[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 288, 164 ] =
SDD(C_72(1,17)).
(I) Following is a form readable by MAGMA:
g:=Graph<288|{ {130, 209}, {134, 211}, {131, 226}, {130, 225}, {144, 245}, {139,
229}, {130, 240}, {131, 241}, {141, 250}, {142, 249}, {130, 248}, {134, 253},
{142, 243}, {29, 157}, {126, 254}, {125, 253}, {50, 178}, {81, 209}, {82, 210},
{83, 211}, {30, 159}, {114, 243}, {102, 231}, {41, 168}, {38, 167}, {32, 161},
{66, 195}, {33, 163}, {74, 200}, {24, 155}, {127, 252}, {111, 236}, {45, 174},
{40, 171}, {36, 167}, {23, 147}, {110, 234}, {107, 239}, {84, 208}, {25, 156},
{119, 242}, {108, 233}, {35, 166}, {73, 204}, {77, 200}, {79, 202}, {34, 164},
{124, 250}, {115, 245}, {44, 170}, {43, 173}, {42, 172}, {64, 198}, {70, 192},
{71, 193}, {73, 207}, {63, 184}, {109, 234}, {78, 201}, {35, 171}, {91, 211},
{90, 210}, {56, 176}, {87, 223}, {89, 209}, {23, 158}, {51, 186}, {16, 154},
{125, 247}, {53, 191}, {17, 155}, {62, 180}, {68, 206}, {18, 153}, {120, 243},
{114, 249}, {107, 224}, {105, 226}, {48, 187}, {43, 160}, {62, 181}, {76, 199},
{77, 198}, {85, 222}, {32, 172}, {120, 244}, {100, 232}, {96, 236}, {65, 205},
{69, 201}, {72, 196}, {74, 198}, {75, 199}, {37, 168}, {121, 244}, {116, 249},
{102, 235}, {49, 188}, {39, 170}, {67, 206}, {72, 197}, {20, 154}, {40, 166},
{61, 179}, {86, 216}, {19, 156}, {122, 245}, {117, 250}, {106, 229}, {1, 145},
{9, 153}, {76, 221}, {110, 255}, {1, 147}, {6, 148}, {1, 146}, {119, 228}, {111,
252}, {109, 254}, {37, 182}, {8, 155}, {2, 145}, {3, 151}, {126, 234}, {52,
160}, {11, 158}, {103, 242}, {98, 247}, {4, 146}, {96, 246}, {51, 165}, {15,
153}, {14, 152}, {10, 156}, {5, 147}, {1, 150}, {116, 227}, {103, 240}, {53,
162}, {42, 189}, {3, 148}, {2, 149}, {75, 220}, {53, 173}, {105, 241}, {55,
175}, {54, 174}, {63, 167}, {4, 157}, {111, 246}, {104, 241}, {54, 175}, {6,
159}, {77, 212}, {2, 152}, {97, 251}, {13, 151}, {12, 150}, {3, 153}, {80, 202},
{5, 158}, {100, 255}, {36, 184}, {96, 252}, {45, 177}, {38, 186}, {7, 154}, {9,
148}, {9, 151}, {112, 238}, {46, 176}, {32, 190}, {11, 149}, {66, 220}, {74,
212}, {41, 182}, {121, 230}, {113, 238}, {98, 253}, {10, 170}, {65, 225}, {79,
239}, {4, 165}, {52, 149}, {8, 169}, {6, 167}, {62, 159}, {67, 226}, {81, 240},
{2, 160}, {3, 161}, {5, 166}, {100, 199}, {24, 187}, {75, 232}, {15, 171}, {50,
150}, {19, 183}, {68, 224}, {7, 162}, {125, 216}, {107, 206}, {52, 145}, {25,
188}, {16, 181}, {70, 227}, {85, 240}, {18, 180}, {87, 241}, {17, 182}, {78,
233}, {85, 242}, {9, 161}, {17, 185}, {86, 254}, {22, 191}, {93, 244}, {81,
248}, {29, 183}, {95, 245}, {94, 244}, {30, 180}, {77, 231}, {8, 163}, {51,
152}, {30, 181}, {21, 190}, {14, 165}, {68, 239}, {80, 251}, {28, 176}, {52,
152}, {69, 233}, {74, 231}, {127, 210}, {7, 169}, {93, 243}, {92, 242}, {23,
185}, {10, 164}, {82, 252}, {83, 253}, {7, 168}, {29, 178}, {18, 189}, {81,
