C4graphGraph forms for C4 [ 288, 168 ] = XI(Cmap(144,1){4,8|6}_8)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 168 ] = XI(Cmap(144,1){4,8|6}_8).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {132, 186}, {138, 203}, {138, 193}, {136, 197}, {139, 217}, {140, 218}, {129, 216}, {137, 208}, {136, 209}, {132, 223}, {132, 228}, {143, 234}, {136, 239}, {131, 235}, {139, 226}, {135, 234}, {140, 227}, {133, 245}, {134, 244}, {131, 250}, {133, 251}, {134, 249}, {18, 146}, {127, 255}, {125, 253}, {116, 244}, {109, 237}, {108, 236}, {104, 232}, {103, 231}, {19, 147}, {79, 207}, {80, 208}, {88, 216}, {91, 219}, {37, 164}, {110, 239}, {107, 234}, {82, 211}, {84, 213}, {86, 215}, {19, 145}, {119, 245}, {112, 242}, {36, 166}, {50, 177}, {106, 233}, {77, 206}, {81, 210}, {85, 214}, {89, 218}, {27, 159}, {57, 189}, {56, 188}, {58, 190}, {59, 191}, {78, 202}, {44, 169}, {115, 246}, {92, 217}, {87, 210}, {97, 231}, {126, 248}, {83, 212}, {114, 245}, {33, 169}, {105, 225}, {39, 175}, {38, 174}, {37, 173}, {36, 172}, {35, 171}, {34, 170}, {28, 149}, {93, 212}, {31, 150}, {71, 206}, {74, 195}, {30, 148}, {117, 255}, {20, 159}, {125, 246}, {58, 177}, {22, 157}, {62, 181}, {77, 198}, {49, 189}, {55, 187}, {54, 186}, {53, 185}, {52, 184}, {31, 146}, {57, 180}, {78, 192}, {96, 238}, {64, 207}, {115, 252}, {75, 196}, {1, 145}, {110, 254}, {109, 253}, {108, 252}, {4, 148}, {3, 147}, {2, 146}, {62, 174}, {6, 151}, {105, 248}, {11, 154}, {8, 153}, {1, 147}, {121, 235}, {111, 253}, {107, 249}, {13, 159}, {12, 158}, {69, 215}, {2, 145}, {45, 190}, {7, 148}, {5, 150}, {84, 199}, {90, 201}, {1, 149}, {40, 188}, {35, 183}, {34, 182}, {33, 181}, {3, 151}, {2, 150}, {63, 171}, {9, 156}, {100, 241}, {14, 155}, {12, 153}, {70, 211}, {86, 195}, {4, 146}, {82, 196}, {10, 157}, {13, 154}, {2, 154}, {124, 228}, {40, 176}, {5, 157}, {4, 156}, {3, 155}, {1, 152}, {41, 176}, {11, 145}, {117, 239}, {13, 151}, {68, 223}, {6, 154}, {113, 237}, {39, 187}, {38, 186}, {37, 185}, {36, 184}, {3, 158}, {127, 226}, {126, 227}, {8, 149}, {65, 220}, {67, 222}, {85, 200}, {7, 152}, {111, 240}, {104, 247}, {66, 221}, {73, 214}, {29, 189}, {126, 222}, {116, 212}, {106, 203}, {5, 167}, {127, 221}, {15, 173}, {7, 164}, {115, 208}, {68, 231}, {16, 180}, {4, 161}, {51, 150}, {48, 149}, {10, 175}, {8, 173}, {6, 163}, {19, 181}, {50, 148}, {5, 162}, {124, 219}, {121, 222}, {25, 190}, {9, 174}, {25, 177}, {49, 153}, {48, 152}, {27, 179}, {26, 178}, {67, 235}, {29, 180}, {66, 232}, {7, 172}, {15, 164}, {10, 161}, {50, 158}, {95, 243}, {94, 242}, {8, 165}, {65, 236}, {77, 224}, {6, 168}, {51, 157}, {50, 156}, {14, 160}, {64, 238}, {89, 247}, {9, 166}, {106, 197}, {78, 225}, {80, 255}, {14, 190}, {108, 220}, {15, 191}, {78, 254}, {88, 