81, 220}, {82, 223}, {16, 158}, {123, 245}, {102, 232}, {96, 238}, {51, 189}, {50, 188}, {17, 159}, {66, 205}, {81, 222}, {1, 145}, {119, 231}, {107, 251}, {95, 207}, {3, 146}, {126, 239}, {116, 229}, {110, 255}, {93, 204}, {91, 202}, {11, 154}, {9, 152}, {7, 150}, {5, 148}, {1, 147}, {105, 251}, {103, 245}, {15, 157}, {14, 156}, {4, 150}, {1, 146}, {117, 230}, {111, 252}, {94, 205}, {10, 153}, {6, 149}, {2, 145}, {79, 220}, {90, 201}, {1, 149}, {102, 242}, {45, 185}, {44, 184}, {39, 179}, {38, 178}, {37, 177}, {36, 176}, {7, 147}, {3, 151}, {2, 150}, {79, 219}, {77, 216}, {100, 241}, {97, 244}, {83, 198}, {2, 148}, {118, 224}, {104, 254}, {13, 155}, {61, 171}, {4, 147}, {115, 228}, {78, 217}, {53, 173}, {98, 250}, {89, 193}, {3, 154}, {92, 197}, {6, 156}, {32, 186}, {12, 150}, {7, 157}, {73, 211}, {2, 153}, {4, 159}, {65, 218}, {76, 215}, {80, 203}, {4, 152}, {43, 183}, {42, 182}, {41, 181}, {40, 180}, {6, 154}, {3, 158}, {96, 253}, {39, 186}, {12, 145}, {75, 214}, {5, 155}, {117, 235}, {106, 244}, {104, 246}, {11, 149}, {74, 212}, {75, 213}, {8, 151}, {123, 228}, {122, 229}, {104, 247}, {34, 189}, {91, 196}, {88, 248}, {6, 167}, {8, 169}, {83, 242}, {26, 184}, {125, 223}, {92, 254}, {27, 185}, {74, 232}, {88, 250}, {5, 166}, {19, 176}, {15, 172}, {9, 170}, {24, 188}, {48, 148}, {27, 191}, {26, 190}, {25, 189}, {73, 237}, {5, 160}, {20, 177}, {14, 171}, {73, 238}, {84, 243}, {84, 252}, {113, 217}, {8, 161}, {48, 153}, {12, 165}, {10, 163}, {80, 249}, {10, 160}, {114, 216}, {113, 219}, {109, 199}, {64, 234}, {9, 162}, {116, 223}, {13, 161}, {23, 187}, {22, 186}, {89, 245}, {78, 227}, {79, 226}, {25, 183}, {103, 201}, {7, 168}, {11, 164}, {91, 235}, {18, 160}, {66, 240}, {68, 246}, {72, 250}, {23, 164}, {100, 215}, {27, 168}, {68, 247}, {83, 224}, {87, 228}, {90, 233}, {66, 246}, {85, 225}, {86, 226}, {22, 163}, {95, 234}, {28, 169}, {64, 245}, {14, 184}, {15, 185}, {21, 162}, {117, 194}, {105, 222}, {47, 152}, {29, 170}, {75, 252}, {84, 236}, {114, 202}, {16, 169}, {125, 196}, {108, 213}, {46, 151}, {8, 178}, {122, 192}, {13, 183}, {12, 182}, {9, 179}, {17, 170}, {16, 173}, {26, 167}, {24, 165}, {18, 175}, {69, 248}, {88, 229}, {10, 180}, {125, 195}, {30, 160}, {21, 171}, {11, 181}, {71, 249}, {76, 242}, {17, 174}, {101, 218}, {25, 166}, {89, 230}, {22, 214}, {51, 243}, {31, 223}, {56, 249}, {109, 172}, {35, 225}, {117, 177}, {123, 191}, {122, 191}, {96, 166}, {97, 167}, {32, 231}, {45, 234}, {13, 197}, {25, 209}, {15, 199}, {14, 198}, {33, 232}, {103, 174}, {57, 240}, {59, 242}, {55, 253}, {98, 168}, {34, 233}, {102, 173}, {101, 174}, {48, 251}, {40, 227}, {38, 237}, {58, 241}, {63, 244}, {105, 165}, {125, 177}, {36, 234}, {106, 164}, {54, 248}, {37, 235}, {57, 247}, {60, 243}, {20, 196}, {71, 151}, {72, 152}, {54, 231}, {108, 189}, {58, 235}, {33, 243}, {111, 186}, {41, 255}, {109, 187}, {62, 232}, {24, 207}, {56, 239}, {62, 233}, {72, 159}, {16, 200}, {19, 203}, {18, 202}, {17, 201}, {21, 204}, {55, 238}, {52, 237}, {36, 253}, {23, 