C4graphGraph forms for C4 [ 288, 161 ] = SDD(UG(ATD[72,13]))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 161 ] = SDD(UG(ATD[72,13])).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {133, 157}, {136, 151}, {136, 172}, {136, 164}, {133, 177}, {131, 181}, {132, 179}, {133, 189}, {136, 183}, {137, 200}, {140, 196}, {130, 203}, {138, 199}, {133, 203}, {143, 221}, {131, 208}, {131, 213}, {142, 216}, {132, 211}, {128, 217}, {142, 215}, {129, 220}, {132, 229}, {137, 237}, {144, 245}, {138, 236}, {140, 234}, {135, 239}, {135, 237}, {139, 225}, {137, 230}, {138, 229}, {143, 255}, {130, 240}, {140, 254}, {139, 249}, {139, 248}, {131, 245}, {134, 241}, {132, 248}, {140, 240}, {134, 251}, {129, 254}, {58, 186}, {110, 238}, {55, 182}, {117, 244}, {41, 171}, {42, 168}, {89, 218}, {59, 191}, {88, 220}, {92, 217}, {126, 251}, {116, 242}, {74, 205}, {120, 255}, {104, 239}, {38, 174}, {54, 190}, {71, 207}, {75, 195}, {76, 197}, {93, 214}, {106, 230}, {118, 250}, {116, 250}, {16, 159}, {59, 180}, {1, 145}, {112, 224}, {108, 252}, {3, 146}, {118, 231}, {102, 247}, {42, 187}, {15, 158}, {13, 156}, {11, 154}, {9, 152}, {7, 150}, {5, 148}, {88, 201}, {1, 147}, {111, 253}, {1, 146}, {120, 235}, {113, 226}, {106, 249}, {95, 204}, {14, 157}, {10, 153}, {6, 149}, {2, 145}, {72, 219}, {1, 149}, {33, 181}, {32, 180}, {3, 151}, {2, 150}, {34, 183}, {55, 162}, {2, 148}, {126, 232}, {124, 234}, {41, 191}, {40, 190}, {4, 147}, {12, 155}, {60, 171}, {71, 223}, {121, 225}, {3, 154}, {123, 226}, {117, 236}, {7, 158}, {5, 156}, {64, 217}, {72, 209}, {90, 195}, {42, 176}, {2, 153}, {39, 188}, {35, 184}, {6, 157}, {59, 160}, {3, 159}, {109, 241}, {4, 152}, {36, 185}, {38, 187}, {65, 220}, {76, 210}, {4, 155}, {94, 193}, {37, 186}, {8, 151}, {60, 163}, {66, 221}, {75, 212}, {89, 198}, {92, 252}, {113, 209}, {83, 242}, {118, 215}, {109, 204}, {84, 245}, {87, 246}, {15, 173}, {104, 202}, {60, 158}, {75, 233}, {85, 247}, {16, 179}, {107, 200}, {67, 224}, {79, 236}, {82, 241}, {4, 160}, {21, 177}, {20, 176}, {12, 168}, {11, 175}, {10, 174}, {9, 173}, {8, 172}, {7, 163}, {6, 162}, {5, 161}, {17, 180}, {26, 191}, {19, 182}, {68, 225}, {70, 227}, {91, 253}, {126, 216}, {18, 181}, {28, 187}, {69, 226}, {13, 164}, {124, 213}, {121, 208}, {94, 247}, {82, 251}, {83, 250}, {23, 189}, {119, 221}, {60, 150}, {86, 252}, {5, 169}, {31, 179}, {30, 178}, {11, 167}, {10, 166}, {9, 165}, {8, 164}, {7, 171}, {6, 170}, {27, 182}, {111, 194}, {29, 176}, {16, 190}, {105, 199}, {17, 191}, {74, 228}, {72, 231}, {76, 227}, {21, 165}, {23, 167}, {22, 166}, {9, 184}, {42, 155}, {26, 171}, {24, 169}, {19, 162}, {17, 160}, {13, 188}, {11, 186}, {89, 232}, {28, 174}, {29, 175}, {10, 185}, {25, 170}, {18, 161}, {14, 189}, {71, 244}, {67, 246}, {119, 194}, {113, 196}, {92, 233}, {88, 238}, {104, 222}, {93, 235}, {12, 187}, {125, 202}, {27, 172}, {20, 163}, {87, 224}, {74, 