C4graphGraph forms for C4 [ 288, 165 ] = XI(Rmap(144,190){4,18|4}_18)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 165 ] = XI(Rmap(144,190){4,18|4}_18).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {129, 150}, {128, 158}, {133, 167}, {135, 160}, {131, 171}, {139, 166}, {138, 165}, {128, 176}, {143, 187}, {141, 180}, {128, 186}, {136, 200}, {144, 212}, {129, 198}, {140, 198}, {133, 202}, {131, 211}, {142, 223}, {141, 219}, {129, 224}, {138, 238}, {137, 236}, {143, 234}, {141, 232}, {130, 237}, {136, 231}, {132, 235}, {129, 241}, {132, 245}, {135, 244}, {139, 248}, {141, 249}, {133, 249}, {134, 251}, {138, 247}, {128, 254}, {140, 242}, {131, 252}, {136, 247}, {112, 240}, {31, 158}, {35, 162}, {33, 160}, {21, 151}, {59, 185}, {47, 173}, {46, 172}, {43, 169}, {39, 165}, {38, 164}, {73, 203}, {78, 204}, {24, 155}, {60, 191}, {34, 161}, {112, 244}, {25, 156}, {119, 242}, {110, 235}, {107, 238}, {99, 230}, {53, 176}, {44, 170}, {113, 247}, {96, 230}, {55, 177}, {45, 171}, {83, 213}, {36, 163}, {54, 177}, {37, 162}, {63, 184}, {69, 194}, {81, 214}, {89, 222}, {17, 153}, {115, 251}, {23, 159}, {72, 192}, {18, 155}, {62, 183}, {16, 154}, {105, 227}, {61, 182}, {125, 246}, {118, 253}, {68, 207}, {45, 161}, {118, 250}, {89, 213}, {23, 154}, {42, 167}, {40, 166}, {41, 167}, {19, 156}, {124, 243}, {119, 248}, {85, 218}, {1, 145}, {123, 235}, {64, 208}, {8, 153}, {127, 238}, {125, 236}, {61, 172}, {75, 218}, {1, 147}, {38, 180}, {9, 155}, {6, 148}, {62, 172}, {63, 173}, {1, 146}, {126, 237}, {122, 233}, {115, 224}, {32, 179}, {2, 145}, {65, 210}, {72, 219}, {77, 222}, {3, 151}, {109, 249}, {66, 215}, {82, 199}, {87, 194}, {4, 146}, {113, 231}, {106, 252}, {61, 171}, {37, 179}, {15, 153}, {14, 152}, {11, 157}, {10, 156}, {5, 147}, {94, 200}, {95, 201}, {1, 150}, {114, 229}, {3, 148}, {2, 149}, {86, 193}, {46, 182}, {101, 253}, {50, 170}, {49, 169}, {48, 168}, {4, 157}, {58, 163}, {55, 174}, {37, 188}, {6, 159}, {89, 192}, {90, 195}, {2, 152}, {13, 151}, {12, 150}, {3, 153}, {72, 210}, {73, 211}, {92, 198}, {93, 199}, {5, 158}, {52, 175}, {67, 216}, {88, 195}, {8, 148}, {51, 175}, {7, 154}, {121, 228}, {68, 217}, {74, 215}, {11, 149}, {124, 226}, {97, 255}, {96, 254}, {35, 189}, {34, 188}, {70, 216}, {71, 217}, {91, 197}, {59, 164}, {69, 218}, {9, 169}, {117, 213}, {10, 170}, {80, 240}, {4, 165}, {51, 146}, {6, 167}, {95, 254}, {2, 160}, {126, 220}, {3, 161}, {5, 166}, {87, 244}, {95, 252}, {69, 225}, {121, 221}, {71, 227}, {7, 162}, {110, 203}, {51, 150}, {26, 191}, {18, 183}, {16, 181}, {72, 237}, {59, 157}, {113, 215}, {79, 233}, {15, 168}, {120, 223}, {57, 158}, {17, 182}, {77, 229}, {30, 183}, {96, 201}, {92, 245}, {8, 163}, {97, 202}, {20, 191}, {19, 184}, {9, 