206}, {69, 156}, {71, 158}, {61, 231}, {22, 205}, {119, 172}, {37, 254}, {70, 157}, {28, 192}, {32, 252}, {31, 195}, {30, 194}, {29, 193}, {60, 224}, {49, 236}, {118, 171}, {114, 175}, {56, 230}, {30, 193}, {106, 181}, {105, 182}, {51, 236}, {68, 155}, {80, 176}, {49, 208}, {52, 213}, {63, 221}, {70, 164}, {38, 197}, {52, 215}, {50, 209}, {49, 210}, {86, 178}, {40, 205}, {42, 207}, {45, 203}, {85, 179}, {41, 206}, {39, 204}, {60, 208}, {48, 222}, {77, 163}, {95, 176}, {78, 190}, {33, 208}, {54, 199}, {43, 218}, {41, 216}, {39, 214}, {37, 212}, {35, 210}, {46, 220}, {47, 221}, {65, 179}, {76, 190}, {34, 209}, {42, 217}, {38, 213}, {68, 183}, {21, 224}, {55, 194}, {46, 219}, {63, 202}, {67, 182}, {23, 225}, {55, 193}, {54, 192}, {62, 200}, {66, 180}, {67, 181}, {36, 211}, {44, 219}, {62, 201}, {85, 162}, {86, 161}, {26, 227}, {28, 229}, {77, 180}, {24, 226}, {95, 165}, {56, 194}, {57, 195}, {60, 198}, {61, 199}, {29, 230}, {96, 155}, {61, 198}, {53, 200}, {97, 156}, {94, 163}, {92, 161}, {69, 184}, {35, 221}, {58, 196}, {59, 197}, {27, 228}, {98, 157}, {93, 162}, {40, 215}, {70, 185}, {58, 274}, {42, 256}, {43, 257}, {44, 258}, {53, 261}, {50, 259}, {59, 264}, {63, 267}, {50, 260}, {51, 260}, {57, 262}, {88, 280}, {76, 264}, {89, 285}, {83, 278}, {74, 269}, {75, 263}, {79, 259}, {71, 265}, {94, 272}, {73, 263}, {65, 272}, {92, 269}, {87, 261}, {93, 271}, {64, 275}, {93, 270}, {81, 258}, {87, 260}, {82, 262}, {90, 270}, {86, 259}, {90, 268}, {72, 273}, {77, 276}, {80, 265}, {78, 277}, {81, 266}, {82, 271}, {82, 268}, {126, 288}, {112, 272}, {126, 286}, {107, 266}, {112, 273}, {127, 284}, {101, 257}, {118, 274}, {113, 277}, {104, 269}, {114, 276}, {127, 281}, {124, 282}, {127, 280}, {108, 260}, {123, 275}, {120, 272}, {115, 283}, {112, 280}, {110, 263}, {99, 265}, {115, 281}, {99, 264}, {119, 284}, {108, 263}, {118, 282}, {119, 283}, {121, 279}, {127, 273}, {124, 274}, {111, 256}, {121, 278}, {102, 278}, {112, 257}, {121, 264}, {107, 281}, {124, 270}, {121, 267}, {120, 266}, {116, 262}, {98, 273}, {124, 271}, {113, 258}, {99, 278}, {97, 279}, {115, 261}, {107, 284}, {126, 265}, {120, 257}, {103, 285}, {111, 277}, {110, 276}, {106, 279}, {100, 282}, {122, 261}, {141, 269}, {138, 267}, {141, 268}, {144, 274}, {133, 262}, {141, 270}, {132, 256}, {139, 271}, {135, 259}, {143, 266}, {133, 258}, {139, 268}, {136, 256}, {132, 277}, {142, 287}, {129, 275}, {139, 280}, {142, 285}, {138, 286}, {137, 287}, {131, 276}, {137, 286}, {130, 282}, {132, 284}, {134, 287}, {144, 267}, {129, 285}, {135, 283}, {131, 287}, {131, 286}, {142, 275}, {138, 279}, {135, 281}, {132, 283}, {134, 288}, {138, 288}, {142, 288} }>;

(II) A more general form is to represent the graph as the orbit of {135, 188} under the group generated by the following permutations:

