C4graphGraph forms for C4 [ 288, 172 ] = PL(CSI(R_12(11,4)[3^16],3))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 172 ] = PL(CSI(R_12(11,4)[3^16],3)).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {130, 226}, {131, 226}, {137, 235}, {136, 235}, {129, 229}, {137, 237}, {128, 229}, {136, 237}, {129, 231}, {130, 228}, {128, 231}, {131, 228}, {134, 238}, {135, 238}, {144, 250}, {132, 232}, {144, 252}, {132, 234}, {139, 250}, {133, 241}, {141, 249}, {140, 249}, {133, 243}, {134, 240}, {135, 240}, {139, 252}, {142, 246}, {138, 243}, {143, 246}, {141, 247}, {142, 244}, {138, 241}, {143, 244}, {140, 247}, {121, 253}, {122, 255}, {121, 255}, {122, 253}, {6, 151}, {5, 145}, {12, 152}, {4, 145}, {127, 234}, {12, 153}, {1, 151}, {4, 146}, {3, 149}, {2, 148}, {2, 149}, {127, 232}, {5, 146}, {3, 148}, {2, 154}, {121, 225}, {11, 147}, {10, 146}, {6, 158}, {5, 157}, {1, 152}, {11, 146}, {10, 147}, {2, 155}, {1, 155}, {1, 154}, {6, 157}, {5, 158}, {9, 149}, {98, 254}, {35, 191}, {8, 149}, {98, 255}, {34, 191}, {6, 152}, {97, 255}, {8, 150}, {7, 153}, {7, 152}, {126, 225}, {97, 254}, {9, 150}, {9, 169}, {120, 216}, {117, 213}, {109, 205}, {26, 186}, {24, 184}, {19, 179}, {13, 173}, {10, 170}, {13, 172}, {126, 223}, {116, 213}, {103, 198}, {27, 186}, {24, 185}, {20, 181}, {17, 176}, {3, 161}, {110, 204}, {109, 207}, {30, 188}, {27, 185}, {20, 182}, {18, 176}, {16, 178}, {14, 172}, {3, 160}, {111, 204}, {103, 196}, {30, 189}, {26, 185}, {16, 179}, {14, 173}, {10, 169}, {9, 170}, {7, 164}, {4, 160}, {125, 217}, {122, 222}, {118, 210}, {110, 202}, {26, 190}, {25, 189}, {21, 177}, {20, 176}, {7, 163}, {4, 161}, {124, 217}, {123, 222}, {119, 210}, {115, 214}, {111, 202}, {26, 191}, {25, 188}, {21, 176}, {20, 177}, {19, 182}, {13, 171}, {125, 219}, {122, 220}, {121, 223}, {118, 208}, {117, 211}, {25, 191}, {19, 181}, {14, 168}, {13, 170}, {124, 219}, {123, 220}, {119, 208}, {116, 211}, {25, 190}, {19, 180}, {15, 168}, {15, 167}, {108, 196}, {105, 193}, {14, 167}, {104, 193}, {21, 188}, {12, 166}, {108, 198}, {106, 192}, {105, 195}, {29, 183}, {28, 182}, {22, 188}, {8, 163}, {115, 216}, {107, 192}, {104, 195}, {29, 182}, {28, 183}, {24, 179}, {12, 167}, {8, 164}, {24, 180}, {11, 167}, {64, 236}, {65, 237}, {11, 166}, {22, 187}, {64, 237}, {65, 236}, {21, 187}, {120, 214}, {23, 185}, {23, 184}, {66, 242}, {72, 248}, {66, 243}, {68, 245}, {72, 249}, {68, 246}, {16, 164}, {17, 165}, {73, 253}, {74, 254}, {16, 165}, {17, 164}, {66, 247}, {67, 246}, {65, 247}, {113, 199}, {67, 245}, {73, 254}, {112, 199}, {74, 253}, {18, 170}, {113, 201}, {22, 174}, {18, 171}, {112, 201}, {23, 174}, {65, 248}, {69, 252}, {23, 173}, {64, 250}, {66, 248}, {70, 252}, {22, 173}, {64, 251}, {15, 179}, {15, 178}, {114, 207}, {18, 175}, {70, 251}, {17, 175}, {69, 251}, {71, 249}, {71, 248}, {114, 205}, {83, 147}, {82, 147}, {83, 145}, {82, 145}, {84, 151}, {63, 251}, {80, 148}, {63, 