242}, {121, 193}, {91, 227}, {18, 168}, {94, 228}, {20, 175}, {70, 253}, {72, 243}, {79, 244}, {12, 176}, {111, 211}, {68, 248}, {15, 178}, {120, 197}, {66, 255}, {68, 249}, {80, 237}, {29, 163}, {106, 212}, {8, 183}, {112, 207}, {105, 214}, {14, 177}, {65, 254}, {80, 239}, {81, 238}, {95, 159}, {112, 177}, {125, 188}, {118, 183}, {96, 162}, {122, 184}, {51, 240}, {14, 203}, {105, 172}, {54, 243}, {52, 241}, {46, 235}, {44, 233}, {34, 231}, {26, 223}, {22, 208}, {126, 184}, {107, 173}, {32, 230}, {13, 202}, {53, 242}, {47, 232}, {45, 234}, {28, 219}, {15, 200}, {24, 209}, {39, 238}, {23, 221}, {119, 189}, {96, 170}, {57, 243}, {25, 210}, {35, 232}, {31, 211}, {56, 244}, {58, 246}, {27, 214}, {36, 233}, {119, 167}, {18, 195}, {53, 228}, {46, 255}, {19, 192}, {45, 254}, {37, 246}, {73, 154}, {20, 192}, {33, 245}, {77, 153}, {23, 194}, {112, 165}, {48, 229}, {28, 201}, {62, 235}, {78, 155}, {43, 253}, {127, 169}, {78, 152}, {22, 193}, {122, 173}, {49, 230}, {61, 234}, {34, 250}, {113, 169}, {36, 252}, {35, 251}, {32, 249}, {125, 164}, {107, 178}, {21, 207}, {40, 243}, {16, 204}, {49, 237}, {48, 236}, {27, 199}, {26, 198}, {25, 197}, {24, 196}, {17, 205}, {19, 206}, {50, 239}, {45, 240}, {29, 192}, {78, 147}, {57, 231}, {127, 161}, {106, 180}, {30, 193}, {122, 165}, {121, 166}, {105, 182}, {58, 218}, {115, 147}, {114, 146}, {95, 190}, {125, 156}, {115, 146}, {57, 219}, {122, 152}, {115, 145}, {77, 174}, {127, 156}, {88, 188}, {92, 185}, {114, 151}, {40, 206}, {115, 149}, {73, 175}, {76, 170}, {31, 248}, {56, 223}, {63, 216}, {54, 222}, {114, 154}, {57, 209}, {58, 210}, {61, 213}, {62, 214}, {63, 215}, {30, 247}, {47, 198}, {45, 196}, {43, 194}, {46, 197}, {127, 148}, {77, 166}, {50, 222}, {95, 179}, {94, 178}, {114, 159}, {39, 201}, {73, 167}, {78, 160}, {38, 201}, {44, 195}, {41, 198}, {90, 181}, {97, 145}, {33, 208}, {90, 168}, {73, 186}, {32, 212}, {33, 213}, {77, 185}, {21, 224}, {107, 158}, {97, 148}, {96, 149}, {47, 218}, {34, 215}, {40, 222}, {41, 223}, {59, 205}, {22, 225}, {97, 150}, {55, 192}, {48, 199}, {37, 210}, {56, 207}, {43, 211}, {97, 153}, {54, 206}, {53, 205}, {52, 204}, {51, 203}, {50, 202}, {44, 212}, {49, 200}, {55, 206}, {24, 226}, {31, 229}, {30, 228}, {25, 227}, {35, 216}, {39, 220}, {90, 161}, {36, 217}, {96, 157}, {38, 219}, {37, 218}, {62, 288}, {51, 274}, {44, 271}, {52, 275}, {61, 276}, {47, 256}, {56, 264}, {51, 256}, {61, 265}, {50, 263}, {52, 257}, {53, 268}, {43, 272}, {63, 259}, {48, 269}, {63, 258}, {46, 273}, {49, 270}, {62, 257}, {84, 277}, {86, 276}, {64, 260}, {65, 261}, {66, 262}, {75, 271}, {85, 272}, {86, 275}, {91, 286}, {74, 268}, {102, 288}, {65, 262}, {80, 279}, {81, 278}, {84, 285}, {67, 265}, {81, 283}, {82, 280}, {83, 281}, {86, 282}, {87, 283}, {70, 267}, {79, 258}, {69, 267}, {69, 266}, {71, 264}, {82, 285}, {83, 284}, {91, 267}, {64, 274}, {69, 278}, {80, 