162}, {76, 231}, {90, 241}, {57, 149}, {84, 248}, {29, 176}, {105, 196}, {104, 197}, {31, 178}, {66, 239}, {10, 164}, {98, 204}, {92, 242}, {7, 168}, {107, 196}, {30, 177}, {30, 174}, {107, 219}, {24, 169}, {111, 222}, {94, 239}, {64, 242}, {112, 194}, {86, 228}, {25, 170}, {103, 212}, {99, 208}, {28, 175}, {9, 189}, {108, 216}, {101, 209}, {27, 175}, {26, 174}, {10, 190}, {78, 250}, {70, 243}, {102, 211}, {100, 209}, {97, 212}, {93, 232}, {73, 255}, {109, 219}, {84, 236}, {21, 172}, {107, 210}, {79, 246}, {14, 180}, {118, 204}, {106, 208}, {82, 232}, {90, 224}, {7, 188}, {22, 173}, {81, 234}, {76, 240}, {116, 200}, {77, 241}, {89, 229}, {4, 185}, {8, 181}, {6, 187}, {87, 234}, {12, 178}, {42, 148}, {13, 179}, {67, 253}, {81, 239}, {88, 230}, {5, 186}, {32, 159}, {23, 168}, {20, 171}, {120, 184}, {20, 214}, {98, 160}, {85, 151}, {22, 213}, {14, 200}, {15, 201}, {56, 255}, {125, 186}, {40, 224}, {55, 255}, {50, 251}, {12, 198}, {111, 165}, {57, 243}, {27, 209}, {26, 208}, {13, 199}, {49, 250}, {53, 254}, {19, 223}, {58, 246}, {28, 209}, {47, 226}, {11, 197}, {62, 240}, {63, 241}, {29, 210}, {46, 225}, {39, 247}, {53, 229}, {41, 249}, {40, 248}, {43, 250}, {50, 227}, {45, 252}, {21, 199}, {47, 253}, {36, 246}, {73, 155}, {114, 166}, {33, 244}, {74, 159}, {22, 192}, {104, 190}, {23, 193}, {34, 245}, {56, 239}, {44, 251}, {17, 201}, {110, 182}, {45, 245}, {28, 196}, {18, 203}, {48, 233}, {22, 207}, {20, 205}, {16, 202}, {103, 189}, {102, 188}, {25, 195}, {24, 194}, {21, 206}, {111, 180}, {105, 178}, {31, 196}, {27, 192}, {60, 225}, {100, 185}, {29, 195}, {19, 204}, {120, 152}, {32, 193}, {114, 147}, {60, 221}, {54, 215}, {44, 207}, {55, 211}, {81, 181}, {43, 206}, {65, 164}, {14, 232}, {15, 233}, {41, 206}, {59, 220}, {42, 205}, {11, 227}, {75, 163}, {120, 145}, {12, 230}, {60, 214}, {51, 217}, {13, 231}, {88, 178}, {80, 187}, {84, 191}, {31, 243}, {116, 152}, {56, 212}, {52, 216}, {52, 217}, {83, 190}, {56, 214}, {64, 174}, {67, 173}, {82, 189}, {61, 205}, {62, 206}, {63, 207}, {65, 176}, {74, 187}, {28, 238}, {46, 221}, {85, 161}, {105, 157}, {77, 184}, {79, 186}, {18, 228}, {27, 237}, {26, 236}, {78, 185}, {98, 149}, {38, 222}, {39, 223}, {24, 225}, {36, 221}, {35, 218}, {16, 234}, {38, 220}, {30, 228}, {17, 235}, {25, 226}, {97, 154}, {58, 193}, {54, 205}, {49, 202}, {48, 203}, {74, 177}, {76, 183}, {57, 197}, {33, 220}, {111, 146}, {108, 145}, {75, 181}, {98, 156}, {29, 226}, {108, 147}, {65, 190}, {76, 179}, {49, 277}, {50, 278}, {35, 260}, {47, 264}, {37, 270}, {32, 270}, {42, 261}, {33, 272}, {52, 262}, {34, 273}, {54, 261}, {39, 275}, {36, 274}, {44, 276}, {40, 273}, {53, 268}, {48, 265}, {41, 272}, {58, 256}, {43, 272}, {91, 283}, {67, 258}, {69, 