250}, {81, 148}, {80, 150}, {81, 150}, {57, 241}, {58, 242}, {61, 245}, {61, 244}, {62, 244}, {57, 242}, {58, 241}, {62, 245}, {45, 224}, {84, 153}, {46, 224}, {61, 243}, {62, 240}, {61, 242}, {63, 240}, {49, 225}, {101, 181}, {53, 229}, {50, 226}, {54, 230}, {63, 239}, {76, 156}, {49, 224}, {100, 181}, {50, 227}, {62, 239}, {77, 156}, {49, 227}, {101, 183}, {96, 178}, {60, 238}, {49, 226}, {100, 183}, {53, 230}, {54, 229}, {56, 235}, {60, 239}, {56, 236}, {106, 190}, {96, 180}, {59, 239}, {75, 159}, {59, 238}, {107, 190}, {60, 233}, {74, 159}, {54, 224}, {60, 234}, {75, 157}, {76, 154}, {79, 153}, {31, 200}, {54, 225}, {74, 157}, {77, 154}, {28, 196}, {98, 186}, {31, 199}, {59, 227}, {79, 151}, {28, 197}, {99, 186}, {31, 198}, {58, 227}, {31, 197}, {98, 184}, {97, 187}, {51, 233}, {68, 158}, {69, 159}, {70, 156}, {51, 232}, {102, 189}, {99, 184}, {55, 236}, {68, 159}, {69, 158}, {71, 156}, {29, 193}, {97, 189}, {52, 232}, {30, 194}, {55, 235}, {71, 155}, {52, 233}, {102, 187}, {55, 234}, {70, 155}, {27, 197}, {55, 233}, {56, 230}, {57, 231}, {58, 228}, {27, 196}, {30, 193}, {29, 194}, {56, 231}, {57, 230}, {59, 228}, {40, 200}, {41, 201}, {36, 197}, {41, 200}, {40, 201}, {67, 162}, {32, 194}, {36, 198}, {34, 192}, {33, 195}, {67, 161}, {32, 195}, {35, 192}, {33, 194}, {42, 206}, {42, 207}, {32, 199}, {48, 215}, {32, 200}, {48, 216}, {35, 203}, {35, 202}, {91, 178}, {72, 161}, {73, 160}, {37, 207}, {38, 204}, {72, 162}, {37, 206}, {39, 204}, {73, 162}, {33, 205}, {93, 177}, {50, 222}, {48, 220}, {39, 203}, {34, 206}, {78, 162}, {38, 203}, {92, 177}, {51, 222}, {48, 221}, {36, 202}, {53, 219}, {52, 218}, {51, 221}, {78, 160}, {33, 206}, {91, 180}, {53, 218}, {52, 219}, {50, 221}, {36, 203}, {34, 205}, {39, 215}, {94, 174}, {86, 166}, {39, 214}, {95, 174}, {90, 171}, {46, 223}, {43, 218}, {87, 166}, {43, 217}, {94, 172}, {93, 175}, {47, 221}, {45, 223}, {43, 216}, {95, 172}, {92, 175}, {90, 169}, {47, 220}, {37, 209}, {37, 208}, {44, 217}, {38, 208}, {44, 218}, {38, 209}, {44, 212}, {45, 213}, {42, 211}, {45, 212}, {44, 213}, {41, 211}, {89, 163}, {88, 163}, {43, 215}, {46, 210}, {85, 169}, {89, 165}, {41, 212}, {47, 210}, {88, 165}, {40, 214}, {47, 209}, {42, 212}, {85, 171}, {86, 168}, {40, 215}, {46, 209}, {87, 168}, {94, 286}, {87, 278}, {94, 287}, {87, 277}, {93, 287}, {91, 281}, {91, 280}, {95, 284}, {93, 286}, {92, 280}, {95, 283}, {85, 272}, {92, 281}, {86, 272}, {75, 259}, {90, 274}, {76, 260}, {79, 263}, {79, 262}, {90, 275}, {89, 275}, {89, 274}, {77, 257}, {77, 256}, {88, 277}, {78, 256}, {88, 278}, {75, 260}, {76, 259}, {78, 257}, {117, 288}, {80, 262}, {118, 288}, {80, 263}, {83, 266}, {86, 271}, {83, 265}, {85, 271}, {81, 269}, {81, 268}, {84, 265}, {82, 268}, {84, 266}, {82, 269}, {100, 260}, {107, 267}, {104, 264}, {103, 263}, {100, 261}, {114, 275}, {107, 266}, {113, 275}, {101, 257}, {120, 284}, {106, 270}, {105, 269}, {102, 