232}, {12, 189}, {125, 204}, {105, 216}, {28, 173}, {77, 252}, {30, 172}, {80, 226}, {18, 161}, {116, 199}, {32, 147}, {24, 171}, {20, 167}, {84, 231}, {76, 248}, {124, 200}, {93, 233}, {89, 237}, {16, 165}, {104, 221}, {23, 162}, {21, 160}, {81, 228}, {83, 230}, {90, 239}, {45, 155}, {112, 198}, {71, 241}, {17, 166}, {32, 151}, {22, 161}, {82, 229}, {66, 250}, {121, 193}, {120, 192}, {103, 223}, {67, 251}, {70, 254}, {101, 220}, {92, 230}, {96, 218}, {11, 176}, {24, 163}, {64, 251}, {9, 181}, {112, 204}, {11, 183}, {10, 182}, {12, 177}, {23, 170}, {21, 168}, {17, 172}, {14, 179}, {85, 232}, {87, 234}, {71, 249}, {111, 209}, {91, 229}, {13, 178}, {125, 194}, {22, 169}, {72, 247}, {86, 233}, {23, 215}, {99, 163}, {98, 162}, {20, 213}, {123, 186}, {26, 216}, {21, 214}, {106, 169}, {102, 165}, {40, 236}, {28, 217}, {101, 160}, {98, 167}, {55, 242}, {46, 235}, {41, 236}, {30, 219}, {15, 201}, {116, 178}, {32, 230}, {29, 218}, {127, 184}, {126, 185}, {56, 255}, {49, 246}, {42, 237}, {43, 227}, {119, 191}, {57, 241}, {39, 238}, {117, 188}, {62, 244}, {24, 211}, {99, 168}, {56, 243}, {25, 210}, {48, 252}, {122, 182}, {49, 253}, {60, 240}, {63, 243}, {51, 254}, {118, 187}, {59, 246}, {27, 213}, {100, 170}, {53, 250}, {124, 179}, {96, 175}, {16, 192}, {103, 183}, {48, 224}, {18, 194}, {17, 193}, {76, 156}, {79, 159}, {21, 196}, {52, 229}, {35, 242}, {33, 240}, {23, 198}, {51, 225}, {102, 180}, {101, 183}, {74, 152}, {75, 153}, {22, 197}, {53, 230}, {43, 248}, {34, 241}, {27, 200}, {72, 155}, {45, 249}, {47, 251}, {46, 250}, {58, 238}, {38, 243}, {122, 175}, {31, 201}, {101, 179}, {72, 158}, {20, 195}, {103, 176}, {45, 244}, {16, 202}, {112, 170}, {47, 245}, {24, 194}, {17, 203}, {44, 240}, {26, 199}, {42, 247}, {61, 224}, {18, 204}, {19, 205}, {54, 233}, {91, 187}, {92, 188}, {44, 206}, {75, 168}, {70, 163}, {90, 191}, {47, 200}, {69, 162}, {46, 199}, {73, 160}, {32, 202}, {44, 198}, {41, 195}, {62, 212}, {76, 166}, {59, 208}, {33, 205}, {34, 207}, {60, 209}, {74, 167}, {42, 196}, {43, 197}, {74, 164}, {75, 165}, {61, 210}, {40, 217}, {95, 174}, {63, 205}, {56, 205}, {94, 171}, {58, 207}, {57, 206}, {25, 224}, {47, 214}, {42, 211}, {38, 223}, {36, 221}, {79, 182}, {30, 228}, {43, 209}, {31, 229}, {26, 225}, {55, 204}, {46, 213}, {37, 222}, {66, 185}, {39, 219}, {60, 192}, {61, 193}, {68, 184}, {52, 201}, {54, 203}, {63, 194}, {79, 178}, {28, 226}, {41, 215}, {29, 227}, {35, 220}, {53, 202}, {54, 262}, {55, 263}, {52, 261}, {60, 258}, {61, 259}, {59, 260}, {73, 265}, {65, 256}, {68, 261}, {87, 276}, {80, 277}, {81, 276}, {72, 271}, {89, 273}, {95, 279}, {94, 278}, {67, 266}, {69, 268}, {71, 270}, {64, 266}, {65, 267}, {70, 269}, {94, 274}, {69, 264}, {85, 261}, {95, 271}, {83, 