C4graphGraph forms for C4 [ 288, 156 ] = XI(Rmap(144,17){6,6|12}_24)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 156 ] = XI(Rmap(144,17){6,6|12}_24).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {138, 174}, {138, 173}, {144, 189}, {144, 191}, {134, 177}, {133, 189}, {135, 191}, {129, 188}, {134, 196}, {138, 200}, {132, 192}, {138, 199}, {139, 211}, {140, 213}, {130, 216}, {129, 218}, {139, 214}, {140, 209}, {136, 214}, {140, 210}, {142, 239}, {142, 237}, {133, 239}, {128, 237}, {129, 238}, {128, 240}, {144, 224}, {137, 249}, {139, 249}, {144, 226}, {134, 245}, {139, 252}, {140, 251}, {135, 255}, {131, 250}, {141, 243}, {142, 241}, {50, 178}, {19, 146}, {59, 186}, {67, 194}, {91, 218}, {28, 158}, {49, 179}, {29, 159}, {33, 162}, {120, 251}, {114, 241}, {34, 161}, {20, 145}, {47, 170}, {45, 168}, {73, 207}, {20, 147}, {95, 216}, {46, 169}, {70, 193}, {19, 154}, {127, 246}, {80, 217}, {30, 148}, {101, 239}, {100, 238}, {53, 191}, {52, 190}, {49, 187}, {31, 149}, {64, 202}, {18, 153}, {119, 252}, {118, 253}, {112, 251}, {44, 167}, {32, 172}, {115, 255}, {114, 254}, {35, 175}, {34, 174}, {33, 173}, {82, 222}, {83, 223}, {31, 146}, {115, 254}, {113, 252}, {43, 166}, {65, 204}, {67, 206}, {81, 220}, {16, 158}, {104, 230}, {51, 189}, {50, 188}, {17, 159}, {66, 205}, {124, 243}, {99, 236}, {73, 198}, {84, 219}, {1, 145}, {123, 235}, {34, 178}, {3, 146}, {99, 242}, {11, 154}, {9, 152}, {7, 150}, {5, 148}, {68, 213}, {76, 221}, {89, 200}, {91, 202}, {1, 147}, {101, 247}, {100, 246}, {95, 205}, {94, 204}, {52, 166}, {33, 179}, {15, 157}, {14, 156}, {4, 150}, {1, 146}, {10, 153}, {6, 149}, {2, 145}, {71, 212}, {72, 219}, {90, 201}, {1, 149}, {119, 227}, {118, 226}, {117, 225}, {116, 224}, {103, 243}, {53, 161}, {45, 185}, {44, 184}, {39, 179}, {38, 178}, {37, 177}, {36, 176}, {7, 147}, {3, 151}, {2, 150}, {74, 222}, {75, 223}, {111, 250}, {124, 233}, {2, 148}, {113, 231}, {110, 248}, {102, 240}, {93, 203}, {13, 155}, {78, 216}, {79, 217}, {92, 202}, {4, 147}, {125, 234}, {74, 210}, {112, 232}, {75, 211}, {92, 196}, {3, 154}, {6, 156}, {109, 247}, {108, 246}, {32, 186}, {12, 150}, {7, 157}, {76, 214}, {77, 215}, {2, 153}, {97, 250}, {4, 159}, {4, 152}, {121, 229}, {120, 228}, {104, 244}, {43, 183}, {42, 182}, {41, 181}, {40, 180}, {6, 154}, {3, 158}, {12, 145}, {5, 155}, {125, 227}, {107, 245}, {102, 248}, {11, 149}, {8, 151}, {126, 225}, {51, 172}, {88, 199}, {82, 242}, {6, 167}, {98, 195}, {8, 169}, {77, 236}, {84, 245}, {26, 184}, {95, 253}, {27, 185}, {70, 228}, {78, 236}, {86, 244}, {5, 166}, {19, 176}, {15, 172}, {9, 170}, {83, 240}, {24, 188}, {48, 148}, {27, 191}, {26, 190}, {25, 189}, {91, 255}, {5, 160}, {20, 177}, {14, 171}, {67, 229}, {122, 220}, {81, 