258}, {113, 276}, {120, 285}, {99, 261}, {114, 276}, {112, 278}, {108, 266}, {99, 260}, {112, 279}, {108, 267}, {106, 269}, {105, 270}, {102, 257}, {101, 258}, {115, 282}, {118, 287}, {115, 281}, {119, 285}, {117, 287}, {119, 284}, {116, 281}, {116, 282}, {103, 264}, {104, 263}, {127, 264}, {111, 279}, {123, 259}, {111, 278}, {127, 262}, {124, 261}, {96, 283}, {96, 284}, {126, 258}, {109, 273}, {109, 272}, {125, 256}, {110, 272}, {126, 256}, {123, 261}, {110, 273}, {125, 258}, {124, 259}, {128, 262}, {128, 264}, {131, 267}, {134, 271}, {131, 265}, {133, 271}, {144, 283}, {130, 270}, {129, 268}, {144, 285}, {132, 265}, {130, 268}, {129, 270}, {132, 267}, {135, 279}, {142, 286}, {139, 282}, {135, 277}, {143, 285}, {139, 280}, {141, 286}, {133, 273}, {143, 283}, {140, 280}, {140, 282}, {134, 273}, {138, 274}, {137, 274}, {136, 277}, {137, 276}, {138, 276}, {136, 279}, {141, 288}, {142, 288} }>;

(II) A more general form is to represent the graph as the orbit of {130, 226} under the group generated by the following permutations:

a: (1, 2)(3, 6)(4, 5)(7, 8)(9, 12)(10, 11)(13, 14)(15, 18)(16, 17)(19, 20)(21, 24)(22, 23)(25, 26)(27, 30)(28, 29)(31, 32)(33, 36)(34, 35)(37, 38)(39, 42)(40, 41)(43, 44)(45, 48)(46, 47)(49, 50)(51, 54)(52, 53)(55, 56)(57, 60)(58, 59)(61, 62)(63, 66)(64, 65)(67, 68)(69, 72)(70, 71)(73, 74)(75, 78)(76, 77)(79, 80)(81, 84)(82, 83)(85, 86)(87, 90)(88, 89)(91, 92)(93, 96)(94, 95)(97, 98)(99, 102)(100, 101)(103, 104)(105, 108)(106, 107)(109, 110)(111, 114)(112, 113)(115, 116)(117, 120)(118, 119)(121, 122)(123, 126)(124, 125)(127, 128)(129, 132)(130, 131)(133, 134)(135, 138)(136, 137)(139, 140)(141, 144)(142, 143)(148, 151)(149, 152)(150, 153)(157, 160)(158, 161)(159, 162)(166, 169)(167, 170)(168, 171)(175, 178)(176, 179)(177, 180)(184, 187)(185, 188)(186, 189)(193, 196)(194, 197)(195, 198)(202, 205)(203, 206)(204, 207)(211, 214)(212, 215)(213, 216)(220, 223)(221, 224)(222, 225)(229, 232)(230, 233)(231, 234)(238, 241)(239, 242)(240, 243)(247, 250)(248, 251)(249, 252)(256, 259)(257, 260)(258, 261)(265, 268)(266, 269)(267, 270)(274, 277)(275, 278)(276, 279)(283, 286)(284, 287)(285, 288)
b: (1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)(13, 67)(14, 68)(15, 69)(16, 70)(17, 71)(18, 72)(19, 64)(20, 65)(21, 66)(22, 61)(23, 62)(24, 63)(25, 58)(26, 59)(27, 60)(28, 55)(29, 56)(30, 57)(31, 52)(32, 53)(33, 54)(34, 49)(35, 50)(36, 51)(37, 46)(38, 47)(39, 48)(40, 43)(41, 44)(42, 45)(73, 85)(74, 86)(75, 87)(76, 88)(77, 89)(78, 90)(91, 139)(92, 140)(93, 141)(94, 142)(95, 143)(96, 144)(97, 133)(98, 134)(99, 135)(100, 136)(101, 137)(102, 138)(103, 127)(104, 128)(105, 129)(106, 130)(107, 131)(108, 132)(109, 121)(110, 122)(111, 123)(112, 124)(113, 125)(114, 126)(145, 147)(148, 150)(151, 153)(154, 163)(155, 164)(156, 165)(157, 166)(158, 167)(159, 168)(160, 169)(161, 170)(162, 171)(172, 246)(173, 245)(174, 244)(175, 249)(176, 248)(177, 247)(178, 