a: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 23)(17, 26)(18, 28)(20, 31)(22, 33)(24, 36)(25, 38)(27, 41)(29, 44)(30, 46)(32, 49)(34, 52)(35, 54)(37, 57)(39, 60)(40, 62)(42, 64)(43, 59)(45, 67)(47, 69)(48, 71)(50, 73)(51, 75)(53, 77)(55, 79)(56, 81)(58, 82)(61, 85)(63, 88)(65, 83)(66, 74)(68, 92)(72, 97)(76, 101)(78, 103)(80, 105)(86, 96)(87, 110)(89, 113)(90, 100)(91, 116)(93, 118)(94, 102)(98, 106)(99, 120)(107, 126)(111, 129)(112, 121)(114, 122)(115, 131)(117, 133)(119, 134)(123, 136)(127, 138)(130, 141)(132, 142)(135, 137)(139, 144)(140, 143)(145, 146)(147, 149)(148, 151)(150, 154)(152, 156)(153, 158)(155, 161)(157, 164)(159, 167)(160, 169)(162, 171)(163, 173)(165, 176)(166, 178)(168, 181)(170, 184)(172, 187)(174, 190)(175, 192)(177, 195)(179, 198)(180, 200)(182, 203)(183, 197)(185, 206)(186, 208)(188, 211)(189, 213)(191, 216)(193, 219)(194, 220)(196, 223)(199, 225)(201, 227)(202, 229)(204, 224)(205, 232)(207, 234)(209, 237)(210, 231)(212, 240)(214, 243)(215, 233)(217, 245)(218, 242)(221, 248)(222, 249)(226, 253)(228, 255)(230, 258)(235, 262)(236, 252)(238, 259)(239, 266)(241, 268)(244, 250)(246, 269)(247, 254)(251, 265)(256, 275)(257, 264)(260, 263)(261, 276)(267, 280)(270, 282)(271, 274)(272, 278)(273, 279)(277, 285)(281, 286)(283, 287)(284, 288)
b: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 25)(17, 27)(19, 30)(21, 32)(23, 35)(24, 37)(26, 40)(28, 43)(29, 45)(31, 48)(33, 51)(34, 53)(36, 56)(38, 59)(39, 61)(41, 63)(42, 58)(44, 66)(46, 68)(47, 70)(50, 74)(52, 76)(54, 65)(55, 80)(57, 81)(60, 84)(62, 87)(64, 89)(67, 91)(69, 94)(71, 96)(72, 98)(73, 99)(75, 83)(77, 97)(78, 100)(79, 104)(82, 107)(85, 109)(86, 92)(88, 112)(90, 115)(93, 119)(95, 117)(101, 122)(102, 108)(103, 123)(105, 125)(106, 114)(110, 121)(111, 118)(113, 130)(116, 120)(124, 132)(126, 137)(127, 139)(128, 140)(131, 138)(133, 143)(135, 141)(136, 144)(146, 148)(147, 150)(149, 153)(151, 155)(152, 157)(154, 160)(156, 163)(158, 166)(159, 168)(162, 172)(164, 175)(165, 177)(167, 180)(169, 183)(170, 185)(171, 186)(173, 189)(174, 191)(176, 194)(178, 197)(179, 199)(181, 202)(182, 196)(184, 205)(187, 210)(188, 212)(190, 215)(192, 218)(193, 203)(195, 222)(198, 214)(200, 209)(201, 228)(204, 231)(206, 221)(207, 235)(208, 236)(211, 239)(213, 242)(216, 244)(217, 241)(219, 246)(220, 247)(223, 251)(224, 252)(226, 254)(229, 257)(230, 234)(232, 260)(233, 261)(237, 264)(238, 265)(240, 258)(248, 272)(249, 253)(250, 273)(255, 267)(256, 274)(259, 269)(262, 266)(263, 278)(268, 281)(270, 283)(271, 284)(275, 285)(276, 279)(277, 282)(287, 288)
c: (3, 6)(5, 10)(8, 26)(9, 17)(11, 19)(13, 40)(14, 16)(15, 27)(18, 30)(21, 62)(22, 25)(23, 64)(24, 42)(28, 69)(29, 47)(32, 87)(33, 60)(34, 39)(35, 89)(36, 41)(37, 58)(38, 52)(43, 94)(44, 46)(45, 70)(49, 129)(50, 111)(51, 84)(53, 61)(54, 122)(55, 114)(56, 63)(59, 76)(65, 101)(66, 68)(67, 95)(71, 97)(73, 110)(74, 118)(75, 108)(77, 96)(78, 86)(79, 113)(80, 106)(83, 102)(85, 103)(90, 93)(91, 117)(92, 100)(99, 121)(104, 130)(109, 123)(115, 119)(124, 141)(126, 138)(128, 136)(131, 137)(132, 135)(134, 142)(140, 144)(146, 149)(148, 153)(151, 167)(152, 159)(155, 180)(156, 158)(157, 168)(161, 227)(162, 201)(163, 166)(164, 203)(165, 182)(169, 184)(171, 200)(172, 