249}, {8, 161}, {96, 201}, {48, 153}, {12, 165}, {10, 163}, {10, 160}, {64, 234}, {9, 162}, {106, 193}, {105, 194}, {100, 207}, {13, 161}, {121, 213}, {111, 195}, {93, 241}, {23, 187}, {22, 186}, {80, 253}, {25, 183}, {96, 206}, {7, 168}, {52, 155}, {11, 164}, {73, 230}, {64, 241}, {69, 244}, {89, 232}, {91, 234}, {18, 160}, {65, 243}, {74, 248}, {86, 228}, {87, 229}, {23, 164}, {111, 220}, {27, 168}, {90, 233}, {14, 186}, {22, 163}, {101, 208}, {97, 212}, {28, 169}, {84, 225}, {14, 184}, {15, 185}, {66, 244}, {21, 162}, {102, 209}, {92, 235}, {47, 152}, {29, 170}, {85, 226}, {16, 169}, {105, 208}, {46, 151}, {8, 178}, {109, 215}, {13, 183}, {12, 182}, {9, 179}, {77, 247}, {17, 170}, {100, 223}, {110, 210}, {16, 173}, {125, 192}, {110, 211}, {99, 222}, {26, 167}, {24, 165}, {22, 171}, {18, 175}, {79, 242}, {83, 238}, {10, 180}, {105, 215}, {30, 160}, {21, 171}, {11, 181}, {17, 174}, {25, 166}, {88, 231}, {126, 190}, {31, 220}, {49, 242}, {104, 172}, {48, 245}, {96, 165}, {32, 230}, {97, 167}, {33, 231}, {24, 223}, {13, 197}, {21, 221}, {15, 198}, {23, 222}, {34, 232}, {126, 180}, {123, 177}, {98, 168}, {35, 233}, {60, 240}, {122, 182}, {125, 176}, {36, 234}, {123, 181}, {37, 235}, {96, 175}, {20, 196}, {71, 151}, {72, 152}, {44, 253}, {47, 254}, {46, 255}, {58, 235}, {40, 250}, {41, 251}, {36, 247}, {124, 175}, {45, 254}, {59, 239}, {35, 246}, {24, 206}, {42, 252}, {59, 237}, {62, 232}, {63, 233}, {16, 199}, {58, 237}, {72, 159}, {17, 200}, {19, 202}, {57, 224}, {69, 156}, {71, 158}, {22, 204}, {54, 236}, {23, 205}, {60, 230}, {61, 231}, {18, 201}, {56, 227}, {70, 157}, {28, 192}, {113, 173}, {50, 238}, {31, 195}, {30, 194}, {29, 193}, {37, 248}, {126, 163}, {21, 203}, {112, 174}, {39, 249}, {68, 155}, {123, 164}, {122, 165}, {38, 197}, {40, 204}, {42, 206}, {41, 205}, {63, 218}, {59, 221}, {61, 219}, {76, 171}, {62, 212}, {48, 219}, {85, 190}, {35, 207}, {39, 203}, {92, 176}, {53, 197}, {74, 187}, {68, 183}, {36, 208}, {46, 218}, {45, 217}, {44, 216}, {39, 211}, {38, 210}, {37, 209}, {79, 187}, {51, 198}, {65, 180}, {67, 182}, {47, 217}, {55, 193}, {54, 192}, {62, 200}, {63, 201}, {38, 209}, {50, 197}, {66, 181}, {75, 188}, {55, 207}, {25, 224}, {29, 228}, {27, 226}, {49, 203}, {56, 194}, {57, 195}, {60, 198}, {61, 199}, {26, 225}, {95, 164}, {43, 208}, {30, 229}, {40, 212}, {43, 215}, {42, 214}, {41, 213}, {32, 221}, {97, 156}, {94, 163}, {69, 184}, {58, 196}, {28, 227}, {98, 157}, {93, 162}, {70, 185}, {58, 273}, {63, 275}, {61, 272}, {60, 274}, {54, 263}, {62, 271}, {51, 256}, {55, 260}, {52, 257}, {54, 259}, {53, 258}, {57, 256}, {56, 259}, {55, 267}, {56, 261}, {57, 262}, {87, 278}, {73, 267}, {76, 264}, {88, 287}, {71, 271}, {80, 281}, {81, 280}, {77, 