259}, {64, 277}, {68, 273}, {79, 282}, {81, 260}, {67, 283}, {70, 286}, {84, 269}, {89, 256}, {85, 271}, {93, 257}, {66, 287}, {87, 265}, {103, 261}, {100, 263}, {99, 263}, {98, 261}, {116, 284}, {124, 276}, {102, 271}, {120, 273}, {110, 260}, {99, 264}, {103, 268}, {101, 270}, {100, 264}, {109, 257}, {116, 281}, {123, 278}, {98, 268}, {101, 266}, {117, 282}, {104, 263}, {103, 279}, {123, 267}, {123, 266}, {85, 288}, {124, 265}, {110, 283}, {98, 279}, {102, 272}, {108, 282}, {117, 258}, {108, 276}, {110, 278}, {101, 284}, {103, 286}, {99, 281}, {101, 287}, {99, 280}, {98, 286}, {100, 280}, {93, 288}, {100, 281}, {109, 275}, {108, 275}, {111, 272}, {130, 256}, {141, 270}, {128, 260}, {135, 259}, {129, 261}, {144, 277}, {129, 262}, {141, 266}, {138, 269}, {137, 270}, {143, 262}, {142, 258}, {142, 259}, {144, 285}, {130, 274}, {143, 287}, {135, 279}, {141, 284}, {128, 274}, {141, 287}, {128, 277}, {139, 273}, {134, 285}, {144, 269}, {134, 280} }>;

(II) A more general form is to represent the graph as the orbit of {133, 157} under the group generated by the following permutations:

a: (9, 122)
b: (49, 137)
c: (26, 41)
d: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 23)(17, 25)(18, 27)(22, 31)(24, 34)(26, 37)(28, 40)(30, 43)(32, 46)(33, 48)(35, 51)(36, 52)(38, 54)(39, 50)(41, 58)(42, 55)(44, 62)(45, 63)(49, 66)(53, 70)(56, 67)(59, 76)(60, 73)(61, 79)(64, 82)(65, 80)(69, 83)(71, 87)(74, 91)(75, 93)(77, 95)(78, 96)(81, 99)(88, 104)(90, 105)(92, 109)(94, 111)(97, 114)(100, 110)(106, 120)(107, 119)(113, 118)(116, 123)(117, 124)(121, 132)(122, 133)(126, 130)(127, 136)(128, 134)(129, 135)(131, 138)(137, 143)(140, 142)(145, 146)(147, 149)(148, 151)(150, 154)(152, 157)(153, 159)(155, 162)(156, 164)(158, 167)(160, 170)(161, 172)(163, 175)(165, 177)(166, 179)(168, 182)(169, 183)(171, 186)(173, 189)(174, 190)(176, 192)(178, 194)(180, 197)(181, 199)(184, 203)(185, 204)(187, 206)(188, 202)(191, 210)(193, 211)(195, 214)(196, 215)(198, 218)(200, 221)(201, 222)(205, 227)(207, 224)(208, 229)(209, 231)(212, 235)(213, 236)(216, 240)(217, 241)(219, 243)(220, 239)(223, 246)(225, 248)(226, 250)(228, 253)(230, 255)(232, 256)(233, 257)(234, 258)(237, 262)(238, 263)(242, 267)(244, 265)(245, 269)(247, 272)(249, 273)(251, 274)(252, 275)(254, 259)(260, 280)(261, 279)(264, 283)(266, 284)(268, 286)(270, 287)(271, 288)(276, 282)(277, 285)(278, 281)
e: (23, 119)
f: (28, 38)
g: (69, 123)
h: (4, 78)
m: (33, 131)
n1: (18, 90)