225}, {23, 166}, {102, 215}, {101, 212}, {24, 169}, {15, 189}, {38, 148}, {31,
173}, {8, 187}, {25, 170}, {14, 186}, {117, 193}, {116, 192}, {27, 175}, {26,
174}, {22, 162}, {21, 161}, {67, 247}, {75, 255}, {79, 251}, {89, 237}, {26,
175}, {110, 219}, {91, 238}, {89, 236}, {10, 188}, {20, 162}, {78, 248}, {65,
246}, {104, 223}, {97, 214}, {96, 215}, {90, 237}, {84, 227}, {92, 228}, {111,
215}, {100, 220}, {94, 230}, {18, 171}, {108, 213}, {103, 222}, {99, 218}, {47,
150}, {38, 159}, {21, 172}, {11, 177}, {98, 216}, {97, 219}, {15, 180}, {24,
163}, {22, 173}, {4, 184}, {47, 147}, {20, 168}, {6, 186}, {5, 185}, {20, 169},
{91, 230}, {47, 146}, {25, 164}, {69, 248}, {71, 250}, {89, 228}, {12, 178},
{47, 145}, {13, 179}, {86, 232}, {31, 160}, {90, 229}, {70, 249}, {80, 239},
{84, 235}, {108, 174}, {12, 207}, {28, 223}, {21, 214}, {45, 233}, {46, 234},
{27, 222}, {102, 163}, {88, 157}, {33, 231}, {49, 247}, {48, 246}, {61, 251},
{29, 218}, {39, 224}, {30, 217}, {14, 196}, {34, 232}, {33, 235}, {31, 213},
{26, 208}, {88, 146}, {44, 224}, {12, 194}, {19, 221}, {13, 195}, {76, 156},
{13, 220}, {99, 178}, {48, 225}, {46, 255}, {26, 200}, {97, 179}, {57, 235},
{27, 201}, {60, 238}, {72, 154}, {49, 226}, {16, 196}, {101, 177}, {99, 183},
{19, 199}, {16, 197}, {107, 190}, {66, 151}, {28, 202}, {58, 236}, {59, 237},
{17, 198}, {58, 237}, {31, 197}, {57, 227}, {60, 230}, {22, 205}, {27, 192},
{64, 155}, {34, 254}, {28, 193}, {108, 177}, {58, 228}, {110, 176}, {59, 229},
{11, 212}, {44, 204}, {88, 184}, {35, 194}, {41, 203}, {63, 221}, {40, 203},
{42, 207}, {73, 172}, {42, 204}, {54, 208}, {61, 219}, {36, 195}, {56, 223},
{62, 217}, {35, 203}, {55, 222}, {59, 210}, {57, 208}, {40, 194}, {39, 204},
{58, 209}, {61, 214}, {37, 203}, {43, 197}, {60, 211}, {41, 217}, {101, 149},
{50, 194}, {66, 179}, {78, 191}, {56, 202}, {86, 164}, {73, 189}, {46, 219},
{32, 214}, {44, 218}, {33, 215}, {64, 182}, {51, 196}, {55, 192}, {45, 213},
{53, 205}, {36, 221}, {56, 193}, {64, 185}, {34, 216}, {65, 187}, {68, 190},
{69, 191}, {76, 183}, {101, 158}, {37, 217}, {63, 195}, {39, 218}, {50, 207},
{48, 205}, {72, 181}, {88, 165}, {43, 213}, {99, 157}, {55, 201}, {54, 200},
{49, 206}, {67, 188}, {57, 256}, {59, 257}, {60, 258}, {71, 263}, {83, 279},
{85, 273}, {87, 274}, {94, 280}, {79, 259}, {71, 278}, {82, 256}, {93, 271},
{80, 259}, {115, 288}, {95, 268}, {87, 260}, {84, 256}, {70, 275}, {94, 267},
{93, 266}, {91, 258}, {95, 262}, {92, 261}, {82, 264}, {92, 262}, {83, 265},
{90, 257}, {95, 257}, {121, 280}, {123, 282}, {124, 286}, {114, 273}, {117,
278}, {115, 272}, {105, 269}, {113, 277}, {112, 277}, {116, 275}, {113, 281},
{125, 277}, {112, 281}, {126, 279}, {105, 259}, {109, 263}, {104, 260}, {124,
272}, {118, 282}, {114, 284}, {124, 274}, {115, 285}, {106, 282}, {106, 283},
