[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 288, 162 ] =
SDD(PS(6,24;7)).
(I) Following is a form readable by MAGMA:
g:=Graph<288|{ {132, 199}, {128, 209}, {137, 223}, {137, 224}, {138, 225}, {131,
237}, {142, 255}, {134, 245}, {136, 254}, {140, 247}, {128, 253}, {134, 251},
{130, 255}, {129, 254}, {132, 251}, {21, 149}, {122, 250}, {98, 226}, {28, 157},
{46, 175}, {44, 173}, {42, 171}, {40, 169}, {38, 167}, {32, 161}, {30, 159},
{33, 163}, {118, 244}, {49, 179}, {37, 166}, {45, 174}, {41, 170}, {84, 215},
{89, 218}, {21, 145}, {99, 231}, {70, 194}, {76, 200}, {27, 158}, {97, 228},
{32, 165}, {31, 154}, {77, 200}, {61, 187}, {127, 249}, {92, 218}, {34, 165},
{125, 250}, {124, 251}, {119, 240}, {118, 241}, {116, 243}, {48, 183}, {43,
172}, {59, 188}, {71, 207}, {112, 248}, {98, 234}, {96, 232}, {78, 198}, {79,
199}, {16, 153}, {126, 247}, {124, 245}, {51, 186}, {47, 166}, {18, 155}, {77,
196}, {72, 194}, {125, 247}, {115, 249}, {91, 209}, {85, 223}, {90, 208}, {17,
154}, {125, 246}, {62, 181}, {20, 152}, {101, 233}, {25, 149}, {87, 219}, {21,
152}, {97, 236}, {50, 191}, {26, 151}, {63, 178}, {81, 220}, {85, 216}, {82,
220}, {100, 234}, {96, 238}, {95, 209}, {92, 210}, {19, 156}, {99, 236}, {96,
239}, {49, 190}, {39, 168}, {76, 195}, {86, 217}, {1, 145}, {119, 231}, {115,
227}, {102, 246}, {100, 244}, {66, 211}, {116, 229}, {113, 224}, {105, 248},
{103, 246}, {1, 147}, {104, 250}, {103, 245}, {9, 155}, {8, 154}, {6, 148}, {59,
169}, {64, 210}, {65, 211}, {1, 146}, {117, 230}, {114, 225}, {108, 255}, {102,
245}, {99, 240}, {47, 188}, {2, 145}, {64, 211}, {65, 210}, {70, 213}, {3, 151},
{117, 225}, {57, 173}, {9, 157}, {7, 147}, {64, 212}, {73, 221}, {74, 222}, {3,
150}, {120, 237}, {107, 254}, {100, 241}, {93, 200}, {61, 168}, {65, 212}, {4,
146}, {110, 248}, {56, 174}, {48, 166}, {35, 181}, {14, 152}, {10, 156}, {5,
147}, {72, 222}, {1, 150}, {106, 253}, {36, 179}, {34, 181}, {3, 148}, {2, 149},
{88, 207}, {12, 148}, {115, 235}, {86, 206}, {4, 157}, {116, 237}, {93, 196},
{59, 162}, {37, 188}, {32, 185}, {15, 150}, {7, 158}, {6, 159}, {61, 164}, {80,
201}, {2, 152}, {102, 252}, {94, 196}, {13, 151}, {12, 150}, {80, 202}, {81,
203}, {5, 158}, {119, 236}, {103, 252}, {42, 177}, {12, 151}, {9, 146}, {62,
165}, {5, 153}, {118, 234}, {15, 147}, {15, 146}, {38, 187}, {7, 153}, {104,
246}, {15, 145}, {11, 149}, {67, 221}, {82, 204}, {83, 205}, {4, 155}, {104,
247}, {95, 192}, {60, 163}, {4, 164}, {121, 217}, {90, 250}, {11, 171}, {6,
166}, {69, 229}, {78, 238}, {13, 172}, {74, 235}, {78, 239}, {2, 160}, {3, 161},
{68, 230}, {16, 179}, {29, 185}, {48, 148}, {75, 239}, {76, 232}, {77, 233}, {7,
162}, {58, 159}, {56, 157}, {26, 191}, {24, 189}, {19, 182}, {17, 180}, {20,
178}, {96, 198}, {91, 253}, {78, 232}, {87, 241}, {5, 162}, {57, 158}, {31,
184}, {25, 190}, {18, 181}, {8, 160}, {98, 202}, {14, 167}, {25, 176}, {81,