a1: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(13, 21)(15, 18)(16, 25)(22, 32)(23, 27)(24, 35)(26, 28)(30, 44)(31, 46)(33, 49)(34, 51)(36, 53)(37, 40)(38, 41)(39, 56)(42, 60)(43, 62)(45, 63)(47, 57)(48, 66)(50, 67)(52, 70)(54, 58)(55, 73)(59, 77)(61, 80)(64, 83)(65, 79)(69, 82)(71, 88)(72, 89)(74, 92)(75, 94)(76, 95)(78, 97)(81, 99)(84, 101)(86, 98)(87, 104)(90, 107)(91, 109)(93, 111)(96, 114)(100, 110)(103, 108)(105, 119)(106, 121)(112, 125)(113, 126)(116, 128)(117, 129)(118, 130)(120, 132)(122, 127)(123, 134)(124, 135)(131, 137)(133, 136)(138, 143)(140, 142)(141, 144)(145, 147)(146, 149)(148, 152)(150, 155)(151, 157)(153, 160)(154, 162)(156, 165)(158, 168)(159, 170)(161, 173)(163, 176)(164, 177)(166, 180)(167, 182)(169, 184)(171, 187)(172, 189)(174, 191)(175, 192)(178, 195)(179, 197)(181, 200)(183, 203)(185, 205)(186, 206)(188, 207)(190, 210)(193, 212)(194, 214)(196, 216)(198, 219)(199, 221)(201, 223)(202, 224)(204, 227)(208, 230)(209, 232)(211, 235)(213, 237)(215, 240)(217, 242)(218, 243)(220, 244)(222, 246)(225, 249)(226, 251)(228, 233)(229, 255)(231, 256)(234, 259)(236, 262)(238, 264)(239, 265)(241, 267)(245, 270)(247, 271)(248, 273)(250, 274)(252, 268)(253, 257)(254, 258)(260, 281)(261, 282)(263, 283)(266, 285)(269, 287)(272, 288)(275, 286)(276, 279)(277, 284)(278, 280)
b1: (40, 54)
c1: (2, 97)
d1: (44, 75)
e1: (30, 94)
f1: (62, 93)
g1: (64, 128)
h1: (83, 116)
m1: (8, 136)
n2: (65, 129)
a2: (5, 127)
b2: (45, 140)
c2: (6, 96)
d2: (34, 118)
e2: (101, 141)
f2: (13, 125)
g2: (86, 108)
h2: (98, 103)
m2: (15, 107)
n3: (27, 105)
a3: (37, 58)
b3: (21, 112)
c3: (43, 111)
d3: (68, 139)
e3: (11, 73)
f3: (66, 143)
g3: (80, 135)
h3: (56, 71)
m3: (25, 76)
n4: (31, 132)
a4: (70, 91)
b4: (36, 92)
c4: (20, 29)
d4: (16, 95)
e4: (14, 133)
f4: (10, 77)
g4: (52, 109)
h4: (51, 130)
m4: (85, 102)
n5: (99, 100)
a5: (48, 138)
b5: (24, 113)
c5: (63, 142)
d5: (46, 120)
e5: (79, 117)
f5: (32, 106)
g5: (50, 104)
h5: (53, 74)
m5: (84, 144)
n6: (17, 59)
a6: (19, 55)
b6: (61, 124)
c6: (47, 89)
d6: (81, 110)
e6: (7, 60)
f6: (57, 72)
g6: (67, 87)
h6: (35, 126)
m6: (12, 42)
n7: (3, 114)
a7: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 24)(17, 26)(19, 28)(21, 30)(23, 33)(25, 36)(27, 39)(29, 42)(31, 45)(32, 47)(34, 50)(35, 49)(37, 44)(38, 55)(40, 57)(41, 59)(43, 61)(46, 64)(48, 65)(51, 68)(52, 69)(53, 56)(54, 72)(58, 75)(60, 78)(62, 81)(63, 80)(66, 84)(67, 85)(70, 86)(71, 74)(73, 90)(76, 92)(77, 96)(79, 98)(82, 101)(83, 99)(87, 102)(88, 105)(89, 106)(91, 108)(93, 110)(94, 112)(95, 113)(97, 115)(100, 116)(103, 117)(104, 118)(107, 122)(109, 123)(111, 124)(114, 127)(119, 131)(120, 128)(121, 133)(125, 136)(126, 137)(129, 138)(130, 139)(132, 140)(134, 141)(135, 142)(143, 144)(146, 148)(147, 150)(149, 153)(151, 156)(152, 158)(154, 161)(155, 163)(157, 166)(159, 169)(160, 171)(162, 174)(165, 178)(167, 181)(168, 175)(170, 185)(172, 188)(177, 193)(179, 196)(180, 198)(182, 201)(183, 202)(184, 200)(186, 195)(187, 192)(189, 208)(190, 209)(194, 213)(197, 217)(199, 220)(203, 225)(204, 226)(205, 223)(206, 219)(207, 228)(210, 233)(211, 234)(212, 218)(214, 238)(215, 239)(216, 237)(221, 245)(222, 231)(224, 247)(227, 252)(229, 254)(230, 232)(235, 260)(236, 261)(240, 248)(241, 266)(242, 264)(244, 268)(246, 271)(249, 256)(250, 263)(251, 270)(253, 276)(255, 277)(257, 278)(258, 279)(262, 269)(265, 272)(267, 275)(273, 274)(280, 284)(282, 286)(283, 288)(285, 287)
