[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 288, 170 ] =
PL(CSI(W(12,2)[12^4],3)).
(I) Following is a form readable by MAGMA:
g:=Graph<288|{ {137, 185}, {136, 185}, {136, 186}, {137, 186}, {130, 186}, {131,
187}, {130, 187}, {131, 186}, {134, 198}, {135, 198}, {135, 197}, {134, 197},
{128, 198}, {129, 199}, {128, 199}, {129, 198}, {133, 209}, {132, 210}, {143,
217}, {132, 211}, {142, 217}, {133, 210}, {138, 210}, {138, 209}, {133, 228},
{144, 241}, {134, 228}, {134, 227}, {138, 239}, {133, 227}, {137, 239}, {141,
229}, {140, 229}, {142, 228}, {143, 228}, {144, 252}, {136, 251}, {140, 255},
{136, 252}, {139, 255}, {139, 252}, {137, 240}, {138, 240}, {139, 241}, {135,
252}, {135, 251}, {140, 240}, {141, 240}, {48, 176}, {121, 249}, {49, 177}, {79,
207}, {48, 177}, {78, 207}, {79, 206}, {17, 147}, {105, 235}, {104, 234}, {38,
164}, {33, 163}, {32, 162}, {23, 149}, {22, 148}, {71, 197}, {89, 219}, {16,
147}, {121, 250}, {105, 234}, {104, 235}, {49, 178}, {39, 164}, {33, 162}, {32,
163}, {23, 148}, {22, 149}, {71, 196}, {88, 219}, {91, 216}, {16, 148}, {126,
250}, {55, 179}, {54, 178}, {39, 163}, {88, 220}, {17, 148}, {55, 178}, {42,
175}, {38, 163}, {89, 220}, {73, 207}, {54, 177}, {126, 249}, {29, 149}, {45,
165}, {44, 164}, {75, 195}, {28, 149}, {61, 180}, {50, 187}, {45, 164}, {44,
165}, {74, 195}, {28, 150}, {49, 187}, {37, 175}, {36, 174}, {80, 218}, {29,
150}, {36, 175}, {80, 219}, {72, 196}, {117, 249}, {102, 234}, {101, 233}, {49,
188}, {117, 248}, {72, 197}, {50, 188}, {118, 248}, {61, 179}, {60, 178}, {74,
196}, {60, 179}, {118, 249}, {102, 233}, {101, 234}, {75, 196}, {15, 159}, {103,
247}, {92, 204}, {14, 159}, {103, 246}, {93, 204}, {100, 245}, {80, 194}, {115,
225}, {100, 246}, {81, 195}, {80, 195}, {115, 224}, {81, 194}, {5, 145}, {122,
238}, {120, 236}, {116, 224}, {50, 166}, {69, 209}, {79, 219}, {4, 145}, {123,
238}, {120, 237}, {116, 225}, {51, 166}, {37, 176}, {69, 208}, {79, 218}, {99,
246}, {4, 146}, {123, 237}, {62, 168}, {51, 165}, {9, 159}, {8, 158}, {70, 208},
{91, 205}, {99, 245}, {5, 146}, {122, 237}, {50, 165}, {9, 158}, {8, 159}, {63,
168}, {70, 209}, {10, 146}, {11, 147}, {63, 167}, {10, 147}, {62, 167}, {11,
146}, {73, 208}, {42, 176}, {119, 237}, {108, 246}, {43, 177}, {84, 206}, {43,
176}, {119, 236}, {108, 247}, {84, 207}, {2, 158}, {125, 225}, {93, 193}, {3,
158}, {124, 225}, {92, 193}, {3, 157}, {124, 226}, {57, 167}, {56, 166}, {32,
190}, {78, 208}, {94, 192}, {2, 157}, {125, 226}, {57, 166}, {56, 167}, {32,
191}, {95, 192}, {31, 191}, {59, 155}, {58, 154}, {82, 242}, {13, 172}, {59,
154}, {58, 155}, {31, 190}, {82, 243}, {85, 244}, {81, 243}, {81, 242}, {100,
192}, {114, 214}, {110, 202}, {101, 192}, {111, 202}, {12, 170}, {115, 213},
{111, 201}, {13, 171}, {85, 243}, {12, 171}, {115, 212}, {114, 213}, {110, 201},
{1, 169}, {85, 253}, {99, 203}, {90, 243}, {98, 203}, {1, 170}, {86, 253}, {6,