252)(179, 251)(180, 250)(181, 237)(182, 236)(183, 235)(184, 240)(185, 239)(186, 238)(187, 243)(188, 242)(189, 241)(190, 228)(191, 227)(192, 226)(193, 231)(194, 230)(195, 229)(196, 234)(197, 233)(198, 232)(199, 219)(200, 218)(201, 217)(202, 222)(203, 221)(204, 220)(205, 225)(206, 224)(207, 223)(208, 210)(211, 213)(214, 216)(253, 272)(254, 271)(255, 273)(256, 275)(257, 274)(258, 276)(259, 278)(260, 277)(261, 279)(262, 263)(265, 266)(268, 269)(281, 282)(284, 285)(287, 288)
c: (2, 6)(3, 5)(7, 76)(8, 75)(9, 74)(10, 73)(11, 78)(12, 77)(13, 97)(14, 102)(15, 101)(16, 100)(17, 99)(18, 98)(20, 24)(21, 23)(25, 94)(26, 93)(27, 92)(28, 91)(29, 96)(30, 95)(31, 115)(32, 120)(33, 119)(34, 118)(35, 117)(36, 116)(38, 42)(39, 41)(43, 112)(44, 111)(45, 110)(46, 109)(47, 114)(48, 113)(49, 133)(50, 138)(51, 137)(52, 136)(53, 135)(54, 134)(56, 60)(57, 59)(61, 130)(62, 129)(63, 128)(64, 127)(65, 132)(66, 131)(67, 82)(68, 81)(69, 80)(70, 79)(71, 84)(72, 83)(85, 121)(86, 126)(87, 125)(88, 124)(89, 123)(90, 122)(103, 139)(104, 144)(105, 143)(106, 142)(107, 141)(108, 140)(145, 161)(146, 160)(147, 162)(148, 158)(149, 157)(150, 159)(151, 155)(152, 154)(153, 156)(163, 259)(164, 260)(165, 261)(166, 256)(167, 257)(168, 258)(169, 253)(170, 254)(171, 255)(172, 189)(173, 187)(174, 188)(175, 186)(176, 184)(177, 185)(178, 183)(179, 181)(180, 182)(190, 286)(191, 287)(192, 288)(193, 283)(194, 284)(195, 285)(196, 280)(197, 281)(198, 282)(199, 216)(200, 214)(201, 215)(202, 213)(203, 211)(204, 212)(205, 210)(206, 208)(207, 209)(217, 278)(218, 279)(219, 277)(220, 275)(221, 276)(222, 274)(223, 272)(224, 273)(225, 271)(226, 243)(227, 241)(228, 242)(229, 240)(230, 238)(231, 239)(232, 237)(233, 235)(234, 236)(244, 270)(245, 268)(246, 269)(247, 267)(248, 265)(249, 266)(250, 264)(251, 262)(252, 263)
d: (2, 6)(3, 5)(7, 70)(8, 69)(9, 68)(10, 67)(11, 72)(12, 71)(13, 61)(14, 66)(15, 65)(16, 64)(17, 63)(18, 62)(19, 55)(20, 60)(21, 59)(22, 58)(23, 57)(24, 56)(25, 49)(26, 54)(27, 53)(28, 52)(29, 51)(30, 50)(31, 43)(32, 48)(33, 47)(34, 46)(35, 45)(36, 44)(38, 42)(39, 41)(73, 82)(74, 81)(75, 80)(76, 79)(77, 84)(78, 83)(85, 142)(86, 141)(87, 140)(88, 139)(89, 144)(90, 143)(91, 136)(92, 135)(93, 134)(94, 133)(95, 138)(96, 137)(97, 130)(98, 129)(99, 128)(100, 127)(101, 132)(102, 131)(103, 124)(104, 123)(105, 122)(106, 121)(107, 126)(108, 125)(109, 118)(110, 117)(111, 116)(112, 115)(113, 120)(114, 119)(145, 160)(146, 161)(147, 162)(148, 157)(149, 158)(150, 159)(151, 154)(152, 155)(153, 156)(163, 252)(164, 251)(165, 250)(166, 249)(167, 248)(168, 247)(169, 246)(170, 245)(171, 244)(172, 243)(173, 242)(174, 241)(175, 240)(176, 239)(177, 238)(178, 237)(179, 236)(180, 235)(181, 234)(182, 233)(183, 232)(184, 231)(185, 230)(186, 229)(187, 228)(188, 227)(189, 226)(190, 225)(191, 224)(192, 223)(193, 222)(194, 221)(195, 220)(196, 219)(197, 218)(198, 217)(199, 216)(200, 215)(201, 214)(202, 213)(203, 212)(204, 211)(205, 210)(206, 209)(207, 208)(253, 269)(254, 268)(255, 270)(256, 266)(257, 265)(258, 267)(259, 263)(260, 262)(261, 264)(271, 286)(272, 288)(273, 287)(274, 283)(275, 285)(276, 284)(277, 280)(278, 282)(279, 281)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 172 ]