260}, {75, 266}, {82, 275}, {86, 279}, {93, 287}, {95, 285}, {66, 257}, {70, 258}, {71, 259}, {79, 267}, {91, 286}, {68, 259}, {80, 280}, {70, 271}, {80, 281}, {83, 282}, {109, 288}, {64, 270}, {83, 285}, {66, 269}, {68, 276}, {92, 268}, {71, 278}, {90, 267}, {88, 267}, {94, 269}, {116, 288}, {78, 280}, {86, 256}, {93, 261}, {94, 260}, {91, 262}, {84, 266}, {85, 266}, {96, 256}, {99, 259}, {102, 263}, {126, 287}, {123, 282}, {109, 271}, {115, 273}, {99, 256}, {125, 286}, {101, 257}, {100, 257}, {127, 281}, {110, 265}, {112, 280}, {117, 285}, {106, 259}, {108, 262}, {127, 277}, {118, 284}, {117, 286}, {121, 274}, {123, 279}, {123, 278}, {121, 279}, {126, 272}, {122, 276}, {113, 257}, {122, 267}, {104, 282}, {104, 283}, {124, 271}, {117, 262}, {103, 275}, {124, 264}, {87, 288}, {127, 264}, {106, 285}, {102, 273}, {101, 284}, {119, 270}, {115, 265}, {103, 284}, {116, 271}, {100, 280}, {119, 266}, {122, 263}, {114, 268}, {130, 258}, {131, 263}, {135, 258}, {142, 264}, {132, 268}, {135, 269}, {136, 260}, {144, 284}, {137, 263}, {130, 269}, {144, 287}, {134, 265}, {133, 277}, {139, 283}, {138, 281}, {134, 274}, {144, 261}, {143, 281}, {137, 286}, {139, 274}, {140, 278}, {140, 279}, {142, 277}, {130, 287}, {142, 275}, {137, 276}, {134, 283}, {132, 282}, {143, 288} }>;

(II) A more general form is to represent the graph as the orbit of {129, 150} under the group generated by the following permutations:

a: (2, 5)(3, 9)(4, 12)(6, 18)(7, 21)(8, 24)(10, 29)(11, 31)(13, 37)(14, 40)(15, 43)(16, 46)(17, 49)(19, 53)(20, 56)(23, 62)(25, 65)(26, 66)(27, 68)(28, 71)(30, 74)(32, 76)(33, 79)(34, 82)(35, 85)(36, 87)(38, 90)(39, 92)(41, 48)(42, 73)(44, 72)(45, 103)(47, 83)(50, 107)(54, 55)(58, 112)(59, 88)(60, 81)(61, 97)(63, 89)(64, 113)(67, 117)(69, 75)(70, 91)(78, 96)(80, 86)(84, 94)(93, 102)(95, 118)(98, 128)(99, 100)(101, 106)(104, 124)(109, 134)(110, 133)(111, 129)(114, 120)(115, 141)(116, 139)(119, 136)(121, 143)(122, 126)(123, 127)(125, 135)(130, 137)(131, 144)(132, 142)(138, 140)(145, 147)(146, 150)(148, 155)(149, 158)(151, 162)(152, 166)(153, 169)(154, 172)(156, 176)(157, 178)(159, 183)(160, 186)(161, 189)(163, 194)(164, 195)(165, 198)(167, 203)(168, 206)(170, 210)(171, 212)(173, 213)(174, 215)(175, 217)(180, 224)(181, 225)(182, 202)(184, 229)(185, 230)(187, 228)(188, 199)(190, 226)(191, 239)(192, 207)(193, 240)(196, 227)(197, 243)(200, 248)(201, 250)(204, 254)(205, 255)(208, 257)(209, 259)(211, 261)(216, 262)(219, 251)(220, 267)(221, 234)(222, 241)(223, 268)(231, 270)(232, 273)(233, 272)(235, 277)(236, 269)(237, 276)(238, 278)(242, 247)(244, 246)(245, 275)(249, 265)(252, 284)(253, 285)(256, 280)(258, 286)(260, 266)(263, 287)(264, 282)(271, 283)(274, 288)(279, 281)