170}, {127, 211}, {120, 212}, {53, 153}, {7, 171}, {7, 170}, {127, 210}, {120,
213}, {52, 153}, {96, 205}, {14, 160}, {52, 154}, {90, 244}, {98, 204}, {6,
169}, {53, 154}, {15, 160}, {99, 204}, {30, 174}, {40, 152}, {31, 175}, {87,
231}, {31, 174}, {102, 215}, {41, 152}, {86, 231}, {84, 230}, {30, 173}, {84,
231}, {20, 160}, {107, 223}, {106, 222}, {35, 151}, {34, 150}, {25, 173}, {24,
172}, {21, 161}, {74, 254}, {83, 231}, {20, 161}, {107, 222}, {106, 223}, {35,
150}, {34, 151}, {24, 173}, {21, 160}, {74, 255}, {83, 230}, {46, 152}, {47,
153}, {73, 255}, {97, 215}, {25, 174}, {47, 152}, {46, 153}, {73, 254}, {13,
181}, {109, 213}, {26, 162}, {14, 182}, {96, 216}, {18, 171}, {27, 162}, {97,
216}, {27, 161}, {13, 182}, {109, 214}, {26, 161}, {14, 181}, {97, 221}, {117,
201}, {116, 200}, {98, 222}, {116, 201}, {117, 200}, {18, 172}, {102, 216}, {41,
151}, {19, 173}, {86, 232}, {19, 172}, {40, 151}, {87, 232}, {97, 222}, {98,
221}, {58, 250}, {15, 206}, {58, 251}, {42, 235}, {15, 205}, {57, 251}, {41,
235}, {57, 250}, {37, 224}, {41, 236}, {38, 224}, {42, 236}, {20, 220}, {20,
221}, {118, 188}, {119, 189}, {118, 189}, {119, 188}, {113, 189}, {112, 189},
{19, 221}, {112, 190}, {19, 220}, {113, 190}, {17, 193}, {40, 248}, {39, 247},
{18, 194}, {60, 238}, {17, 194}, {60, 239}, {18, 193}, {55, 227}, {59, 239},
{55, 226}, {59, 238}, {71, 145}, {70, 145}, {1, 217}, {2, 218}, {69, 157}, {68,
157}, {56, 226}, {101, 191}, {65, 155}, {70, 156}, {1, 218}, {56, 227}, {2,
217}, {64, 155}, {71, 156}, {100, 191}, {64, 156}, {16, 205}, {65, 156}, {16,
206}, {39, 248}, {40, 247}, {5, 229}, {52, 212}, {51, 211}, {21, 245}, {6, 230},
{21, 244}, {72, 169}, {22, 244}, {5, 230}, {22, 245}, {6, 229}, {82, 182}, {83,
183}, {82, 183}, {83, 182}, {51, 212}, {52, 211}, {35, 203}, {35, 202}, {67,
169}, {95, 181}, {94, 181}, {68, 168}, {69, 168}, {36, 202}, {36, 203}, {24,
232}, {3, 242}, {54, 199}, {24, 233}, {66, 179}, {3, 241}, {53, 199}, {34, 214},
{76, 184}, {4, 241}, {34, 215}, {8, 253}, {77, 184}, {4, 242}, {33, 215}, {8,
254}, {66, 180}, {33, 214}, {67, 180}, {7, 254}, {38, 223}, {7, 253}, {37, 223},
{67, 185}, {77, 183}, {67, 184}, {76, 183}, {68, 184}, {72, 180}, {53, 200},
{68, 185}, {23, 233}, {54, 200}, {23, 232}, {11, 266}, {11, 265}, {28, 286},
{28, 287}, {27, 287}, {12, 265}, {27, 286}, {12, 266}, {30, 274}, {30, 275},
{29, 275}, {29, 274}, {9, 277}, {26, 262}, {10, 278}, {26, 263}, {25, 263}, {9,
278}, {25, 262}, {10, 277}, {47, 271}, {48, 272}, {63, 281}, {63, 280}, {43,
259}, {44, 260}, {43, 260}, {44, 259}, {45, 284}, {46, 284}, {46, 283}, {45,
283}, {61, 257}, {61, 256}, {62, 256}, {47, 272}, {62, 257}, {48, 271}, {94,
287}, {87, 277}, {93, 287}, {78, 266}, {78, 267}, {77, 267}, {77, 266}, {95,
276}, {65, 269}, {95, 275}, {65, 268}, {88, 277}, {89, 276}, {66, 268}, {90,
276}, {66, 269}, {89, 265}, {90, 265}, {91, 264}, {92, 264}, {64, 280}, {64,