258}, {84, 262}, {90, 264}, {93, 270}, {86, 259}, {88, 269}, {81, 263}, {82, 260}, {73, 272}, {76, 273}, {83, 270}, {88, 261}, {87, 265}, {93, 259}, {92, 258}, {91, 260}, {120, 282}, {110, 269}, {113, 274}, {123, 287}, {107, 270}, {122, 287}, {113, 279}, {120, 286}, {97, 262}, {115, 276}, {104, 271}, {98, 266}, {99, 267}, {114, 281}, {118, 285}, {102, 266}, {122, 278}, {97, 268}, {123, 278}, {118, 283}, {117, 280}, {119, 281}, {100, 267}, {113, 257}, {96, 273}, {118, 263}, {114, 256}, {119, 260}, {110, 280}, {107, 284}, {105, 273}, {109, 277}, {108, 276}, {97, 280}, {114, 267}, {99, 282}, {109, 279}, {121, 259}, {120, 258}, {111, 277}, {98, 281}, {123, 262}, {100, 282}, {102, 281}, {128, 256}, {136, 264}, {129, 257}, {130, 256}, {142, 268}, {139, 265}, {132, 263}, {144, 275}, {142, 264}, {135, 271}, {144, 283}, {128, 268}, {141, 257}, {129, 269}, {135, 265}, {144, 287}, {134, 278}, {135, 279}, {144, 257}, {130, 272}, {131, 272}, {143, 284}, {142, 285}, {141, 286}, {134, 274}, {137, 285}, {142, 283}, {133, 275}, {138, 285}, {141, 282}, {128, 280}, {139, 272}, {130, 286}, {143, 275}, {137, 277}, {128, 286}, {133, 283}, {130, 284}, {129, 287}, {131, 284}, {141, 274}, {140, 275}, {137, 288}, {138, 288}, {140, 288}, {143, 288} }>;

(II) A more general form is to represent the graph as the orbit of {132, 186} under the group generated by the following permutations:

a: (2, 74)(3, 28)(4, 41)(6, 37)(7, 11)(8, 32)(9, 108)(10, 69)(12, 92)(13, 15)(14, 127)(17, 35)(18, 86)(19, 48)(20, 31)(21, 66)(22, 23)(24, 121)(25, 56)(26, 119)(27, 52)(29, 120)(30, 103)(33, 77)(34, 136)(36, 101)(38, 81)(39, 97)(40, 50)(42, 131)(43, 100)(45, 80)(46, 82)(47, 88)(49, 83)(51, 98)(53, 75)(54, 55)(57, 60)(58, 117)(59, 116)(61, 63)(62, 115)(64, 110)(65, 76)(67, 70)(68, 124)(71, 111)(72, 139)(73, 104)(78, 102)(79, 90)(84, 91)(87, 95)(89, 130)(93, 125)(94, 138)(96, 128)(99, 126)(105, 114)(106, 112)(107, 109)(113, 143)(118, 123)(122, 142)(129, 133)(134, 137)(140, 141)(145, 152)(146, 195)(147, 149)(148, 176)(150, 167)(151, 173)(153, 230)(154, 164)(155, 226)(156, 236)(157, 162)(158, 217)(159, 201)(160, 221)(161, 215)(163, 222)(165, 202)(166, 220)(168, 185)(169, 198)(170, 197)(171, 193)(172, 183)(174, 276)(175, 268)(177, 188)(178, 191)(179, 184)(180, 192)(181, 252)(182, 264)(186, 263)(187, 262)(189, 258)(190, 255)(194, 259)(196, 250)(199, 260)(200, 261)(203, 242)(204, 233)(205, 224)(206, 240)(207, 239)(208, 244)(209, 241)(210, 243)(211, 235)(212, 246)(213, 229)(214, 232)(216, 245)(218, 286)(219, 231)(223, 228)(225, 281)(227, 282)(234, 279)(237, 284)(238, 280)(247, 272)(248, 267)(249, 277)(251, 269)(253, 270)(254, 266)(256, 273)(257, 275)(265, 271)(274, 288)(278, 285)(283, 287)