b: (2, 4)(3, 7)(5, 12)(6, 16)(8, 23)(9, 21)(13, 35)(14, 39)(17, 48)(18, 46)(19, 38)(20, 55)(24, 62)(25, 65)(27, 67)(28, 70)(30, 60)(32, 75)(33, 78)(36, 86)(37, 85)(40, 92)(41, 49)(42, 97)(44, 83)(45, 102)(47, 72)(50, 104)(51, 108)(53, 90)(54, 56)(57, 105)(59, 98)(61, 73)(63, 89)(64, 84)(68, 117)(69, 76)(71, 91)(74, 81)(79, 96)(80, 87)(88, 128)(93, 103)(94, 113)(95, 122)(99, 125)(100, 135)(101, 130)(106, 137)(107, 124)(109, 127)(111, 120)(114, 129)(115, 132)(116, 138)(118, 126)(123, 134)(139, 140)(141, 142)(145, 146)(147, 150)(148, 154)(149, 157)(151, 162)(152, 165)(153, 168)(155, 172)(156, 164)(158, 178)(159, 181)(160, 185)(161, 188)(163, 193)(166, 198)(167, 202)(169, 206)(170, 190)(171, 211)(173, 192)(174, 191)(175, 216)(176, 195)(177, 214)(179, 218)(180, 223)(182, 203)(183, 225)(184, 222)(186, 230)(187, 234)(189, 199)(194, 240)(196, 243)(197, 227)(200, 247)(201, 233)(204, 220)(205, 255)(207, 213)(208, 236)(209, 258)(210, 226)(212, 261)(215, 239)(217, 262)(219, 264)(221, 228)(224, 268)(229, 241)(231, 260)(232, 275)(235, 265)(237, 253)(238, 271)(242, 248)(244, 280)(245, 273)(246, 256)(249, 277)(250, 272)(251, 282)(252, 263)(254, 267)(257, 269)(259, 286)(266, 270)(274, 279)(276, 285)(278, 283)(281, 288)(284, 287)
c: (1, 2)(3, 8)(4, 11)(5, 14)(6, 17)(7, 20)(9, 26)(10, 28)(12, 33)(13, 36)(15, 42)(16, 45)(18, 30)(19, 52)(21, 58)(22, 47)(23, 61)(24, 64)(25, 27)(29, 72)(31, 38)(32, 46)(34, 81)(35, 84)(37, 60)(39, 91)(40, 94)(41, 96)(43, 99)(44, 101)(48, 54)(49, 106)(50, 100)(51, 98)(53, 109)(55, 73)(56, 102)(57, 111)(59, 105)(62, 86)(63, 67)(65, 107)(66, 115)(68, 118)(69, 119)(70, 77)(71, 78)(74, 110)(75, 85)(76, 121)(79, 93)(80, 123)(82, 125)(83, 127)(87, 92)(88, 126)(89, 124)(90, 130)(95, 133)(97, 131)(103, 137)(104, 138)(108, 120)(112, 140)(113, 134)(114, 116)(117, 142)(122, 144)(128, 141)(129, 135)(132, 143)(136, 139)(146, 149)(147, 152)(148, 153)(150, 160)(151, 163)(154, 171)(155, 174)(156, 175)(158, 180)(159, 182)(161, 181)(162, 191)(164, 196)(165, 197)(166, 200)(167, 201)(168, 205)(169, 208)(170, 209)(172, 193)(176, 219)(177, 203)(178, 220)(179, 221)(183, 228)(184, 216)(185, 227)(186, 232)(187, 235)(188, 214)(189, 236)(190, 238)(192, 226)(194, 242)(195, 237)(198, 244)(199, 246)(202, 252)(204, 217)(206, 256)(207, 253)(211, 255)(212, 263)(213, 264)(215, 265)(218, 266)(222, 243)(223, 262)(224, 269)(225, 270)(229, 271)(230, 272)(231, 274)(233, 261)(234, 245)(239, 273)(240, 279)(241, 258)(247, 283)(248, 260)(249, 254)(250, 259)(251, 257)(267, 287)(268, 288)(275, 286)(276, 284)(277, 285)(278, 280)(281, 282)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 165 ]
288
-1 145 146 147 150
-2 145 149 160 152
-3 148 161 151 153
-4 165 146 157 185
-5 166 147 158 186
-6 187 167 148 159