263}, {94, 276}, {80, 282}, {89, 277}, {83, 286}, {109, 288}, {90, 276}, {82, 285}, {94, 270}, {86, 260}, {87, 261}, {68, 279}, {93, 270}, {69, 278}, {75, 280}, {64, 276}, {116, 288}, {65, 277}, {66, 278}, {85, 257}, {88, 268}, {89, 269}, {90, 270}, {78, 283}, {79, 282}, {84, 257}, {78, 281}, {81, 262}, {85, 258}, {72, 272}, {82, 265}, {86, 266}, {87, 266}, {103, 263}, {115, 275}, {111, 271}, {108, 268}, {104, 266}, {98, 262}, {127, 283}, {109, 265}, {106, 269}, {112, 279}, {108, 267}, {114, 282}, {115, 282}, {124, 277}, {117, 284}, {103, 269}, {117, 287}, {105, 261}, {106, 260}, {121, 279}, {118, 281}, {120, 279}, {108, 284}, {101, 273}, {127, 267}, {119, 259}, {118, 258}, {117, 257}, {116, 256}, {107, 286}, {110, 280}, {99, 283}, {127, 263}, {102, 286}, {107, 274}, {113, 264}, {107, 272}, {103, 283}, {122, 262}, {121, 261}, {120, 260}, {114, 270}, {116, 265}, {106, 277}, {119, 264}, {136, 264}, {141, 269}, {137, 265}, {136, 266}, {143, 268}, {133, 256}, {135, 258}, {132, 259}, {132, 268}, {131, 271}, {141, 285}, {128, 273}, {143, 286}, {137, 280}, {128, 274}, {129, 275}, {143, 284}, {133, 273}, {137, 285}, {135, 275}, {134, 272}, {142, 276}, {130, 281}, {132, 287}, {130, 287}, {143, 274}, {130, 284}, {136, 278}, {131, 285}, {131, 288}, {141, 288} }>;

(II) A more general form is to represent the graph as the orbit of {138, 174} under the group generated by the following permutations:

a: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 25)(17, 27)(19, 30)(21, 32)(23, 35)(24, 37)(26, 40)(28, 43)(29, 45)(31, 48)(33, 51)(34, 53)(36, 56)(38, 50)(39, 60)(41, 63)(42, 58)(44, 65)(46, 68)(47, 70)(49, 73)(52, 71)(54, 77)(55, 79)(57, 61)(59, 76)(62, 85)(64, 87)(66, 90)(67, 92)(69, 94)(72, 98)(74, 100)(75, 102)(78, 103)(80, 106)(81, 107)(82, 108)(83, 110)(84, 111)(86, 114)(88, 116)(89, 118)(91, 121)(93, 104)(95, 124)(96, 123)(97, 126)(99, 127)(101, 119)(105, 125)(109, 132)(112, 135)(113, 133)(115, 120)(117, 131)(122, 134)(128, 139)(129, 140)(130, 141)(136, 142)(137, 143)(138, 144)(146, 148)(147, 150)(149, 153)(151, 155)(152, 157)(154, 160)(156, 163)(158, 166)(159, 168)(162, 172)(164, 175)(165, 177)(167, 180)(169, 183)(170, 185)(171, 186)(173, 189)(174, 191)(176, 194)(178, 197)(179, 198)(181, 201)(182, 196)(184, 204)(187, 207)(188, 209)(190, 212)(192, 215)(193, 217)(195, 219)(199, 224)(200, 226)(202, 229)(203, 230)(205, 233)(206, 235)(208, 227)(210, 238)(211, 240)(213, 218)(214, 237)(216, 243)(220, 245)(222, 246)(223, 248)(225, 250)(228, 254)(231, 256)(232, 258)(234, 261)(236, 263)(239, 264)(241, 266)(242, 267)(244, 270)(247, 259)(249, 274)(251, 275)(252, 273)(253, 277)(255, 279)(257, 271)(260, 282)(262, 272)(265, 268)(269, 281)(276, 278)(280, 286)(284, 285)(287, 288)