b: (2, 8)(3, 7)(4, 12)(5, 16)(6, 15)(9, 25)(10, 29)(11, 28)(13, 37)(14, 36)(17, 45)(18, 49)(19, 48)(20, 53)(21, 52)(22, 57)(23, 60)(24, 59)(26, 67)(27, 66)(30, 72)(31, 75)(32, 74)(33, 77)(34, 43)(35, 80)(38, 87)(39, 89)(41, 92)(42, 91)(47, 88)(51, 102)(54, 107)(55, 109)(56, 108)(58, 76)(61, 62)(63, 115)(64, 105)(65, 117)(68, 73)(69, 120)(70, 119)(71, 106)(78, 98)(79, 126)(81, 95)(83, 86)(84, 131)(90, 99)(94, 137)(97, 130)(100, 136)(101, 127)(103, 139)(104, 124)(110, 114)(111, 112)(113, 118)(116, 121)(122, 140)(123, 143)(129, 133)(132, 135)(134, 138)(141, 142)(145, 149)(146, 153)(147, 152)(148, 158)(150, 165)(151, 164)(154, 173)(155, 172)(156, 177)(157, 180)(159, 185)(160, 184)(161, 189)(162, 192)(163, 191)(166, 190)(167, 202)(168, 201)(169, 206)(170, 209)(171, 208)(174, 210)(175, 218)(176, 217)(178, 222)(179, 221)(181, 224)(182, 227)(183, 226)(186, 234)(187, 237)(188, 236)(193, 244)(194, 246)(195, 230)(196, 229)(197, 241)(198, 240)(199, 235)(200, 232)(203, 249)(204, 253)(205, 252)(207, 248)(211, 260)(212, 259)(213, 250)(214, 261)(215, 258)(216, 251)(219, 247)(220, 255)(223, 265)(225, 266)(228, 271)(231, 272)(233, 270)(238, 273)(239, 267)(242, 277)(243, 276)(245, 269)(254, 281)(256, 280)(257, 283)(262, 284)(263, 279)(264, 282)(268, 286)(274, 285)(275, 287)(278, 288)
c: (1, 2, 4, 7)(3, 5, 9, 15)(6, 10, 17, 28)(8, 13, 22, 36)(11, 18, 30, 48)(12, 20, 33, 52)(14, 23, 38, 59)(16, 26, 43, 66)(19, 31, 50, 74)(21, 34, 54, 80)(24, 39, 61, 40)(25, 41, 63, 91)(27, 44, 68, 49)(29, 46, 60, 88)(32, 51, 76, 37)(35, 55, 81, 108)(42, 64, 93, 117)(45, 69, 95, 119)(47, 71, 97, 109)(53, 78, 105, 126)(56, 82, 58, 86)(57, 84, 111, 85)(62, 90, 72, 98)(65, 94, 118, 87)(67, 83, 110, 89)(70, 96, 121, 92)(73, 100, 123, 137)(75, 79, 106, 127)(77, 103, 125, 124)(99, 122, 138, 139)(101, 112, 132, 115)(102, 116, 136, 104)(107, 128, 113, 133)(114, 134, 142, 135)(120, 129, 140, 131)(130, 141, 144, 143)(145, 146, 148, 152)(147, 150, 156, 164)(149, 154, 161, 172)(151, 157, 166, 173)(153, 159, 169, 184)(155, 162, 174, 191)(158, 167, 181, 201)(160, 170, 186, 208)(163, 175, 193, 217)(165, 178, 197, 221)(168, 182, 203, 226)(171, 187, 210, 236)(176, 194, 219, 224)(177, 195, 205, 229)(179, 198, 223, 246)(180, 199, 209, 232)(183, 204, 228, 252)(185, 202, 225, 248)(188, 211, 238, 259)(189, 213, 240, 261)(190, 215, 243, 260)(192, 216, 227, 250)(196, 207, 233, 255)(200, 206, 231, 253)(212, 239, 247, 266)(214, 241, 262, 277)(218, 235, 258, 269)(220, 242, 263, 276)(222, 230, 254, 273)(234, 256, 274, 283)(237, 251, 270, 280)(244, 264, 271, 281)(245, 249, 268, 279)(257, 275, 284, 286)(265, 267, 278, 285)(272, 282, 287, 288)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 168 ]
288
-1 145 147 149 152
-2 154 145 146 150
-3 155 147 158 151
-4 156 146 148 161