{119, 262}, {117, 263}, {121, 267}, {120, 266}, {119, 261}, {118, 258}, {123,
271}, {123, 270}, {103, 273}, {122, 268}, {98, 277}, {127, 264}, {120, 271},
{118, 270}, {118, 271}, {126, 263}, {123, 258}, {104, 274}, {109, 279}, {122,
257}, {113, 269}, {122, 262}, {112, 269}, {106, 276}, {127, 256}, {131, 259},
{144, 272}, {143, 270}, {136, 267}, {128, 260}, {129, 261}, {137, 268}, {140,
265}, {138, 268}, {129, 267}, {143, 260}, {132, 264}, {133, 265}, {135, 266},
{144, 285}, {136, 261}, {128, 270}, {132, 266}, {131, 269}, {134, 265}, {135,
264}, {139, 283}, {143, 287}, {134, 279}, {139, 282}, {142, 284}, {133, 278},
{141, 286}, {135, 275}, {140, 280}, {138, 286}, {136, 284}, {136, 285}, {138,
287}, {137, 287}, {143, 281}, {132, 275}, {137, 286}, {128, 281}, {140, 278},
{129, 285}, {135, 283}, {129, 284}, {141, 272}, {137, 276}, {133, 280}, {138,
276}, {128, 287}, {142, 273}, {141, 274}, {139, 276}, {132, 283}, {133, 288},
{140, 288}, {144, 288} }>;
(II) A more general form is to represent the graph as the orbit of {130, 209}
under the group generated by the following permutations:
a: (8, 24) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (36, 63)
c: (74, 77)
d: (95, 122)
e: (26, 54)
f: (133, 140)
g: (128, 143)
h: (98, 125)
m: (57, 84)
n1: (81, 130)
a1: (37, 41)
b1: (31, 43)
c1: (2, 52)
d1: (2, 5)(4, 12)(6, 15)(8, 22)(13, 21)(14, 35)(16, 37)(17, 31)(18, 38)(19,
39)(23, 52)(24, 53)(27, 57)(32, 66)(33, 69)(34, 49)(36, 42)(40, 51)(41, 72)(43,
64)(44, 76)(45, 74)(46, 79)(50, 88)(55, 84)(59, 92)(63, 73)(67, 86)(68, 75)(71,
87)(77, 108)(78, 102)(80, 110)(81, 96)(82, 85)(83, 112)(90, 119)(94, 118)(100,
107)(103, 127)(104, 117)(105, 109)(106, 129)(111, 130)(113, 134)(114, 132)(115,
137)(121, 123)(126, 131)(128, 133)(135, 142)(136, 139)(138, 144)(140, 143)(145,
147)(146, 150)(148, 153)(149, 158)(151, 161)(152, 166)(154, 168)(155, 173)(156,
170)(157, 178)(159, 180)(160, 185)(162, 169)(163, 191)(164, 188)(165, 194)(167,
189)(171, 186)(172, 195)(174, 200)(175, 208)(176, 202)(177, 212)(179, 214)(181,
217)(182, 197)(183, 218)(184, 207)(187, 205)(190, 220)(192, 227)(193, 223)(196,
203)(198, 213)(199, 224)(201, 235)(204, 221)(206, 232)(209, 236)(210, 242)(211,
238)(215, 248)(216, 247)(219, 251)(222, 256)(225, 246)(226, 254)(228, 237)(229,
261)(230, 258)(231, 233)(234, 259)(239, 255)(240, 252)(241, 263)(243, 266)(244,
271)(245, 268)(249, 275)(250, 274)(253, 277)(257, 262)(260, 278)(264, 273)(265,
281)(267, 282)(269, 279)(270, 280)(272, 286)(276, 285)(283, 284)(287, 288)
e1: (109, 126)
f1: (42, 73)
g1: (4, 88)
h1: (46, 110)
m1: (22, 53)
n2: (58, 89)
a2: (60, 91)
b2: (70, 116)
c2: (16, 72)
d2: (69, 78)
e2: (87, 104)
f2: (12, 50)
g2: (3, 9)
h2: (129, 136)
m2: (19, 76)
n3: (6, 38)
a3: (93, 120)
b3: (59, 90)
c3: (21, 32)
d3: (137, 138)
e3: (1, 2)(3, 8)(4, 11)(5, 14)(6, 17)(7, 15)(9, 24)(10, 27)(12, 31)(13, 33)(16,