248}, {89, 240}, {83, 249}, {122, 208}, {88, 242}, {8, 163}, {26, 177}, {23,
188}, {19, 184}, {10, 161}, {87, 252}, {95, 243}, {112, 220}, {101, 201}, {9,
164}, {106, 199}, {97, 204}, {22, 187}, {12, 161}, {20, 186}, {117, 219}, {113,
223}, {10, 165}, {109, 194}, {48, 159}, {24, 183}, {8, 184}, {6, 183}, {123,
202}, {108, 221}, {13, 191}, {127, 205}, {123, 201}, {29, 175}, {28, 174}, {25,
171}, {24, 170}, {22, 164}, {10, 185}, {109, 222}, {20, 167}, {14, 186}, {93,
233}, {79, 251}, {84, 224}, {11, 190}, {111, 218}, {23, 162}, {21, 160}, {71,
242}, {26, 172}, {27, 173}, {121, 206}, {35, 155}, {115, 203}, {110, 214}, {107,
211}, {74, 242}, {116, 205}, {11, 176}, {112, 203}, {13, 177}, {32, 156}, {31,
163}, {14, 178}, {66, 254}, {67, 255}, {36, 153}, {111, 210}, {94, 227}, {22,
168}, {23, 169}, {31, 160}, {105, 214}, {75, 244}, {23, 215}, {43, 235}, {37,
231}, {55, 243}, {94, 154}, {36, 226}, {35, 228}, {28, 212}, {47, 231}, {46,
230}, {30, 214}, {29, 213}, {38, 239}, {49, 253}, {53, 249}, {63, 243}, {45,
224}, {22, 216}, {27, 213}, {33, 238}, {46, 225}, {30, 206}, {38, 244}, {55,
229}, {54, 228}, {60, 238}, {16, 195}, {40, 252}, {106, 190}, {17, 196}, {52,
226}, {53, 227}, {18, 197}, {39, 240}, {40, 241}, {106, 179}, {43, 242}, {69,
156}, {50, 232}, {117, 175}, {108, 182}, {55, 237}, {54, 236}, {51, 233}, {27,
192}, {28, 193}, {52, 234}, {53, 235}, {29, 194}, {107, 180}, {101, 186}, {30,
193}, {73, 171}, {37, 198}, {33, 197}, {41, 204}, {61, 216}, {88, 189}, {35,
197}, {74, 172}, {36, 195}, {62, 217}, {47, 198}, {70, 175}, {94, 180}, {56,
212}, {58, 214}, {57, 213}, {59, 215}, {75, 167}, {95, 178}, {33, 207}, {62,
208}, {63, 209}, {68, 170}, {64, 176}, {75, 187}, {50, 195}, {65, 176}, {89,
168}, {16, 226}, {34, 208}, {17, 227}, {40, 219}, {44, 223}, {60, 207}, {68,
183}, {69, 182}, {76, 191}, {44, 216}, {58, 206}, {41, 220}, {46, 219}, {43,
222}, {67, 182}, {18, 228}, {49, 199}, {19, 229}, {66, 180}, {42, 221}, {73,
177}, {82, 170}, {85, 173}, {56, 193}, {57, 192}, {60, 197}, {68, 189}, {45,
215}, {55, 205}, {54, 204}, {51, 201}, {50, 200}, {71, 189}, {84, 174}, {34,
217}, {58, 193}, {39, 218}, {69, 184}, {24, 230}, {53, 203}, {52, 202}, {87,
169}, {63, 192}, {70, 185}, {44, 271}, {41, 268}, {45, 264}, {42, 259}, {54,
260}, {39, 274}, {52, 257}, {51, 262}, {77, 265}, {91, 287}, {66, 260}, {67,
261}, {81, 279}, {71, 256}, {79, 264}, {86, 286}, {72, 257}, {90, 275}, {73,
259}, {89, 274}, {91, 272}, {92, 273}, {72, 263}, {93, 265}, {90, 271}, {86,
270}, {88, 256}, {83, 266}, {80, 266}, {92, 262}, {85, 271}, {79, 276}, {80,
267}, {84, 264}, {82, 268}, {126, 288}, {83, 269}, {98, 257}, {101, 262}, {104,
268}, {120, 284}, {114, 278}, {97, 260}, {126, 280}, {112, 279}, {121, 286},
{114, 282}, {108, 261}, {124, 277}, {122, 275}, {111, 262}, {105, 259}, {119,
285}, {118, 284}, {113, 283}, {109, 263}, {105, 258}, {120, 275}, {113, 282},