-5 167 157 150 162
-6 154 168 151 163
-7 148 172 152 164
-8 165 149 173 153
-9 166 156 181 174
-10 157 182 161 175
-11 154 176 145 183
-12 177 189 158 153
-13 154 178 159 151
-14 155 179 190 160
-15 201 191 173 164
-16 165 180 202 192
-17 166 203 193 172
-18 146 204 161 194
-19 145 147 181 205
-20 167 213 159 195
-21 168 214 160 196
-22 157 169 161 197
-23 198 170 215 162
-24 211 171 194 163
-25 177 210 190 224
-26 199 178 225 216
-27 200 179 213 159
-28 149 226 173 217
-29 189 180 227 218
-30 148 172 228 219
-31 146 201 150 229
-32 147 202 151 230
-33 169 181 205 240
-34 170 182 207 241
-35 220 242 171 183
-36 166 221 172 184
-37 222 173 185 164
-38 243 223 174 186
-39 187 238 175 219
-40 176 188 236 217
-41 176 236 215 195
-42 211 247 237 196
-43 209 248 227 197
-44 198 169 206 240
-45 155 244 190 249
-46 199 213 235 250
-47 200 245 214 251
-48 224 149 152 252
-49 253 189 246 153
-50 177 156 158 148
-51 254 157 225 150
-52 201 184 261 229
-53 202 250 185 230
-54 233 203 262 186
-55 187 242 204 263
-56 188 243 255 205
-57 189 180 206 241
-58 177 190 238 207
-59 191 246 260 208
-60 209 192 258 240
-61 210 224 193 259
-62 244 212 181 174
-63 243 171 194 205
-64 266 238 207 251
-65 220 256 267 236
-66 221 232 250 185
-67 222 266 235 251
-68 231 223 184 261
-69 264 268 215 162
-70 254 211 269 163
-71 270 249 206 241
-72 155 158 247 271
-73 265 214 160 272
-74 167 195 152 164
-75 165 168 196 153
-76 166 156 248 273
-77 198 224 206 252
-78 254 202 192 225
-79 178 159 182 207
-80 255 277 226 208
-81 210 276 228 263
-82 211 260 196 229
-83 212 258 270 230
-84 231 199 213 262
-85 232 200 214 261
-86 233 215 259 195
-87 210 265 276 234
-88 232 269 216 261
-89 247 237 218 273
-90 264 201 191 239
-91 187 260 229 219
-92 188 258 217 230
-93 233 212 259 270
-94 242 278 171 274
-95 243 279 271 174
-96 238 218 273 175
-97 231 268 280 262
-98 167 266 281 162
-99 168 267 282 163
-100 267 170 282 241
-101 220 179 160 183
-102 165 266 180 281
-103 176 231 223 183
-104 221 232 247 271
-105 225 248 216 273
-106 233 169 203 197
-107 234 270 249 284
-108 220 276 236 252
-109 253 277 279 237
-110 254 269 280 239
-111 209 253 277 240
-112 198 242 170 204
-113 257 279 237 274
-114 245 256 267 281
-115 276 246 208 252
-116 199 178 244 212
-117 188 255 280 239
-118 187 283 263 285
-119 245 191 281 260
-120 286 192 258 282
-121 222 235 193 259
-122 287 278 182 175
-123 287 278 262 186
-124 200 179 228 219
-125 253 246 204 194
-126 222 248 227 185
-127 221 255 226 184
-128 286 256 268 280
-129 287 257 269 216
-130 286 256 272 284
-131 235 250 272 284
-132 223 228 186 263
-133 275 245 283 251
-134 244 278 249 274
-135 265 234 279 271
-136 209 264 239 197
-137 277 288 208 285
-138 288 203 193 285
-139 265 226 217 272