-7 154 188 168 162
-8 148 181 163 153
-9 155 189 169 162
-10 156 190 170 164
-11 157 149 227 197
-12 198 178 150 230
-13 231 199 179 151
-14 232 200 180 152
-15 233 168 201 153
-16 154 234 202 181
-17 201 235 182 153
-18 155 203 183 228
-19 156 223 204 184
-20 191 214 171 205
-21 199 172 151 206
-22 213 192 173 207
-23 154 168 159 193
-24 155 169 225 194
-25 156 170 226 195
-26 191 236 174 208
-27 209 192 237 175
-28 209 238 196 175
-29 176 210 226 195
-30 177 183 228 174
-31 243 178 158 196
-32 179 159 193 270
-33 220 244 160 272
-34 188 245 161 273
-35 189 260 162 218
-36 221 246 163 274
-37 188 179 270 162
-38 220 222 180 164
-39 165 275 223 247
-40 166 224 248 273
-41 167 249 206 272
-42 167 148 205 261
-43 169 206 250 272
-44 276 170 207 251
-45 245 171 161 252
-46 221 225 182 172
-47 253 264 226 173
-48 265 233 168 203
-49 277 169 202 250
-50 278 170 227 251
-51 146 150 217 175
-52 216 217 262 175
-53 176 254 268 229
-54 177 215 205 261
-55 177 211 255 174
-56 255 212 214 239
-57 243 158 149 197
-58 256 246 193 163
-59 220 157 185 164
-60 221 191 214 225
-61 171 182 172 205
-62 172 183 206 240
-63 173 184 207 241
-64 242 270 174 208
-65 176 210 190 164
-66 257 269 215 239
-67 253 258 216 173
-68 276 259 217 207
-69 225 194 260 218
-70 243 258 216 271
-71 278 259 227 217
-72 210 192 237 219
-73 155 211 255 203
-74 187 177 159 215
-75 266 181 163 218
-76 231 179 183 240
-77 222 184 229 241
-78 280 204 250 185
-79 233 267 246 186
-80 187 280 281 240
-81 234 181 214 239
-82 275 199 232 189
-83 190 213 282 285
-84 266 191 236 248
-85 266 161 151 218
-86 256 279 193 228
-87 244 288 234 194
-88 178 267 195 230
-89 222 213 192 229
-90 267 224 195 241
-91 286 283 262 197
-92 198 242 245 268
-93 199 232 287 261
-94 200 269 260 239
-95 254 201 252 285
-96 254 201 256 230
-97 154 255 212 202
-98 156 149 160 204
-99 256 259 208 230
-100 209 257 280 185
-101 209 253 257 284
-102 188 211 273 263
-103 275 189 212 284
-104 190 282 283 197
-105 178 157 227 196
-106 259 208 252 285
-107 210 238 196 219
-108 145 147 216 262
-109 288 249 271 219
-110 265 235 203 182
-111 165 222 146 180
-112 244 280 194 240
-113 231 257 247 215
-114 166 147 268 229
-115 265 224 251 273
-116 200 288 271 152
-117 286 213 262 285
-118 253 204 250 284
-119 242 266 248 270
-120 145 223 184 152
-121 221 279 228 274
-122 276 233 267 263
-123 278 235 279 282
-124 264 243 226 271
-125 286 246 236 186
-126 220 287 237 272
-127 264 277 281 238
-128 176 254 158 186
-129 198 224 150 241
-130 287 258 269 237
-131 211 171 252 263
-132 245 235 268 282
-133 167 277 202 249
-134 265 283 251 274
-135 244 258 269 160
-136 231 200 247 260
-137 286 276 236 263
-138 165 247 281 238
-139 166 248 283 274