228)(173, 198)(174, 179)(175, 193)(176, 181)(177, 196)(178, 190)(183, 205)(186, 209)(187, 275)(188, 256)(189, 214)(191, 199)(194, 202)(197, 215)(204, 233)(206, 234)(210, 285)(211, 255)(212, 274)(216, 253)(217, 226)(220, 258)(221, 230)(224, 232)(225, 245)(229, 248)(231, 261)(238, 276)(239, 267)(240, 247)(241, 254)(244, 249)(252, 260)(257, 272)(259, 277)(265, 279)(268, 271)(269, 282)(281, 284)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 155 ]
288
-1 145 146 147 149
-2 145 148 150 153
-3 154 146 158 151
-4 147 159 150 152
-5 155 166 148 160
-6 154 156 167 149
-7 157 168 147 150
-8 178 169 161 151
-9 179 170 162 152
-10 180 160 163 153
-11 154 181 149 164
-12 165 145 182 150
-13 155 161 183 197
-14 198 156 171 184
-15 199 157 172 185
-16 200 158 169 173
-17 201 159 170 174
-18 202 160 153 175
-19 154 176 146 203
-20 177 145 147 196
-21 224 171 204 162
-22 214 205 163 186
-23 187 225 206 164
-24 165 188 226 207
-25 209 166 189 183
-26 167 190 227 184
-27 168 191 228 185
-28 158 169 192 229
-29 159 170 193 230
-30 148 160 193 194
-31 146 223 149 195
-32 231 172 186 252
-33 232 243 173 208
-34 209 189 233 174
-35 210 221 225 175
-36 176 253 211 234
-37 177 254 212 235
-38 178 213 237 197
-39 179 214 204 186
-40 180 215 205 227
-41 255 181 216 206
-42 256 182 217 207
-43 166 257 183 218
-44 167 258 184 219
-45 168 234 203 185
-46 220 169 151 219
-47 221 170 152 175
-48 222 148 251 153
-49 187 210 236 208
-50 209 188 259 260
-51 243 189 236 260
-52 190 213 215 237
-53 200 191 173 261
-54 231 199 192 248
-55 253 193 194 238
-56 194 249 239 230
-57 247 195 240 262
-58 235 196 241 274
-59 242 264 178 197
-60 198 243 224 208
-61 198 231 199 171
-62 232 200 233 201
-63 221 244 267 202
-64 275 234 245 203
-65 179 204 272 218
-66 180 246 205 240
-67 181 182 206 207
-68 155 246 247 183
-69 156 192 248 184
-70 157 206 185 164
-71 265 158 249 151
-72 159 250 152 273
-73 211 237 238 263
-74 232 200 212 269
-75 213 214 252 263
-76 242 264 190 215
-77 276 180 216 163
-78 277 190 227 217
-79 220 226 259 219
-80 176 265 203 249
-81 220 222 266 258
-82 223 268 271 262
-83 198 242 278 224
-84 243 214 236 252
-85 210 179 225 162
-86 178 226 259 161
-87 209 260 228 261
-88 280 248 250 229
-89 245 193 230 285
-90 233 201 268 270
-91 221 202 235 196
-92 254 269 161 197
-93 204 270 271 162
-94 205 272 163 218
-95 165 176 234 207
-96 253 155 166 238
-97 156 167 244 279
-98 157 168 250 273
-99 264 265 278 239
-100 215 227 282 241
-101 233 257 174 218
-102 242 232 278 173
-103 201 245 174 285
-104 254 246 247 269
-105 165 222 182 251
-106 244 279 181 164
-107 266 281 251 284
-108 189 213 260 263
-109 187 199 225 172
-110 276 255 237 263
-111 277 256 186 252
-112 257 280 272 273
-113 277 258 217 219
-114 276 202 216 175
-115 281 228 261 283
-116 223 248 229 262
-117 177 235 194 230
-118 224 171 282 274
-119 231 172 283 284
-120 266 257 272 251
-121 264 267 278 279
-122 191 192 261 229
-123 275 245 191 228
-124 270 271 282 274
-125 177 223 195 196
-126 286 265 288 239