281}, {76, 278}, {76, 279}, {92, 263}, {75, 279}, {91, 263}, {75, 278}, {85,
264}, {86, 264}, {113, 273}, {123, 283}, {103, 262}, {123, 282}, {113, 272},
{103, 261}, {114, 272}, {114, 273}, {124, 282}, {124, 283}, {109, 261}, {109,
260}, {110, 260}, {110, 261}, {112, 284}, {104, 261}, {112, 285}, {104, 262},
{126, 270}, {126, 271}, {111, 285}, {125, 271}, {96, 275}, {125, 270}, {111,
284}, {96, 276}, {106, 286}, {105, 285}, {87, 288}, {106, 285}, {105, 286}, {88,
288}, {122, 258}, {107, 274}, {122, 259}, {107, 273}, {121, 259}, {121, 258},
{93, 288}, {127, 258}, {108, 273}, {94, 288}, {127, 257}, {108, 274}, {128,
257}, {128, 258}, {143, 268}, {143, 267}, {132, 269}, {132, 270}, {139, 256},
{140, 256}, {131, 270}, {131, 269}, {141, 280}, {142, 280}, {129, 281}, {130,
282}, {142, 279}, {141, 279}, {129, 282}, {144, 267}, {130, 281}, {144, 268}
}>;
(II) A more general form is to represent the graph as the orbit of {137, 185}
under the group generated by the following permutations:
a: (7, 67)(8, 68)(9, 69)(10, 70)(11, 71)(12, 72)(13, 61)(14, 62)(15, 63)(16,
64)(17, 65)(18, 66)(19, 55)(20, 56)(21, 57)(22, 58)(23, 59)(24, 60)(25, 49)(26,
50)(27, 51)(28, 52)(29, 53)(30, 54)(31, 43)(32, 44)(33, 45)(34, 46)(35, 47)(36,
48)(73, 76)(74, 77)(75, 78)(79, 142)(80, 143)(81, 144)(82, 139)(83, 140)(84,
141)(85, 136)(86, 137)(87, 138)(88, 133)(89, 134)(90, 135)(91, 130)(92, 131)(93,
132)(94, 127)(95, 128)(96, 129)(97, 124)(98, 125)(99, 126)(100, 121)(101,
122)(102, 123)(103, 118)(104, 119)(105, 120)(106, 115)(107, 116)(108, 117)(109,
112)(110, 113)(111, 114)(145, 146)(147, 156)(148, 155)(149, 154)(150, 153)(151,
152)(157, 158)(159, 168)(160, 167)(161, 166)(162, 165)(163, 164)(169, 170)(171,
180)(172, 179)(173, 178)(174, 177)(175, 176)(181, 257)(182, 256)(183, 255)(184,
254)(185, 253)(186, 264)(187, 263)(188, 262)(189, 261)(190, 260)(191, 259)(192,
258)(193, 269)(194, 268)(195, 267)(196, 266)(197, 265)(198, 276)(199, 275)(200,
274)(201, 273)(202, 272)(203, 271)(204, 270)(205, 281)(206, 280)(207, 279)(208,
278)(209, 277)(210, 288)(211, 287)(212, 286)(213, 285)(214, 284)(215, 283)(216,
282)(217, 218)(219, 228)(220, 227)(221, 226)(222, 225)(223, 224)(229, 230)(231,
240)(232, 239)(233, 238)(234, 237)(235, 236)(241, 242)(243, 252)(244, 251)(245,
250)(246, 249)(247, 248) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 6)(3, 5)(7, 142)(8, 141)(9, 140)(10, 139)(11, 144)(12, 143)(13, 133)(14,
138)(15, 137)(16, 136)(17, 135)(18, 134)(19, 55)(20, 60)(21, 59)(22, 58)(23,
57)(24, 56)(25, 124)(26, 123)(27, 122)(28, 121)(29, 126)(30, 125)(31, 115)(32,
120)(33, 119)(34, 118)(35, 117)(36, 116)(38, 42)(39, 41)(43, 106)(44, 105)(45,
104)(46, 103)(47, 108)(48, 107)(49, 97)(50, 102)(51, 101)(52, 100)(53, 99)(54,
98)(61, 88)(62, 87)(63, 86)(64, 85)(65, 90)(66, 89)(67, 79)(68, 84)(69, 83)(70,
82)(71, 81)(72, 80)(73, 76)(74, 75)(77, 78)(91, 130)(92, 129)(93, 128)(94,