35)(18, 20)(19, 26)(21, 48)(22, 42)(23, 51)(25, 55)(28, 59)(29, 45)(30, 37)(32,
65)(34, 70)(36, 74)(38, 64)(39, 69)(40, 72)(41, 62)(43, 50)(44, 78)(46, 82)(47,
52)(49, 85)(53, 73)(54, 76)(56, 90)(57, 75)(58, 79)(60, 94)(61, 96)(63, 77)(66,
102)(67, 103)(68, 81)(71, 106)(80, 89)(83, 93)(84, 100)(86, 116)(87, 95)(88,
101)(91, 121)(92, 105)(97, 111)(98, 114)(99, 108)(104, 122)(107, 130)(109,
132)(110, 127)(112, 129)(113, 136)(115, 128)(117, 139)(118, 133)(119, 131)(120,
134)(123, 140)(124, 137)(125, 142)(126, 135)(138, 141)(143, 144)(146, 149)(147,
152)(148, 155)(150, 160)(151, 163)(153, 169)(154, 171)(156, 175)(157, 177)(158,
165)(159, 182)(161, 187)(162, 189)(164, 192)(166, 196)(167, 198)(168, 180)(170,
201)(172, 205)(173, 207)(174, 183)(176, 210)(178, 213)(179, 215)(181, 203)(184,
212)(185, 186)(188, 222)(190, 225)(191, 204)(193, 229)(194, 197)(195, 231)(199,
208)(200, 221)(202, 237)(206, 240)(209, 239)(211, 244)(214, 246)(216, 249)(218,
233)(219, 252)(220, 235)(223, 257)(224, 248)(226, 242)(227, 232)(228, 259)(234,
264)(236, 251)(238, 267)(241, 262)(243, 253)(245, 260)(247, 273)(250, 276)(254,
275)(255, 256)(258, 280)(261, 269)(263, 283)(265, 271)(266, 279)(268, 274)(270,
288)(272, 287)(277, 284)(278, 282)(281, 285)
f3: (105, 131)
g3: (39, 44)
h3: (82, 127)
m3: (49, 67)
n4: (115, 144)
a4: (92, 119)
b4: (94, 121)
c4: (124, 141)
d4: (34, 86)
e4: (35, 40)
f4: (132, 135)
g4: (68, 107)
h4: (30, 62)
m4: (79, 80)
n5: (13, 66)
a5: (33, 102)
b5: (10, 25)
c5: (5, 23)
d5: (61, 97)
e5: (15, 18)
f5: (112, 113)
g5: (29, 99)
h5: (28, 56)
m5: (11, 101)
n6: (48, 65)
a6: (71, 117)
b6: (75, 100)
c6: (2, 4)(3, 7)(5, 12)(6, 16)(8, 21)(9, 20)(10, 26)(11, 29)(13, 22)(15, 37)(17,
42)(18, 41)(19, 45)(23, 50)(24, 32)(25, 54)(27, 34)(28, 58)(31, 36)(33, 68)(38,
72)(39, 74)(43, 63)(44, 77)(46, 81)(48, 61)(49, 57)(52, 88)(53, 66)(55, 86)(56,
89)(59, 87)(60, 93)(64, 73)(65, 97)(67, 84)(69, 75)(70, 98)(71, 92)(76, 108)(78,
100)(79, 96)(80, 111)(82, 105)(83, 114)(85, 109)(90, 104)(91, 120)(95, 124)(99,
101)(102, 107)(103, 126)(106, 128)(110, 130)(112, 132)(113, 135)(116, 125)(117,
119)(122, 141)(127, 131)(129, 133)(134, 142)(136, 140)(139, 143)(145, 146)(147,
150)(148, 154)(149, 157)(151, 162)(152, 165)(153, 168)(155, 172)(156, 174)(158,
178)(159, 181)(160, 184)(161, 169)(163, 190)(164, 175)(166, 194)(167, 197)(170,
200)(171, 203)(173, 195)(176, 209)(177, 183)(179, 205)(180, 217)(182, 189)(185,
207)(186, 196)(187, 214)(188, 208)(191, 220)(192, 216)(193, 228)(198, 204)(199,
233)(201, 232)(202, 236)(206, 235)(210, 241)(211, 243)(212, 218)(213, 221)(215,
239)(219, 225)(222, 254)(223, 237)(224, 231)(226, 256)(227, 247)(229, 260)(230,
244)(234, 240)(238, 266)(242, 263)(245, 272)(246, 251)(248, 255)(249, 253)(250,
262)(252, 259)(257, 274)(258, 271)(261, 278)(264, 269)(265, 284)(267, 280)(268,
286)(270, 282)(273, 279)(275, 277)(276, 287)(281, 283)(285, 288)