{109, 257}, {110, 258}, {110, 259}, {107, 260}, {123, 267}, {123, 266}, {125,
268}, {127, 269}, {126, 269}, {102, 274}, {103, 274}, {127, 266}, {122, 271},
{121, 270}, {124, 267}, {100, 284}, {120, 256}, {114, 270}, {99, 285}, {111,
273}, {144, 272}, {140, 269}, {144, 273}, {139, 265}, {131, 256}, {129, 261},
{138, 270}, {130, 263}, {133, 258}, {139, 258}, {142, 263}, {144, 283}, {132,
264}, {133, 265}, {134, 267}, {136, 261}, {128, 272}, {138, 282}, {136, 280},
{135, 279}, {132, 276}, {131, 275}, {133, 276}, {142, 287}, {135, 278}, {135,
277}, {137, 283}, {134, 277}, {137, 282}, {140, 280}, {136, 286}, {143, 281},
{141, 283}, {139, 285}, {142, 281}, {133, 285}, {143, 279}, {129, 280}, {143,
278}, {143, 277}, {130, 281}, {138, 278}, {141, 273}, {130, 287}, {141, 272},
{135, 281}, {128, 287}, {139, 276}, {131, 284}, {129, 286}, {140, 288}, {141,
288}, {144, 288} }>;
(II) A more general form is to represent the graph as the orbit of {132, 199}
under the group generated by the following permutations:
a: (39, 89) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (124, 134)
c: (78, 96)
d: (100, 118)
e: (105, 110)
f: (53, 115)
g: (64, 65)
h: (80, 123)
m: (92, 111)
n1: (11, 25)
a1: (5, 7)
b1: (126, 140)
c1: (14, 20)
d1: (10, 32)
e1: (50, 76)
f1: (66, 107)
g1: (4, 9)
h1: (52, 98)
m1: (33, 60)
n2: (102, 103)
a2: (42, 73)
b2: (24, 68)
c2: (114, 138)
d2: (99, 119)
e2: (113, 137)
f2: (29, 70)
g2: (133, 139)
h2: (22, 61)
m2: (54, 97)
n3: (129, 136)
a3: (2, 5)(3, 4)(6, 18)(7, 21)(8, 23)(9, 12)(10, 28)(11, 27)(13, 22)(14, 16)(17,
40)(19, 45)(20, 36)(24, 54)(25, 57)(26, 61)(29, 64)(30, 34)(31, 59)(32, 56)(33,
37)(35, 48)(38, 50)(39, 43)(42, 44)(46, 66)(47, 60)(49, 63)(51, 52)(53, 102)(55,
79)(58, 62)(65, 70)(67, 113)(68, 97)(69, 84)(71, 99)(72, 92)(73, 85)(74, 89)(75,
76)(77, 100)(81, 104)(83, 124)(87, 94)(88, 119)(90, 105)(93, 118)(95, 106)(98,
101)(103, 115)(107, 117)(108, 137)(109, 111)(110, 122)(112, 125)(114, 129)(116,
132)(120, 133)(126, 135)(127, 134)(130, 141)(131, 139)(136, 138)(140, 143)(142,
144)(145, 147)(146, 150)(148, 155)(149, 158)(151, 164)(152, 153)(154, 169)(156,
174)(157, 161)(159, 181)(160, 162)(163, 188)(165, 193)(166, 197)(167, 195)(168,
172)(170, 204)(171, 173)(175, 211)(176, 213)(177, 216)(178, 179)(180, 219)(182,
224)(183, 228)(184, 215)(185, 212)(186, 226)(187, 191)(189, 236)(190, 192)(194,
210)(196, 241)(198, 238)(199, 243)(200, 244)(201, 202)(203, 246)(205, 251)(206,
217)(207, 231)(208, 214)(209, 253)(218, 222)(220, 268)(221, 223)(225, 254)(227,
252)(229, 264)(230, 260)(232, 239)(233, 234)(235, 274)(237, 276)(240, 242)(245,
249)(247, 279)(248, 250)(255, 283)(256, 285)(257, 262)(258, 275)(259, 271)(261,
282)(263, 273)(265, 284)(266, 267)(269, 277)(270, 286)(272, 287)(278, 280)(281,
288)
b3: (18, 35)
c3: (44, 85)
d3: (8, 31)
e3: (3, 12)
f3: (79, 132)