b: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 23)(17, 26)(18, 28)(20, 31)(22, 33)(24, 36)(25, 38)(27, 41)(29, 44)(30, 46)(32, 49)(34, 52)(35, 54)(37, 57)(39, 59)(40, 61)(42, 64)(43, 50)(45, 66)(47, 69)(48, 71)(51, 74)(53, 68)(55, 78)(56, 63)(58, 81)(60, 82)(62, 84)(65, 88)(67, 91)(70, 95)(72, 97)(73, 99)(75, 101)(76, 93)(77, 100)(79, 104)(80, 86)(83, 109)(85, 112)(87, 115)(89, 117)(90, 119)(92, 122)(94, 113)(96, 125)(98, 123)(102, 116)(103, 108)(105, 129)(106, 130)(107, 131)(110, 133)(111, 134)(114, 136)(118, 120)(121, 135)(124, 132)(126, 138)(128, 137)(139, 142)(140, 144)(141, 143)(145, 146)(147, 149)(148, 151)(150, 154)(152, 156)(153, 158)(155, 161)(157, 164)(159, 167)(160, 169)(162, 171)(163, 173)(165, 176)(166, 178)(168, 181)(170, 184)(172, 187)(174, 190)(175, 192)(177, 195)(179, 186)(180, 199)(182, 202)(183, 197)(185, 205)(188, 208)(189, 210)(191, 213)(193, 216)(194, 218)(196, 220)(198, 222)(200, 225)(201, 227)(203, 221)(204, 231)(206, 234)(207, 236)(209, 224)(211, 239)(212, 219)(214, 241)(215, 238)(217, 244)(223, 247)(226, 251)(228, 253)(229, 255)(230, 242)(232, 257)(233, 259)(235, 262)(237, 249)(240, 265)(243, 268)(245, 271)(246, 263)(248, 256)(250, 272)(252, 276)(254, 278)(258, 279)(260, 281)(261, 275)(264, 270)(266, 282)(267, 283)(269, 284)(273, 280)(274, 285)(277, 287)(286, 288)
c: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(13, 21)(15, 24)(16, 26)(18, 29)(22, 34)(23, 36)(25, 39)(27, 42)(28, 44)(30, 47)(32, 50)(33, 52)(35, 55)(37, 58)(38, 59)(40, 62)(41, 64)(43, 49)(45, 67)(46, 69)(48, 72)(51, 75)(53, 76)(54, 78)(56, 80)(57, 81)(60, 83)(61, 84)(63, 86)(65, 89)(66, 91)(68, 93)(70, 96)(71, 97)(73, 100)(74, 101)(77, 99)(79, 105)(82, 109)(85, 113)(87, 115)(88, 117)(90, 120)(92, 123)(94, 112)(95, 125)(98, 122)(102, 128)(104, 129)(106, 124)(110, 133)(114, 121)(116, 137)(118, 119)(126, 138)(130, 132)(135, 136)(139, 144)(140, 142)(145, 147)(146, 149)(148, 152)(151, 156)(153, 159)(155, 162)(157, 165)(158, 167)(160, 170)(161, 171)(163, 174)(164, 176)(166, 179)(168, 182)(169, 184)(172, 188)(173, 190)(175, 193)(177, 196)(178, 186)(180, 200)(181, 202)(183, 203)(185, 206)(187, 208)(189, 211)(191, 214)(192, 216)(194, 217)(195, 220)(197, 221)(198, 223)(199, 225)(201, 228)(204, 232)(205, 234)(209, 237)(210, 239)(213, 241)(215, 242)(218, 244)(222, 247)(224, 249)(226, 252)(227, 253)(229, 254)(230, 238)(231, 257)(233, 260)(243, 269)(245, 272)(246, 267)(248, 273)(250, 271)(251, 276)(255, 278)(256, 280)(258, 264)(259, 281)(261, 282)(263, 283)(266, 275)(268, 284)(270, 279)(274, 286)(285, 288)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 156 ]
288
-1 145 146 147 149
-2 145 148 150 153
-3 154 146 158 151
-4 147 159 150 152
-5 155 166 148 160