d6: (85, 103)
e6: (114, 142)
f6: (83, 134)
g6: (7, 20)
h6: (96, 111)
m6: (17, 64)
n7: (45, 108)
a7: (14, 51)
b7: (118, 123)
c7: (27, 55)
C4[ 288, 164 ]
288
-1 145 146 147 150
-2 145 149 160 152
-3 148 161 151 153
-4 165 146 157 184
-5 166 147 158 185
-6 167 148 159 186
-7 154 168 169 162
-8 187 155 169 163
-9 148 161 151 153
-10 188 156 170 164
-11 177 212 158 149
-12 178 150 194 207
-13 220 179 151 195
-14 165 152 196 186
-15 189 180 171 153
-16 154 181 196 197
-17 198 155 182 185
-18 189 180 171 153
-19 199 221 156 183
-20 154 168 169 162
-21 190 214 161 172
-22 191 205 162 173
-23 166 147 158 185
-24 187 155 169 163
-25 188 156 170 164
-26 200 174 175 208
-27 222 201 192 175
-28 176 223 202 193
-29 178 157 183 218
-30 180 159 181 217
-31 213 160 173 197
-32 190 214 161 172
-33 231 235 215 163
-34 232 254 216 164
-35 166 203 171 194
-36 221 167 184 195
-37 168 203 182 217
-38 167 148 159 186
-39 224 170 204 218
-40 166 203 171 194
-41 168 203 182 217
-42 189 204 172 207
-43 213 160 173 197
-44 224 170 204 218
-45 177 233 213 174
-46 176 255 234 219
-47 145 146 147 150
-48 187 246 225 205
-49 188 247 226 206
-50 178 150 194 207
-51 165 152 196 186
-52 145 149 160 152
-53 191 205 162 173
-54 200 174 175 208
-55 222 201 192 175
-56 176 223 202 193
-57 256 235 227 208
-58 209 236 237 228
-59 210 257 237 229
-60 211 258 238 230
-61 179 214 251 219
-62 180 159 181 217
-63 221 167 184 195
-64 198 155 182 185
-65 187 246 225 205
-66 220 179 151 195
-67 188 247 226 206
-68 190 224 206 239
-69 233 201 191 248
-70 275 192 227 249
-71 278 193 250 263
-72 154 181 196 197
-73 189 204 172 207
-74 198 231 200 212
-75 220 199 232 255
-76 199 221 156 183
-77 198 231 200 212
-78 233 201 191 248
-79 202 259 239 251
-80 202 259 239 251
-81 209 225 248 240
-82 264 210 256 252
-83 253 265 211 279
-84 256 235 227 208
-85 242 222 240 273
-86 232 254 216 164
-87 223 260 241 274
-88 165 146 157 184
-89 209 236 237 228
-90 210 257 237 229
-91 211 258 238 230
-92 242 228 261 262
-93 243 244 266 271
-94 244 267 280 230
-95 245 257 268 262
-96 246 236 215 252
-97 179 214 251 219
-98 253 277 247 216
-99 178 157 183 218
-100 220 199 232 255
-101 177 212 158 149
-102 231 235 215 163
-103 242 222 240 273
-104 223 260 241 274
-105 269 226 259 241
-106 276 282 283 229
-107 190 224 206 239
-108 177 233 213 174
-109 254 234 279 263
-110 176 255 234 219
-111 246 236 215 252
-112 277 269 281 238
-113 277 269 281 238
-114 243 249 273 284
-115 288 245 272 285
-116 275 192 227 249
-117 278 193 250 263
-118 258 270 271 282
-119 242 228 261 262
-120 243 244 266 271
-121 244 267 280 230
-122 245 257 268 262
-123 258 270 271 282
-124 286 250 272 274
-125 253 277 247 216
-126 254 234 279 263
-127 264 210 256 252
-128 287 270 281 260
-129 267 261 284 285
-130 209 225 248 240
-131 269 226 259 241
-132 264 275 266 283