-140 275 288 227 218
-141 286 257 282 274
-142 264 268 283 285
-143 275 288 234 284
-144 275 287 257 283
-145 11 1 2 19
-146 2 4 18 31
-147 1 3 19 32
-148 4 50 7 30
-149 1 48 28 8
-150 2 5 51 31
-151 13 3 6 32
-152 1 48 7 74
-153 12 49 8 75
-154 11 2 13 6
-155 45 3 14 72
-156 4 50 9 76
-157 22 5 51 10
-158 12 3 50 72
-159 13 79 27 20
-160 101 14 73 21
-161 22 4 18 10
-162 23 69 5 98
-163 99 24 70 6
-164 15 37 7 74
-165 102 16 8 75
-166 36 17 9 76
-167 5 74 20 98
-168 99 6 75 21
-169 22 33 44 106
-170 23 34 100 112
-171 24 35 94 63
-172 36 17 7 30
-173 15 37 28 8
-174 38 62 95 9
-175 122 39 96 10
-176 11 103 40 41
-177 12 25 58 50
-178 13 79 26 116
-179 101 14 124 27
-180 57 102 16 29
-181 33 62 19 9
-182 34 122 79 10
-183 11 35 101 103
-184 68 36 127 52
-185 66 37 126 53
-186 132 123 38 54
-187 55 91 39 118
-188 56 92 40 117
-189 12 57 49 29
-190 45 14 25 58
-191 90 15 59 119
-192 78 16 60 120
-193 121 17 61 138
-194 24 125 18 63
-195 41 74 20 86
-196 82 42 75 21
-197 22 136 106 43
-198 44 77 23 112
-199 46 26 116 84
-200 47 124 27 85
-201 90 15 52 31
-202 78 16 53 32
-203 17 138 106 54
-204 55 112 125 18
-205 33 56 19 63
-206 44 77 57 71
-207 34 79 58 64
-208 80 59 115 137
-209 111 136 60 43
-210 25 81 61 87
-211 24 70 82 42
-212 93 83 116 62
-213 46 27 84 20
-214 47 73 85 21
-215 23 69 41 86
-216 88 26 105 129
-217 92 28 40 139
-218 89 29 96 140
-219 91 124 39 30
-220 35 101 108 65
-221 66 36 104 127
-222 121 67 37 126
-223 132 68 103 38
-224 77 25 48 61
-225 78 26 105 51
-226 80 28 127 139
-227 126 29 140 43
-228 132 124 81 30
-229 91 82 52 31
-230 92 83 53 32
-231 68 103 84 97
-232 66 88 104 85
-233 93 106 86 54
-234 143 135 107 87
-235 121 67 46 131
-236 40 41 108 65
-237 89 113 42 109
-238 58 39 96 64
-239 110 90 136 117
-240 33 44 111 60
-241 34 100 57 71
-242 55 35 112 94
-243 56 38 95 63
-244 45 134 116 62
-245 133 47 114 119
-246 59 125 49 115
-247 89 104 72 42
-248 126 105 43 76
-249 45 134 71 107
-250 66 46 53 131
-251 67 133 47 64
-252 77 48 115 108
-253 111 125 49 109
-254 110 78 70 51
-255 56 80 127 117
-256 114 128 130 65
-257 144 113 129 141
-258 92 60 83 120
-259 121 93 61 86
-260 91 59 82 119
-261 88 68 52 85
-262 123 84 97 54
-263 55 132 81 118
-264 90 69 136 142
-265 135 73 139 87
-266 67 102 64 98
-267 99 100 114 65
-268 69 128 97 142
-269 88 110 70 129
-270 71 93 83 107
-271 135 104 72 95
-272 73 139 130 131
-273 89 105 96 76
-274 134 113 94 141
-275 143 133 144 140
-276 81 115 108 87
-277 111 80 137 109
-278 122 123 134 94
-279 113 135 95 109
-280 110 117 128 97
-281 102 114 119 98
-282 99 100 141 120
-283 133 144 118 142
-284 143 107 130 131
-285 137 138 118 142
-286 128 130 141 120
-287 122 144 123 129
-288 143 137 138 140
0

**************