288
-1 154 155 151 152
-2 154 155 148 149
-3 148 149 160 161
-4 145 146 160 161
-5 145 146 157 158
-6 157 158 151 152
-7 152 163 153 164
-8 149 150 163 164
-9 169 170 149 150
-10 146 147 169 170
-11 166 167 146 147
-12 166 167 152 153
-13 170 171 172 173
-14 167 168 172 173
-15 167 178 168 179
-16 165 178 179 164
-17 165 176 164 175
-18 176 170 171 175
-19 179 180 181 182
-20 176 177 181 182
-21 176 187 177 188
-22 187 188 173 174
-23 173 184 174 185
-24 179 180 184 185
-25 188 189 190 191
-26 190 191 185 186
-27 185 196 186 197
-28 182 183 196 197
-29 182 193 183 194
-30 188 189 193 194
-31 198 199 200 197
-32 199 200 194 195
-33 194 205 195 206
-34 191 192 205 206
-35 191 202 192 203
-36 198 202 203 197
-37 209 206 207 208
-38 209 203 204 208
-39 203 214 204 215
-40 200 201 214 215
-41 200 211 201 212
-42 211 212 206 207
-43 215 216 217 218
-44 212 213 217 218
-45 212 223 213 224
-46 209 210 223 224
-47 209 220 210 221
-48 220 221 215 216
-49 224 225 226 227
-50 221 222 226 227
-51 221 232 222 233
-52 232 233 218 219
-53 218 229 219 230
-54 224 225 229 230
-55 233 234 235 236
-56 231 235 236 230
-57 231 242 230 241
-58 242 227 228 241
-59 227 238 228 239
-60 233 234 238 239
-61 242 243 244 245
-62 244 245 239 240
-63 239 250 240 251
-64 236 237 250 251
-65 236 247 237 248
-66 242 243 247 248
-67 245 246 161 162
-68 245 158 246 159
-69 158 159 251 252
-70 155 156 251 252
-71 155 156 248 249
-72 248 161 249 162
-73 253 254 160 162
-74 253 254 157 159
-75 157 159 259 260
-76 154 156 259 260
-77 154 156 256 257
-78 256 257 160 162
-79 151 262 153 263
-80 148 150 262 263
-81 268 148 269 150
-82 145 147 268 269
-83 265 145 266 147
-84 265 266 151 153
-85 169 171 271 272
-86 166 168 271 272
-87 166 277 168 278
-88 165 277 278 163
-89 165 275 163 274
-90 275 169 171 274
-91 178 180 280 281
-92 177 280 281 175
-93 286 177 287 175
-94 286 287 172 174
-95 172 283 174 284
-96 178 180 283 284
-97 187 254 189 255
-98 254 255 184 186
-99 260 184 261 186
-100 181 183 260 261
-101 257 181 258 183
-102 187 189 257 258
-103 198 264 196 263
-104 264 193 195 263
-105 269 193 270 195
-106 190 192 269 270
-107 266 190 267 192
-108 198 266 267 196
-109 205 272 207 273
-110 202 204 272 273
-111 278 202 279 204
-112 199 201 278 279
-113 275 199 276 201
-114 275 276 205 207
-115 214 281 216 282
-116 211 213 281 282
-117 287 211 288 213
-118 210 287 288 208
-119 210 284 208 285
-120 214 216 284 285
-121 253 255 223 225
-122 220 253 222 255
-123 220 222 259 261
-124 259 217 261 219
-125 256 258 217 219
-126 223 256 225 258
-127 264 232 234 262
-128 231 264 229 262
-129 231 268 270 229
-130 268 226 270 228