-6 154 156 167 149
-7 157 168 147 150
-8 178 169 161 151
-9 179 170 162 152
-10 180 160 163 153
-11 154 181 149 164
-12 165 145 182 150
-13 155 161 183 197
-14 156 171 184 186
-15 198 157 172 185
-16 199 158 169 173
-17 200 159 170 174
-18 201 160 153 175
-19 154 176 146 202
-20 177 145 147 196
-21 221 203 171 162
-22 171 204 163 186
-23 187 222 205 164
-24 165 188 223 206
-25 166 189 224 183
-26 167 190 225 184
-27 168 191 226 185
-28 158 169 192 227
-29 159 170 193 228
-30 148 160 194 229
-31 220 146 149 195
-32 221 172 186 230
-33 231 179 162 173
-34 232 178 161 174
-35 233 246 207 175
-36 176 234 247 208
-37 209 177 235 248
-38 209 210 178 197
-39 211 179 203 249
-40 212 180 204 250
-41 213 181 205 251
-42 214 182 206 252
-43 166 215 183 208
-44 253 167 216 184
-45 254 168 217 185
-46 255 169 151 218
-47 254 170 217 152
-48 245 148 153 219
-49 187 242 179 203
-50 188 178 238 197
-51 198 189 256 172
-52 155 166 190 257
-53 191 258 161 197
-54 192 236 259 263
-55 267 193 260 207
-56 259 194 227 261
-57 256 224 195 262
-58 235 237 196 273
-59 221 237 239 186
-60 198 240 230 274
-61 231 199 272 219
-62 232 200 212 271
-63 275 233 201 218
-64 276 234 202 241
-65 243 277 180 204
-66 244 278 181 205
-67 182 194 206 229
-68 155 213 279 183
-69 156 244 278 184
-70 157 193 228 185
-71 212 158 271 151
-72 159 272 152 219
-73 198 267 207 230
-74 187 210 222 248
-75 188 211 223 280
-76 264 221 214 171
-77 236 247 215 263
-78 236 281 216 283
-79 187 242 282 217
-80 253 281 282 217
-81 220 280 249 262
-82 242 265 222 285
-83 286 223 238 240
-84 245 257 225 219
-85 190 257 258 226
-86 244 266 260 228
-87 266 278 261 229
-88 231 199 287 268
-89 232 200 277 269
-90 276 233 201 270
-91 255 234 202 218
-92 176 202 235 196
-93 203 270 162 241
-94 276 204 270 163
-95 253 205 216 164
-96 165 201 206 175
-97 156 167 212 250
-98 157 168 195 262
-99 242 222 236 283
-100 223 246 238 207
-101 247 239 273 208
-102 209 286 248 240
-103 243 269 283 263
-104 244 266 172 230
-105 215 194 261 208
-106 277 269 193 260
-107 286 245 272 274
-108 267 246 268 284
-109 265 288 247 215
-110 210 211 280 248
-111 220 271 195 250
-112 232 279 174 251
-113 231 264 173 252
-114 254 270 282 241
-115 275 254 255 282
-116 265 288 256 224
-117 287 257 225 284
-118 253 258 226 281
-119 264 259 227 252
-120 279 260 228 251
-121 213 279 261 229
-122 165 220 182 262
-123 177 235 181 164
-124 243 233 277 175
-125 176 234 192 227
-126 190 180 225 163
-127 267 246 283 263
-128 237 240 273 274
-129 275 188 238 218
-130 287 281 216 284
-131 288 271 250 285
-132 287 268 192 259
-133 189 256 239 273
-134 177 245 272 196
-135 275 255 191 258
-136 264 266 278 214
-137 265 280 249 285
-138 199 200 173 174
-139 211 214 249 252