b7: (82, 134)
c7: (22, 121)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 161 ]
288
-1 145 146 147 149
-2 145 148 150 153
-3 154 146 159 151
-4 155 147 160 152
-5 156 169 148 161
-6 157 170 149 162
-7 158 171 150 163
-8 172 183 151 164
-9 165 173 184 152
-10 166 174 185 153
-11 154 167 175 186
-12 176 187 155 168
-13 188 156 202 164
-14 177 189 157 203
-15 178 200 158 173
-16 179 190 159 204
-17 180 191 160 205
-18 168 181 161 195
-19 192 182 162 206
-20 176 192 163 175
-21 165 177 224 207
-22 166 225 193 208
-23 221 167 189 194
-24 209 169 226 196
-25 210 170 227 197
-26 198 223 191 171
-27 199 214 182 172
-28 187 201 174 219
-29 176 192 163 175
-30 178 247 193 228
-31 211 179 248 229
-32 212 180 249 230
-33 245 213 181 208
-34 231 215 183 250
-35 232 216 184 251
-36 233 217 185 252
-37 210 246 218 186
-38 187 201 174 219
-39 220 188 201 238
-40 243 222 190 206
-41 198 223 191 171
-42 176 187 155 168
-43 253 211 194 272
-44 233 212 271 195
-45 254 234 196 240
-46 255 235 273 197
-47 198 232 256 218
-48 199 236 269 229
-49 200 237 270 230
-50 222 202 239 263
-51 256 203 240 274
-52 275 257 204 241
-53 242 268 205 228
-54 243 222 190 206
-55 192 182 162 206
-56 264 244 223 207
-57 209 231 243 219
-58 210 246 218 186
-59 180 191 160 205
-60 158 171 150 163
-61 265 276 234 213
-62 288 235 257 214
-63 258 215 259 216
-64 277 260 217 274
-65 220 254 261 262
-66 221 287 255 262
-67 265 224 246 283
-68 225 248 249 273
-69 266 267 278 226
-70 253 286 267 227
-71 264 244 223 207
-72 209 231 243 219
-73 154 167 175 186
-74 242 268 205 228
-75 233 212 271 195
-76 210 170 227 197
-77 166 174 185 153
-78 155 147 160 152
-79 244 236 258 282
-80 279 237 259 239
-81 278 238 260 283
-82 280 251 241 285
-83 242 281 250 284
-84 277 245 269 285
-85 288 247 271 272
-86 275 276 282 252
-87 265 224 246 283
-88 220 188 201 238
-89 198 232 256 218
-90 168 181 161 195
-91 253 286 267 227
-92 233 217 185 252
-93 288 235 257 214
-94 178 247 193 228
-95 179 190 159 204
-96 157 170 149 162
-97 145 148 150 153
-98 286 268 279 261
-99 264 280 281 263
-100 264 280 281 263
-101 287 266 270 284
-102 288 247 271 272
-103 286 268 279 261
-104 222 202 239 263
-105 199 214 182 172
-106 212 180 249 230
-107 178 200 158 173
-108 275 276 282 252
-109 275 257 204 241
-110 278 238 260 283
-111 253 211 194 272
-112 165 177 224 207
-113 209 169 226 196
-114 154 146 159 151
-115 145 146 147 149
-116 242 281 250 284
-117 244 236 258 282
-118 231 215 183 250
-119 221 167 189 194
-120 255 235 273 197
-121 166 225 193 208
-122 165 173 184 152
-123 266 267 278 226
-124 265 276 234 213
-125 188 156 202 164
-126 232 216 184 251
-127 156 169 148 161
-128 277 260 217 274
-129 220 254 261 262
-130 256 203 240 274
-131 245 213 181 208
-132 211 179 248 229