g3: (2, 3, 4, 5)(6, 22, 16, 8)(7, 21, 12, 9)(10, 28, 27, 11)(13, 18, 23, 14)(17,
24, 39, 52)(19, 30, 44, 49)(20, 26, 35, 59)(25, 32, 56, 57)(29, 64)(31, 48, 61,
36)(33, 37, 38, 50)(34, 45, 63, 42)(40, 51, 43, 54)(41, 102, 80, 53)(46, 92, 72,
66)(47, 75, 76, 60)(55, 105, 90, 79)(58, 85, 106, 69)(62, 84, 95, 73)(65,
70)(67, 86, 113, 91)(68, 89, 98, 94)(71, 99, 100, 77)(74, 97, 87, 101)(81, 104,
124, 83)(82, 103, 123, 115)(88, 119, 118, 93)(107, 117, 111, 109)(108, 121, 137,
128)(110, 122, 132, 116)(112, 125, 134, 127)(114, 141, 130, 129)(120, 133)(126,
135)(131, 139)(136, 138, 144, 142)(140, 143)(145, 150, 146, 147)(148, 164, 153,
160)(149, 161, 157, 158)(151, 155, 162, 152)(154, 183, 168, 226)(156, 193, 173,
190)(159, 216, 179, 184)(163, 166, 187, 195)(165, 174, 192, 171)(167, 191, 197,
188)(169, 186, 172, 228)(170, 274, 202, 227)(175, 210, 194, 211)(176, 185, 212,
213)(177, 181, 215, 178)(180, 230, 218, 257)(182, 206, 223, 253)(189, 240, 234,
196)(198, 239, 232, 238)(199, 229, 214, 271)(200, 207, 231, 244)(201, 235, 204,
252)(203, 268, 245, 266)(205, 248, 250, 251)(208, 264, 243, 259)(209, 221, 217,
224)(219, 262, 222, 260)(220, 246, 267, 249)(225, 273, 263, 254)(233, 242, 236,
241)(237, 258, 275, 276)(247, 277, 269, 279)(255, 286, 282, 272)(256, 285, 284,
265)(261, 270, 283, 287)(278, 288, 281, 280)
h3: (135, 143)
m3: (34, 62)
n4: (40, 87)
a4: (91, 128)
b4: (51, 101)
c4: (16, 36)
d4: (27, 57)
e4: (6, 48)
f4: (72, 109)
g4: (46, 117)
h4: (77, 93)
m4: (55, 116)
n5: (1, 2)(3, 8)(4, 11)(5, 14)(6, 17)(7, 20)(9, 25)(10, 19)(12, 31)(13, 33)(15,
21)(16, 38)(18, 42)(22, 49)(23, 51)(24, 53)(26, 60)(27, 63)(28, 64)(29, 55)(30,
66)(32, 69)(34, 67)(35, 73)(36, 75)(37, 77)(39, 79)(40, 80)(41, 81)(43, 71)(44,
91)(45, 92)(46, 83)(47, 93)(48, 94)(50, 78)(52, 100)(54, 105)(56, 65)(57,
95)(58, 107)(59, 101)(61, 106)(62, 108)(68, 115)(70, 116)(72, 120)(74, 88)(76,
96)(82, 112)(84, 111)(85, 128)(86, 129)(87, 123)(89, 132)(90, 130)(97, 110)(98,
118)(99, 133)(102, 124)(103, 134)(104, 135)(109, 131)(113, 141)(114, 126)(117,
127)(119, 139)(121, 136)(122, 142)(125, 143)(137, 144)(138, 140)(146, 149)(147,
152)(148, 154)(150, 160)(151, 163)(153, 167)(155, 171)(157, 176)(158, 178)(159,
180)(161, 184)(162, 186)(164, 190)(165, 182)(166, 196)(168, 199)(169, 201)(170,
203)(172, 207)(173, 209)(174, 210)(175, 205)(177, 197)(179, 187)(181, 221)(183,
227)(185, 229)(188, 233)(189, 235)(191, 238)(193, 211)(194, 237)(195, 239)(198,
200)(202, 241)(204, 248)(206, 254)(208, 255)(213, 243)(214, 260)(215, 262)(216,
253)(217, 261)(218, 264)(219, 266)(222, 256)(223, 272)(224, 273)(225, 269)(226,
244)(228, 259)(230, 249)(231, 265)(236, 258)(240, 276)(246, 277)(247, 278)(250,
281)(251, 274)(252, 267)(257, 284)(263, 275)(268, 279)(270, 280)(271, 287)(282,
288)
a5: (141, 144)
b5: (19, 69)
c5: (45, 84)
d5: (90, 122)
e5: (28, 56)
f5: (23, 59)
g5: (120, 131)
h5: (30, 58)
m5: (49, 106)