127)(95, 132)(96, 131)(109, 112)(110, 111)(113, 114)(145, 242)(146, 241)(147,
252)(148, 251)(149, 250)(150, 249)(151, 248)(152, 247)(153, 246)(154, 245)(155,
244)(156, 243)(157, 230)(158, 229)(159, 240)(160, 239)(161, 238)(162, 237)(163,
236)(164, 235)(165, 234)(166, 233)(167, 232)(168, 231)(169, 218)(170, 217)(171,
228)(172, 227)(173, 226)(174, 225)(175, 224)(176, 223)(177, 222)(178, 221)(179,
220)(180, 219)(181, 210)(182, 209)(183, 208)(184, 207)(185, 206)(186, 205)(187,
216)(188, 215)(189, 214)(190, 213)(191, 212)(192, 211)(193, 198)(194, 197)(195,
196)(199, 204)(200, 203)(201, 202)(253, 280)(254, 279)(255, 278)(256, 277)(257,
288)(258, 287)(259, 286)(260, 285)(261, 284)(262, 283)(263, 282)(264, 281)(265,
268)(266, 267)(269, 276)(270, 275)(271, 274)(272, 273)
c: (1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)(13, 67)(14, 68)(15, 69)(16, 70)(17,
71)(18, 72)(19, 61)(20, 62)(21, 63)(22, 64)(23, 65)(24, 66)(25, 55)(26, 56)(27,
57)(28, 58)(29, 59)(30, 60)(31, 49)(32, 50)(33, 51)(34, 52)(35, 53)(36, 54)(37,
43)(38, 44)(39, 45)(40, 46)(41, 47)(42, 48)(73, 79)(74, 80)(75, 81)(76, 82)(77,
83)(78, 84)(85, 142)(86, 143)(87, 144)(88, 139)(89, 140)(90, 141)(91, 133)(92,
134)(93, 135)(94, 136)(95, 137)(96, 138)(97, 127)(98, 128)(99, 129)(100,
130)(101, 131)(102, 132)(103, 124)(104, 125)(105, 126)(106, 121)(107, 122)(108,
123)(109, 115)(110, 116)(111, 117)(112, 118)(113, 119)(114, 120)(145, 147)(148,
156)(149, 155)(150, 154)(151, 153)(157, 159)(160, 168)(161, 167)(162, 166)(163,
165)(169, 171)(172, 180)(173, 179)(174, 178)(175, 177)(181, 185)(182, 184)(186,
192)(187, 191)(188, 190)(193, 197)(194, 196)(198, 204)(199, 203)(200, 202)(205,
209)(206, 208)(210, 216)(211, 215)(212, 214)(217, 253)(218, 254)(219, 255)(220,
256)(221, 257)(222, 258)(223, 259)(224, 260)(225, 261)(226, 262)(227, 263)(228,
264)(229, 265)(230, 266)(231, 267)(232, 268)(233, 269)(234, 270)(235, 271)(236,
272)(237, 273)(238, 274)(239, 275)(240, 276)(241, 277)(242, 278)(243, 279)(244,
280)(245, 281)(246, 282)(247, 283)(248, 284)(249, 285)(250, 286)(251, 287)(252,
288)
d: (1, 2)(3, 6)(4, 5)(7, 8)(9, 12)(10, 11)(13, 14)(15, 18)(16, 17)(19, 20)(21,
24)(22, 23)(25, 26)(27, 30)(28, 29)(31, 32)(33, 36)(34, 35)(37, 38)(39, 42)(40,
41)(43, 44)(45, 48)(46, 47)(49, 50)(51, 54)(52, 53)(55, 56)(57, 60)(58, 59)(61,
62)(63, 66)(64, 65)(67, 68)(69, 72)(70, 71)(73, 74)(75, 78)(76, 77)(79, 80)(81,
84)(82, 83)(85, 86)(87, 90)(88, 89)(91, 92)(93, 96)(94, 95)(97, 98)(99,
102)(100, 101)(103, 104)(105, 108)(106, 107)(109, 110)(111, 114)(112, 113)(115,
116)(117, 120)(118, 119)(121, 122)(123, 126)(124, 125)(127, 128)(129, 132)(130,
131)(133, 134)(135, 138)(136, 137)(139, 140)(141, 144)(142, 143)(157, 169)(158,
170)(159, 171)(160, 172)(161, 173)(162, 174)(163, 175)(164, 176)(165, 177)(166,
178)(167, 179)(168, 180)(193, 205)(194, 206)(195, 207)(196, 208)(197, 209)(198,
210)(199, 211)(200, 212)(201, 213)(202, 214)(203, 215)(204, 216)(229, 241)(230,