-133 177 189 157 203
-134 280 251 241 285
-135 279 237 259 239
-136 172 183 151 164
-137 200 237 270 230
-138 199 236 269 229
-139 225 248 249 273
-140 254 234 196 240
-141 287 266 270 284
-142 258 215 259 216
-143 221 287 255 262
-144 277 245 269 285
-145 1 2 115 97
-146 1 3 114 115
-147 1 78 4 115
-148 2 5 127 97
-149 1 115 6 96
-150 2 60 7 97
-151 3 114 136 8
-152 78 122 4 9
-153 77 2 97 10
-154 11 3 114 73
-155 12 78 4 42
-156 13 125 5 127
-157 133 14 6 96
-158 15 60 7 107
-159 3 114 16 95
-160 78 4 59 17
-161 90 5 127 18
-162 55 6 19 96
-163 60 7 29 20
-164 13 125 136 8
-165 122 112 9 21
-166 22 77 121 10
-167 11 23 73 119
-168 12 90 18 42
-169 24 113 5 127
-170 25 6 96 76
-171 26 60 7 41
-172 136 27 105 8
-173 122 15 107 9
-174 77 38 28 10
-175 11 29 73 20
-176 12 29 20 42
-177 133 112 14 21
-178 15 94 30 107
-179 132 16 95 31
-180 59 17 106 32
-181 33 90 18 131
-182 55 27 105 19
-183 34 136 8 118
-184 122 35 126 9
-185 77 36 92 10
-186 11 58 37 73
-187 12 38 28 42
-188 88 13 125 39
-189 23 133 14 119
-190 16 40 95 54
-191 26 59 17 41
-192 55 29 19 20
-193 22 121 94 30
-194 23 111 119 43
-195 44 90 18 75
-196 45 24 113 140
-197 46 25 76 120
-198 89 47 26 41
-199 48 27 105 138
-200 15 49 137 107
-201 88 38 28 39
-202 13 125 104 50
-203 133 14 51 130
-204 16 95 52 109
-205 59 17 74 53
-206 55 40 19 54
-207 56 112 71 21
-208 22 33 121 131
-209 24 57 113 72
-210 25 58 37 76
-211 132 111 31 43
-212 44 106 75 32
-213 33 124 61 131
-214 27 93 105 62
-215 34 63 118 142
-216 35 126 63 142
-217 36 92 128 64
-218 89 47 58 37
-219 57 38 28 72
-220 88 39 129 65
-221 66 143 23 119
-222 104 50 40 54
-223 56 26 71 41
-224 67 112 21 87
-225 22 121 68 139
-226 24 123 69 113
-227 25 91 70 76
-228 94 30 74 53
-229 132 48 138 31
-230 49 137 106 32
-231 34 57 72 118
-232 89 35 47 126
-233 44 36 92 75
-234 45 124 61 140
-235 46 93 62 120
-236 79 48 138 117
-237 80 135 49 137
-238 88 110 81 39
-239 80 135 104 50
-240 45 51 140 130
-241 134 82 52 109
-242 83 116 74 53
-243 57 72 40 54
-244 56 79 71 117
-245 33 144 84 131
-246 67 58 37 87
-247 102 94 30 85
-248 132 68 139 31
-249 68 106 139 32
-250 34 83 116 118
-251 35 134 82 126
-252 36 92 86 108
-253 111 91 70 43
-254 45 129 140 65
-255 66 143 46 120
-256 89 47 51 130
-257 93 62 52 109
-258 79 117 63 142
-259 80 135 63 142
-260 110 81 128 64
-261 103 129 65 98
-262 66 143 129 65
-263 99 100 104 50
-264 99 56 100 71
-265 67 124 61 87
-266 101 123 69 141
-267 123 69 91 70
-268 103 74 53 98
-269 144 48 138 84
-270 101 49 137 141
-271 44 102 85 75
-272 111 102 85 43
-273 46 68 139 120
-274 51 128 64 130
-275 52 86 108 109
-276 124 61 86 108
-277 144 84 128 64
-278 110 123 69 81
-279 80 135 103 98
-280 99 100 134 82
-281 99 100 83 116
-282 79 117 86 108
-283 110 67 81 87
-284 101 83 116 141
-285 144 134 82 84
-286 91 70 103 98
-287 66 143 101 141
-288 102 93 62 85
0

**************