n6: (37, 47)
a6: (67, 108)
b6: (71, 88)
c6: (38, 75)
d6: (63, 95)
e6: (104, 125)
f6: (43, 74)
g6: (13, 26)
h6: (2, 21)
m6: (41, 82)
n7: (86, 121)
a7: (81, 112)
b7: (83, 127)
c7: (130, 142)
C4[ 288, 162 ]
288
-1 145 146 147 150
-2 145 149 160 152
-3 148 150 161 151
-4 155 146 157 164
-5 147 158 162 153
-6 166 148 159 183
-7 147 158 162 153
-8 154 160 184 163
-9 155 146 157 164
-10 165 156 161 185
-11 176 190 149 171
-12 148 150 161 151
-13 177 191 172 151
-14 167 178 152 186
-15 145 146 147 150
-16 179 226 195 153
-17 154 180 227 196
-18 155 181 228 197
-19 156 182 184 229
-20 167 178 152 186
-21 145 149 160 152
-22 187 168 216 164
-23 188 169 215 162
-24 189 170 183 230
-25 176 190 149 171
-26 177 191 172 151
-27 158 213 192 173
-28 157 212 193 174
-29 213 194 185 175
-30 159 214 193 206
-31 154 160 184 163
-32 165 156 161 185
-33 238 163 207 197
-34 165 181 217 208
-35 155 181 228 197
-36 179 226 195 153
-37 198 231 166 188
-38 187 167 244 239
-39 168 218 240 274
-40 169 219 241 252
-41 220 268 170 204
-42 177 221 171 259
-43 242 222 235 172
-44 223 216 271 173
-45 264 224 215 174
-46 225 175 219 230
-47 198 231 166 188
-48 166 148 159 183
-49 253 199 179 190
-50 232 200 191 195
-51 233 201 262 186
-52 234 202 257 226
-53 235 203 227 249
-54 236 204 260 228
-55 243 237 205 229
-56 157 212 193 174
-57 158 213 192 173
-58 159 214 193 206
-59 188 169 215 162
-60 238 163 207 197
-61 187 168 216 164
-62 165 181 217 208
-63 209 243 178 192
-64 176 210 211 212
-65 176 210 211 212
-66 254 211 180 260
-67 221 255 182 261
-68 189 170 183 230
-69 156 182 184 229
-70 213 194 185 175
-71 242 189 256 207
-72 222 257 194 263
-73 177 221 171 259
-74 242 222 235 172
-75 187 167 244 239
-76 232 200 191 195
-77 265 200 233 196
-78 198 232 238 239
-79 264 199 276 251
-80 266 201 267 202
-81 220 279 203 248
-82 220 268 170 204
-83 266 269 205 249
-84 264 224 215 174
-85 223 216 271 173
-86 286 270 206 217
-87 169 219 241 252
-88 242 189 256 207
-89 168 218 240 274
-90 275 271 250 208
-91 209 253 287 272
-92 210 218 262 273
-93 265 200 233 196
-94 154 180 227 196
-95 209 243 178 192
-96 198 232 238 239
-97 236 204 260 228
-98 234 202 257 226
-99 231 236 240 285
-100 244 234 284 241
-101 233 201 262 186
-102 245 246 252 274
-103 245 246 252 274
-104 246 268 247 250
-105 214 258 248 259
-106 253 199 179 190
-107 254 211 180 260
-108 221 255 182 261
-109 222 257 194 263
-110 214 258 248 259
-111 210 218 262 273
-112 220 279 203 248
-113 223 224 282 283
-114 278 225 270 282
-115 235 203 227 249
-116 243 237 205 229
-117 225 175 219 230
-118 244 234 284 241
-119 231 236 240 285
-120 275 256 237 284
-121 286 270 206 217
-122 275 271 250 208
-123 266 201 267 202
-124 277 245 267 251
-125 246 268 247 250
-126 288 247 269 280
-127 266 269 205 249
-128 209 253 287 272
-129 286 254 280 261
-130 287 255 281 263
-131 275 256 237 284