242)(231, 243)(232, 244)(233, 245)(234, 246)(235, 247)(236, 248)(237, 249)(238,
250)(239, 251)(240, 252)(265, 277)(266, 278)(267, 279)(268, 280)(269, 281)(270,
282)(271, 283)(272, 284)(273, 285)(274, 286)(275, 287)(276, 288)
C4[ 288, 170 ]
288
-1 169 170 217 218
-2 157 158 217 218
-3 242 157 158 241
-4 242 145 146 241
-5 145 146 229 230
-6 169 170 229 230
-7 253 254 170 171
-8 253 254 158 159
-9 277 278 158 159
-10 277 146 278 147
-11 265 266 146 147
-12 265 266 170 171
-13 181 171 182 172
-14 159 181 160 182
-15 159 160 205 206
-16 147 148 205 206
-17 147 148 193 194
-18 171 193 172 194
-19 220 221 172 173
-20 220 221 160 161
-21 244 245 160 161
-22 244 245 148 149
-23 232 233 148 149
-24 232 233 172 173
-25 173 174 262 263
-26 161 162 262 263
-27 286 287 161 162
-28 286 287 149 150
-29 275 149 150 274
-30 275 173 174 274
-31 190 191 174 175
-32 190 191 162 163
-33 214 215 162 163
-34 214 215 150 151
-35 202 203 150 151
-36 202 203 174 175
-37 176 223 224 175
-38 223 224 163 164
-39 247 248 163 164
-40 247 248 151 152
-41 235 236 151 152
-42 176 235 236 175
-43 176 177 259 260
-44 165 259 260 164
-45 165 283 284 164
-46 283 152 284 153
-47 271 272 152 153
-48 176 177 271 272
-49 187 177 188 178
-50 165 187 166 188
-51 165 166 211 212
-52 154 211 212 153
-53 154 199 200 153
-54 177 199 178 200
-55 178 179 226 227
-56 166 167 226 227
-57 166 167 250 251
-58 154 155 250 251
-59 154 155 238 239
-60 178 179 238 239
-61 179 256 180 257
-62 167 168 256 257
-63 167 168 280 281
-64 155 156 280 281
-65 155 156 268 269
-66 179 180 268 269
-67 169 180 184 185
-68 157 168 184 185
-69 209 157 168 208
-70 209 145 156 208
-71 145 156 196 197
-72 169 180 196 197
-73 254 255 207 208
-74 254 255 195 196
-75 278 279 195 196
-76 278 279 183 184
-77 266 267 183 184
-78 266 267 207 208
-79 206 207 218 219
-80 194 195 218 219
-81 242 243 194 195
-82 242 243 182 183
-83 231 182 183 230
-84 231 206 207 230
-85 253 264 243 244
-86 231 253 264 232
-87 231 232 277 288
-88 220 277 288 219
-89 220 265 276 219
-90 243 265 276 244
-91 264 205 216 263
-92 264 193 204 263
-93 287 288 193 204
-94 287 288 181 192
-95 275 276 181 192
-96 275 276 205 216
-97 221 222 215 216
-98 221 222 203 204
-99 245 246 203 204
-100 245 191 246 192
-101 233 234 191 192
-102 233 234 215 216
-103 246 247 261 262
-104 234 235 261 262
-105 286 234 235 285
-106 286 222 223 285
-107 222 223 273 274
-108 246 247 273 274
-109 213 214 260 261
-110 201 202 260 261
-111 201 202 284 285
-112 189 190 284 285
-113 189 190 272 273
-114 213 214 272 273
-115 212 213 224 225
-116 200 201 224 225
-117 200 201 248 249
-118 188 189 248 249
-119 188 189 236 237
-120 212 213 236 237
-121 258 259 249 250
-122 258 237 259 238
-123 237 238 282 283
-124 225 226 282 283
-125 225 226 270 271
-126 270 249 271 250
-127 210 211 257 258
-128 198 199 257 258
-129 198 199 281 282
-130 187 281 282 186