-131 265 267 226 228
-132 232 265 234 267
-133 243 271 273 241
-134 238 271 240 273
-135 277 279 238 240
-136 277 235 279 237
-137 276 235 237 274
-138 243 276 241 274
-139 280 282 250 252
-140 247 280 249 282
-141 286 288 247 249
-142 286 244 288 246
-143 244 246 283 285
-144 250 283 252 285
-145 4 5 82 83
-146 11 4 5 10
-147 11 82 83 10
-148 2 3 80 81
-149 2 3 8 9
-150 80 81 8 9
-151 1 79 6 84
-152 1 12 6 7
-153 12 79 7 84
-154 77 1 2 76
-155 1 2 70 71
-156 77 70 71 76
-157 5 6 74 75
-158 68 69 5 6
-159 68 69 74 75
-160 78 3 4 73
-161 67 3 4 72
-162 67 78 72 73
-163 88 89 7 8
-164 16 17 7 8
-165 88 89 16 17
-166 11 12 86 87
-167 11 12 14 15
-168 14 15 86 87
-169 90 85 9 10
-170 13 18 9 10
-171 13 90 18 85
-172 13 14 94 95
-173 22 23 13 14
-174 22 23 94 95
-175 92 93 17 18
-176 17 18 20 21
-177 92 93 20 21
-178 91 15 16 96
-179 24 15 16 19
-180 24 91 19 96
-181 100 101 19 20
-182 28 29 19 20
-183 100 101 28 29
-184 99 23 24 98
-185 23 24 26 27
-186 99 26 27 98
-187 22 102 97 21
-188 22 25 30 21
-189 25 102 30 97
-190 25 26 106 107
-191 34 35 25 26
-192 34 35 106 107
-193 104 105 29 30
-194 33 29 30 32
-195 33 104 105 32
-196 103 27 28 108
-197 36 27 28 31
-198 36 103 31 108
-199 112 113 31 32
-200 40 41 31 32
-201 112 113 40 41
-202 110 111 35 36
-203 35 36 38 39
-204 110 111 38 39
-205 33 34 114 109
-206 33 34 37 42
-207 37 114 42 109
-208 37 38 118 119
-209 46 47 37 38
-210 46 47 118 119
-211 116 117 41 42
-212 44 45 41 42
-213 44 45 116 117
-214 115 39 40 120
-215 48 39 40 43
-216 48 115 43 120
-217 44 124 125 43
-218 44 52 53 43
-219 124 125 52 53
-220 122 123 47 48
-221 47 48 50 51
-222 122 123 50 51
-223 121 45 46 126
-224 45 46 49 54
-225 121 49 126 54
-226 49 50 130 131
-227 58 59 49 50
-228 58 59 130 131
-229 128 129 53 54
-230 56 57 53 54
-231 56 57 128 129
-232 132 127 51 52
-233 55 60 51 52
-234 55 132 60 127
-235 55 56 136 137
-236 55 56 64 65
-237 136 137 64 65
-238 134 135 59 60
-239 59 60 62 63
-240 134 135 62 63
-241 133 57 58 138
-242 66 57 58 61
-243 66 133 61 138
-244 143 61 62 142
-245 67 68 61 62
-246 143 67 68 142
-247 66 140 141 65
-248 66 71 72 65
-249 71 72 140 141
-250 144 139 63 64
-251 69 70 63 64
-252 144 69 70 139
-253 121 122 73 74
-254 73 74 97 98
-255 121 122 97 98
-256 77 78 125 126
-257 77 78 101 102
-258 101 102 125 126
-259 123 124 75 76
-260 99 100 75 76
-261 99 100 123 124
-262 79 80 127 128
-263 79 80 103 104
-264 103 104 127 128
-265 132 83 84 131
-266 83 84 107 108
-267 132 107 108 131
-268 81 82 129 130
-269 81 82 105 106
-270 105 106 129 130
-271 133 134 85 86
-272 110 85 86 109
-273 110 133 134 109
-274 89 90 137 138
-275 89 90 113 114
-276 113 114 137 138
-277 88 135 136 87
-278 88 111 112 87
-279 111 112 135 136
-280 91 92 139 140
-281 91 92 115 116
-282 115 116 139 140
-283 143 144 95 96
-284 95 96 119 120
-285 143 144 119 120
-286 93 94 141 142
-287 93 94 117 118
-288 117 118 141 142
0

**************