-127 280 281 273 284
-128 253 188 211 226
-129 275 236 208 285
-130 246 282 240 241
-131 286 276 287 255
-132 277 256 283 284
-133 220 258 195 262
-134 187 210 287 288
-135 188 259 281 283
-136 255 256 216 217
-137 286 287 211 238
-138 286 288 267 279
-139 268 280 271 250
-140 254 212 249 239
-141 212 268 269 270
-142 275 287 288 285
-143 222 266 247 240
-144 244 267 241 274
-145 1 12 2 20
-146 1 3 19 31
-147 1 4 7 20
-148 2 48 5 30
-149 11 1 6 31
-150 12 2 4 7
-151 46 3 71 8
-152 47 4 72 9
-153 2 48 18 10
-154 11 3 6 19
-155 13 68 5 96
-156 14 69 6 97
-157 15 70 7 98
-158 3 16 71 28
-159 4 17 72 29
-160 5 18 30 10
-161 13 92 8 86
-162 93 85 9 21
-163 22 77 94 10
-164 11 23 70 106
-165 12 24 105 95
-166 25 5 96 43
-167 44 26 6 97
-168 45 27 7 98
-169 46 16 28 8
-170 47 17 29 9
-171 14 61 118 21
-172 15 119 32 109
-173 33 102 16 53
-174 34 101 103 17
-175 35 47 114 18
-176 36 80 95 19
-177 37 125 117 20
-178 59 38 8 86
-179 39 85 9 65
-180 66 77 40 10
-181 11 67 106 41
-182 12 67 105 42
-183 13 68 25 43
-184 44 14 69 26
-185 45 15 70 27
-186 22 111 39 32
-187 23 134 49 109
-188 24 135 50 128
-189 34 25 51 108
-190 78 26 52 76
-191 122 123 27 53
-192 122 69 28 54
-193 55 89 29 30
-194 55 56 117 30
-195 133 57 125 31
-196 58 91 125 20
-197 13 59 92 38
-198 14 60 61 83
-199 15 61 54 109
-200 16 62 74 53
-201 90 103 17 62
-202 91 114 18 63
-203 45 80 19 64
-204 93 39 21 65
-205 22 66 94 40
-206 23 67 70 41
-207 67 24 95 42
-208 33 49 60 129
-209 34 25 50 87
-210 35 134 49 85
-211 36 137 73 128
-212 37 74 140 141
-213 38 52 75 108
-214 22 39 84 75
-215 100 40 52 76
-216 77 114 136 41
-217 78 113 136 42
-218 101 94 43 65
-219 44 46 79 113
-220 133 46 79 81
-221 35 47 91 63
-222 143 48 81 105
-223 125 82 116 31
-224 60 83 118 21
-225 23 35 85 109
-226 24 79 128 86
-227 78 100 26 40
-228 123 27 115 87
-229 88 122 28 116
-230 56 89 29 117
-231 61 119 32 54
-232 33 102 62 74
-233 34 90 101 62
-234 45 36 95 64
-235 58 91 37 117
-236 49 51 84 129
-237 110 38 73 52
-238 55 137 73 96
-239 99 56 126 140
-240 66 143 57 130
-241 100 144 58 130
-242 102 59 83 76
-243 33 60 51 84
-244 144 106 63 97
-245 89 123 103 64
-246 66 68 104 130
-247 143 57 68 104
-248 88 69 116 54
-249 56 80 71 140
-250 88 72 139 98
-251 48 105 107 120
-252 111 84 75 32
-253 55 36 128 96
-254 37 92 104 140
-255 110 136 41 131
-256 132 111 136 42
-257 101 112 43 120
-258 44 133 113 81
-259 79 135 50 86
-260 50 51 108 87
-261 122 115 53 87
-262 133 57 82 116
-263 110 73 75 108
-264 99 121 59 76
-265 99 80 71 126
-266 143 81 107 120
-267 121 144 138 63
-268 90 82 139 141
-269 92 104 74 141
-270 90 124 93 141
-271 124 82 93 139
-272 112 94 65 120
-273 112 72 127 98
-274 144 58 124 118
-275 123 129 64 142
-276 77 110 114 131
-277 132 78 111 113
-278 99 121 102 83
-279 121 138 106 97
-280 88 112 127 139
-281 135 115 127 107
-282 100 124 118 130
-283 132 135 115 119
-284 132 127 107 119
-285 89 103 129 142
-286 126 137 138 131
-287 134 137 131 142
-288 134 126 138 142
0

**************