-133 265 288 278 280
-134 253 265 211 279
-135 264 275 266 283
-136 267 261 284 285
-137 286 276 287 268
-138 286 276 287 268
-139 276 282 283 229
-140 265 288 278 280
-141 286 250 272 274
-142 243 249 273 284
-143 287 270 281 260
-144 288 245 272 285
-145 1 2 47 52
-146 88 1 47 4
-147 1 23 47 5
-148 3 38 6 9
-149 11 2 101 52
-150 1 12 47 50
-151 66 13 3 9
-152 2 14 51 52
-153 3 15 18 9
-154 16 72 7 20
-155 24 17 8 64
-156 25 19 10 76
-157 88 99 4 29
-158 11 23 101 5
-159 38 6 62 30
-160 2 52 31 43
-161 3 9 21 32
-162 22 7 20 53
-163 33 24 102 8
-164 34 25 86 10
-165 88 14 4 51
-166 23 35 5 40
-167 36 38 6 63
-168 37 7 41 20
-169 24 7 8 20
-170 44 25 39 10
-171 35 15 18 40
-172 73 42 21 32
-173 22 31 53 43
-174 45 26 108 54
-175 55 26 27 54
-176 110 56 46 28
-177 11 45 101 108
-178 99 12 50 29
-179 66 13 61 97
-180 15 18 62 30
-181 16 72 62 30
-182 37 17 41 64
-183 99 29 19 76
-184 88 36 4 63
-185 23 5 17 64
-186 14 38 6 51
-187 24 48 8 65
-188 67 25 49 10
-189 15 18 73 42
-190 68 107 21 32
-191 22 78 69 53
-192 55 70 27 116
-193 56 71 28 117
-194 12 35 50 40
-195 66 13 36 63
-196 14 16 72 51
-197 16 72 31 43
-198 77 17 74 64
-199 100 19 75 76
-200 77 26 74 54
-201 55 78 69 27
-202 56 79 80 28
-203 35 37 40 41
-204 44 39 73 42
-205 22 48 53 65
-206 67 68 49 107
-207 12 50 73 42
-208 57 26 84 54
-209 89 58 81 130
-210 90 59 82 127
-211 134 91 60 83
-212 11 77 101 74
-213 45 31 108 43
-214 61 97 21 32
-215 33 111 102 96
-216 34 125 86 98
-217 37 62 30 41
-218 44 99 39 29
-219 110 46 61 97
-220 66 100 13 75
-221 36 19 63 76
-222 55 103 27 85
-223 56 104 28 87
-224 44 68 39 107
-225 48 81 130 65
-226 67 49 105 131
-227 57 70 116 84
-228 89 58 92 119
-229 90 59 106 139
-230 121 91 60 94
-231 33 77 102 74
-232 34 100 75 86
-233 45 78 69 108
-234 110 46 126 109
-235 33 57 102 84
-236 89 111 58 96
-237 89 90 58 59
-238 112 91 113 60
-239 68 79 80 107
-240 81 103 85 130
-241 104 105 87 131
-242 92 103 85 119
-243 114 93 120 142
-244 121 93 94 120
-245 122 144 115 95
-246 111 48 96 65
-247 67 125 49 98
-248 78 69 81 130
-249 70 114 116 142
-250 124 71 117 141
-251 79 80 61 97
-252 111 82 127 96
-253 134 125 83 98
-254 34 126 86 109
-255 110 100 46 75
-256 57 82 127 84
-257 122 90 59 95
-258 123 91 60 118
-259 79 80 105 131
-260 143 104 128 87
-261 92 136 129 119
-262 122 92 95 119
-263 71 126 117 109
-264 132 135 82 127
-265 133 134 83 140
-266 132 135 93 120
-267 121 136 94 129
-268 122 137 138 95
-269 112 113 105 131
-270 143 123 128 118
-271 123 93 118 120
-272 144 124 115 141
-273 103 114 85 142
-274 124 104 141 87
-275 132 135 70 116
-276 137 138 106 139
-277 112 113 125 98
-278 133 71 117 140
-279 134 126 83 109
-280 121 133 94 140
-281 143 112 113 128
-282 123 106 139 118
-283 132 135 106 139
-284 114 136 129 142
-285 144 136 115 129
-286 124 137 138 141
-287 143 137 138 128
-288 133 144 115 140
0