-140 209 210 213 251
-141 243 288 269 285
-142 276 237 239 241
-143 286 268 284 274
-144 189 191 224 226
-145 1 12 2 20
-146 1 3 19 31
-147 1 4 7 20
-148 2 48 5 30
-149 11 1 6 31
-150 12 2 4 7
-151 46 3 71 8
-152 47 4 72 9
-153 2 48 18 10
-154 11 3 6 19
-155 13 68 5 52
-156 14 69 6 97
-157 15 70 7 98
-158 3 16 71 28
-159 4 17 72 29
-160 5 18 30 10
-161 34 13 8 53
-162 33 93 9 21
-163 22 126 94 10
-164 11 23 123 95
-165 12 122 24 96
-166 25 5 52 43
-167 44 26 6 97
-168 45 27 7 98
-169 46 16 28 8
-170 47 17 29 9
-171 22 14 21 76
-172 15 104 51 32
-173 33 113 16 138
-174 34 112 17 138
-175 35 124 18 96
-176 36 92 125 19
-177 123 134 37 20
-178 34 38 50 8
-179 33 49 39 9
-180 126 40 10 65
-181 11 66 123 41
-182 12 67 122 42
-183 13 68 25 43
-184 44 14 69 26
-185 45 15 70 27
-186 22 14 59 32
-187 23 79 49 74
-188 24 50 129 75
-189 133 144 25 51
-190 26 126 52 85
-191 144 135 27 53
-192 132 125 28 54
-193 55 70 29 106
-194 56 67 105 30
-195 111 57 31 98
-196 134 58 92 20
-197 13 38 50 53
-198 15 60 51 73
-199 88 16 61 138
-200 89 17 138 62
-201 90 18 63 96
-202 91 92 19 64
-203 49 93 39 21
-204 22 94 40 65
-205 66 23 95 41
-206 67 24 96 42
-207 55 100 35 73
-208 101 36 105 43
-209 102 37 38 140
-210 110 38 74 140
-211 110 39 139 75
-212 71 40 62 97
-213 121 68 41 140
-214 136 139 42 76
-215 77 105 43 109
-216 44 78 95 130
-217 45 79 47 80
-218 46 91 63 129
-219 48 61 72 84
-220 111 122 81 31
-221 59 21 32 76
-222 99 23 82 74
-223 100 24 83 75
-224 144 57 25 116
-225 26 126 84 117
-226 144 27 85 118
-227 56 125 28 119
-228 70 29 86 120
-229 121 67 30 87
-230 60 104 73 32
-231 33 88 113 61
-232 34 89 112 62
-233 35 90 124 63
-234 36 91 125 64
-235 123 58 37 92
-236 77 99 78 54
-237 58 59 128 142
-238 100 50 83 129
-239 133 101 59 142
-240 102 60 83 128
-241 114 93 64 142
-242 99 79 49 82
-243 124 103 141 65
-244 66 69 104 86
-245 134 48 84 107
-246 100 35 127 108
-247 77 101 36 109
-248 110 102 37 74
-249 81 137 39 139
-250 111 40 97 131
-251 112 41 140 120
-252 113 139 42 119
-253 44 80 95 118
-254 45 47 114 115
-255 46 91 135 115
-256 133 57 116 51
-257 84 117 52 85
-258 135 85 118 53
-259 132 56 119 54
-260 55 106 86 120
-261 121 56 105 87
-262 122 57 81 98
-263 77 103 127 54
-264 113 136 119 76
-265 82 137 116 109
-266 136 104 86 87
-267 55 127 73 108
-268 88 132 143 108
-269 89 103 106 141
-270 90 114 93 94
-271 111 71 62 131
-272 134 61 72 107
-273 133 101 58 128
-274 143 60 128 107
-275 135 115 63 129
-276 90 94 64 142
-277 89 124 106 65
-278 66 69 136 87
-279 121 68 112 120
-280 110 81 137 75
-281 78 80 118 130
-282 79 80 114 115
-283 99 78 103 127
-284 143 117 108 130
-285 82 137 141 131
-286 143 102 83 107
-287 88 132 117 130
-288 116 141 109 131
0

**************