-140 198 242 278 279
-141 232 180 249 219
-142 264 275 277 223
-143 187 288 234 281
-144 287 212 261 284
-145 1 2 108 120
-146 1 111 4 51
-147 1 114 5 108
-148 3 6 8 42
-149 11 2 57 98
-150 1 12 51 129
-151 13 3 85 21
-152 2 14 116 120
-153 3 15 17 8
-154 23 16 7 97
-155 24 18 73 9
-156 25 19 10 98
-157 11 4 59 105
-158 57 5 128 31
-159 23 6 74 32
-160 33 2 135 98
-161 34 45 3 85
-162 35 37 7 9
-163 36 58 8 75
-164 59 38 10 65
-165 111 4 39 138
-166 114 5 40 139
-167 133 6 41 42
-168 23 15 48 7
-169 24 49 9 43
-170 44 25 50 10
-171 45 61 20 131
-172 46 61 62 21
-173 22 67 47 63
-174 55 26 30 64
-175 27 28 51 52
-176 29 128 53 65
-177 55 30 74 54
-178 88 12 105 31
-179 13 37 32 76
-180 111 14 38 141
-181 81 16 8 75
-182 110 46 17 61
-183 18 62 30 76
-184 77 19 63 120
-185 78 100 4 59
-186 79 125 5 128
-187 143 80 6 74
-188 34 102 37 7
-189 35 103 82 9
-190 104 83 10 65
-191 26 60 84 20
-192 22 89 27 72
-193 23 58 86 32
-194 24 112 69 87
-195 88 90 25 29
-196 28 105 107 31
-197 11 57 91 104
-198 12 92 129 140
-199 13 82 93 21
-200 14 136 94 116
-201 15 17 95 96
-202 133 16 49 97
-203 110 48 18 73
-204 78 19 118 98
-205 61 20 42 54
-206 62 41 21 43
-207 22 44 68 63
-208 99 26 106 64
-209 100 101 27 28
-210 72 29 107 65
-211 55 102 73 131
-212 56 144 103 97
-213 22 89 83 117
-214 56 81 60 20
-215 66 113 74 54
-216 67 70 52 108
-217 68 71 51 52
-218 35 69 85 75
-219 72 107 141 109
-220 33 59 38 126
-221 121 46 36 60
-222 77 89 111 38
-223 39 19 120 142
-224 90 115 40 129
-225 24 46 69 60
-226 25 47 124 29
-227 11 71 50 105
-228 121 18 30 86
-229 77 89 114 53
-230 88 99 12 96
-231 13 113 136 76
-232 14 82 93 141
-233 122 79 15 48
-234 143 81 16 87
-235 110 132 123 17
-236 26 125 137 84
-237 27 126 72 130
-238 28 127 138 107
-239 66 56 81 94
-240 112 80 62 76
-241 77 90 63 129
-242 92 140 64 119
-243 57 124 70 31
-244 33 112 135 87
-245 132 34 45 92
-246 79 36 58 125
-247 113 136 39 138
-248 40 84 139 119
-249 133 41 141 109
-250 78 49 118 43
-251 44 134 115 50
-252 45 95 106 131
-253 67 101 47 118
-254 95 128 96 53
-255 55 56 73 97
-256 99 58 96 86
-257 66 100 101 113
-258 67 135 70 130
-259 99 68 71 106
-260 35 69 136 94
-261 144 93 42 54
-262 91 117 52 108
-263 122 102 137 131
-264 47 124 127 142
-265 110 134 48 115
-266 84 85 75 119
-267 88 122 79 90
-268 132 92 114 53
-269 66 135 94 130
-270 37 64 119 32
-271 124 70 116 109
-272 33 126 41 43
-273 34 102 115 40
-274 121 134 36 139
-275 103 82 39 142
-276 44 122 68 137
-277 133 49 127 142
-278 123 71 50 140
-279 121 123 140 86
-280 78 100 112 80
-281 143 80 127 138
-282 132 123 104 83
-283 134 91 104 139
-284 144 101 103 118
-285 83 95 106 117
-286 91 125 137 117
-287 144 93 126 130
-288 143 116 87 109
0

**************