-132 264 199 276 251
-133 265 276 258 285
-134 277 245 267 251
-135 277 278 279 281
-136 286 254 280 261
-137 223 224 282 283
-138 278 225 270 282
-139 265 276 258 285
-140 288 247 269 280
-141 288 272 283 273
-142 287 255 281 263
-143 277 278 279 281
-144 288 272 283 273
-145 1 2 15 21
-146 1 4 15 9
-147 1 15 5 7
-148 12 3 48 6
-149 11 2 25 21
-150 1 12 3 15
-151 12 13 3 26
-152 2 14 20 21
-153 36 5 16 7
-154 17 94 8 31
-155 35 4 18 9
-156 69 19 10 32
-157 56 4 28 9
-158 57 5 27 7
-159 58 48 6 30
-160 2 8 31 21
-161 12 3 10 32
-162 23 59 5 7
-163 33 60 8 31
-164 22 4 61 9
-165 34 62 10 32
-166 47 37 48 6
-167 14 38 20 75
-168 22 89 39 61
-169 23 59 40 87
-170 24 68 82 41
-171 11 25 73 42
-172 13 26 74 43
-173 44 57 27 85
-174 45 56 28 84
-175 46 70 29 117
-176 11 25 64 65
-177 13 26 73 42
-178 14 95 63 20
-179 36 16 49 106
-180 66 17 94 107
-181 34 35 18 62
-182 67 69 19 108
-183 24 68 48 6
-184 69 8 19 31
-185 70 29 10 32
-186 101 14 51 20
-187 22 38 61 75
-188 23 47 37 59
-189 88 24 68 71
-190 11 25 49 106
-191 13 26 50 76
-192 57 27 95 63
-193 56 58 28 30
-194 70 72 29 109
-195 36 16 50 76
-196 77 93 17 94
-197 33 35 60 18
-198 78 47 37 96
-199 132 79 49 106
-200 77 93 50 76
-201 101 123 80 51
-202 123 80 52 98
-203 112 81 115 53
-204 82 41 97 54
-205 55 83 116 127
-206 121 58 30 86
-207 33 88 60 71
-208 34 122 90 62
-209 91 95 128 63
-210 111 92 64 65
-211 66 107 64 65
-212 56 28 64 65
-213 57 70 27 29
-214 110 58 105 30
-215 23 45 59 84
-216 22 44 61 85
-217 121 34 62 86
-218 89 111 92 39
-219 46 40 117 87
-220 112 81 82 41
-221 67 73 42 108
-222 72 74 43 109
-223 44 113 137 85
-224 45 113 137 84
-225 46 114 138 117
-226 36 16 52 98
-227 115 17 94 53
-228 35 18 97 54
-229 55 69 116 19
-230 24 46 68 117
-231 99 47 37 119
-232 78 50 96 76
-233 77 101 93 51
-234 100 52 118 98
-235 115 74 53 43
-236 99 97 119 54
-237 55 116 120 131
-238 33 78 60 96
-239 78 38 96 75
-240 99 89 39 119
-241 100 40 118 87
-242 88 71 74 43
-243 55 116 95 63
-244 100 38 118 75
-245 134 102 124 103
-246 102 103 125 104
-247 125 104 126 140
-248 110 112 81 105
-249 115 83 127 53
-250 122 90 125 104
-251 132 79 134 124
-252 102 103 40 87
-253 91 49 106 128
-254 66 136 107 129
-255 67 108 130 142
-256 88 71 120 131
-257 72 52 98 109
-258 110 133 105 139
-259 110 105 73 42
-260 66 107 97 54
-261 67 136 129 108
-262 111 101 92 51
-263 72 130 109 142
-264 132 45 79 84
-265 77 133 93 139
-266 123 80 83 127
-267 123 134 80 124
-268 125 82 104 41
-269 126 83 127 140
-270 121 114 138 86
-271 44 122 90 85
-272 144 91 128 141
-273 111 144 92 141
-274 89 102 103 39
-275 122 90 120 131
-276 132 133 79 139
-277 143 134 124 135
-278 143 135 114 138
-279 143 112 135 81
-280 136 126 129 140
-281 143 135 130 142
-282 113 114 137 138
-283 144 113 137 141
-284 100 118 120 131
-285 99 133 139 119
-286 121 136 129 86
-287 91 128 130 142
-288 144 126 140 141
0