-131 187 269 270 186
-132 210 211 269 270
-133 209 210 227 228
-134 198 227 228 197
-135 198 251 197 252
-136 185 251 186 252
-137 239 185 240 186
-138 209 210 239 240
-139 255 256 241 252
-140 255 256 229 240
-141 279 280 229 240
-142 279 280 217 228
-143 267 268 217 228
-144 267 268 241 252
-145 4 70 5 71
-146 11 4 5 10
-147 11 16 17 10
-148 22 23 16 17
-149 22 23 28 29
-150 34 35 28 29
-151 34 35 40 41
-152 46 47 40 41
-153 46 47 52 53
-154 58 59 52 53
-155 58 59 64 65
-156 70 71 64 65
-157 2 68 3 69
-158 2 3 8 9
-159 14 15 8 9
-160 14 15 20 21
-161 26 27 20 21
-162 33 26 27 32
-163 33 38 39 32
-164 44 45 38 39
-165 44 45 50 51
-166 56 57 50 51
-167 56 57 62 63
-168 68 69 62 63
-169 1 67 6 72
-170 1 12 6 7
-171 12 13 7 18
-172 13 24 18 19
-173 24 25 19 30
-174 25 36 30 31
-175 36 37 31 42
-176 37 48 42 43
-177 48 49 43 54
-178 55 49 60 54
-179 55 66 60 61
-180 66 67 61 72
-181 13 14 94 95
-182 13 14 82 83
-183 77 82 83 76
-184 77 67 68 76
-185 67 68 136 137
-186 136 137 130 131
-187 49 50 130 131
-188 49 50 118 119
-189 112 113 118 119
-190 112 113 31 32
-191 100 101 31 32
-192 100 101 94 95
-193 92 93 17 18
-194 80 81 17 18
-195 80 81 74 75
-196 71 72 74 75
-197 134 135 71 72
-198 134 135 128 129
-199 128 129 53 54
-200 116 117 53 54
-201 110 111 116 117
-202 110 111 35 36
-203 99 35 36 98
-204 99 92 93 98
-205 91 15 16 96
-206 79 15 16 84
-207 78 79 73 84
-208 78 69 70 73
-209 133 69 70 138
-210 132 133 127 138
-211 132 127 51 52
-212 115 51 52 120
-213 114 115 109 120
-214 33 34 114 109
-215 33 34 102 97
-216 91 102 96 97
-217 143 1 2 142
-218 1 2 79 80
-219 88 89 79 80
-220 88 89 19 20
-221 19 20 97 98
-222 106 107 97 98
-223 37 38 106 107
-224 37 38 115 116
-225 124 125 115 116
-226 55 56 124 125
-227 55 56 133 134
-228 143 133 134 142
-229 5 6 140 141
-230 5 6 83 84
-231 83 84 86 87
-232 23 24 86 87
-233 23 24 101 102
-234 101 102 104 105
-235 104 105 41 42
-236 41 42 119 120
-237 122 123 119 120
-238 122 123 59 60
-239 59 60 137 138
-240 137 138 140 141
-241 144 3 4 139
-242 3 4 81 82
-243 90 81 82 85
-244 22 90 85 21
-245 22 99 100 21
-246 99 100 103 108
-247 103 39 40 108
-248 39 40 117 118
-249 121 126 117 118
-250 121 57 58 126
-251 57 58 135 136
-252 144 135 136 139
-253 7 8 85 86
-254 7 73 8 74
-255 73 139 74 140
-256 61 62 139 140
-257 61 127 62 128
-258 121 122 127 128
-259 44 121 122 43
-260 44 110 43 109
-261 110 103 104 109
-262 25 26 103 104
-263 25 91 26 92
-264 91 92 85 86
-265 11 12 89 90
-266 11 77 12 78
-267 77 143 78 144
-268 66 143 144 65
-269 66 132 65 131
-270 132 125 126 131
-271 47 48 125 126
-272 47 113 48 114
-273 113 114 107 108
-274 29 30 107 108
-275 29 95 30 96
-276 89 90 95 96
-277 88 9 10 87
-278 9 75 10 76
-279 75 141 76 142
-280 63 64 141 142
-281 63 129 64 130
-282 123 124 129 130
-283 45 46 123 124
-284 45 111 46 112
-285 111 112 105 106
-286 27 28 105 106
-287 27 93 28 94
-288 88 93 94 87
0