C4graphGraph forms for C4 [ 288, 173 ] = PL(CSI(R_12(5,10)[6^8],3))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 173 ] = PL(CSI(R_12(5,10)[6^8],3)).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {131, 199}, {130, 199}, {129, 205}, {128, 205}, {130, 204}, {131, 204}, {137, 217}, {136, 217}, {128, 210}, {129, 210}, {136, 222}, {132, 211}, {137, 222}, {135, 223}, {134, 223}, {132, 216}, {133, 229}, {138, 234}, {134, 228}, {135, 228}, {143, 235}, {142, 235}, {144, 247}, {144, 252}, {133, 234}, {138, 229}, {139, 252}, {133, 253}, {140, 246}, {134, 253}, {141, 246}, {139, 247}, {141, 241}, {140, 241}, {142, 240}, {143, 240}, {38, 166}, {98, 226}, {38, 167}, {102, 231}, {99, 226}, {37, 167}, {99, 225}, {37, 166}, {98, 225}, {35, 167}, {106, 238}, {41, 173}, {37, 161}, {34, 167}, {107, 238}, {41, 172}, {37, 160}, {42, 172}, {107, 237}, {97, 231}, {42, 173}, {106, 237}, {43, 162}, {97, 232}, {34, 168}, {43, 161}, {42, 160}, {35, 168}, {42, 161}, {33, 173}, {92, 208}, {53, 185}, {51, 191}, {32, 173}, {93, 208}, {52, 185}, {50, 191}, {91, 214}, {32, 174}, {102, 232}, {52, 186}, {48, 190}, {91, 213}, {33, 174}, {53, 186}, {48, 191}, {8, 152}, {47, 191}, {36, 180}, {9, 153}, {8, 153}, {48, 161}, {47, 190}, {9, 152}, {85, 196}, {12, 158}, {93, 207}, {48, 162}, {43, 185}, {12, 159}, {92, 207}, {43, 184}, {3, 151}, {94, 202}, {44, 184}, {39, 179}, {5, 145}, {2, 151}, {108, 249}, {95, 202}, {44, 185}, {39, 178}, {4, 145}, {4, 146}, {108, 250}, {95, 201}, {85, 195}, {5, 146}, {94, 201}, {36, 179}, {6, 158}, {11, 147}, {10, 146}, {7, 159}, {7, 158}, {11, 146}, {10, 147}, {90, 195}, {2, 152}, {105, 243}, {40, 178}, {3, 152}, {104, 243}, {40, 179}, {6, 157}, {1, 157}, {104, 244}, {65, 221}, {64, 221}, {105, 244}, {103, 250}, {98, 255}, {64, 222}, {103, 249}, {97, 255}, {90, 196}, {1, 158}, {65, 222}, {2, 163}, {1, 163}, {1, 164}, {2, 164}, {17, 183}, {16, 182}, {16, 183}, {127, 216}, {17, 182}, {66, 234}, {86, 254}, {86, 255}, {85, 255}, {4, 175}, {31, 180}, {66, 233}, {68, 239}, {85, 254}, {3, 175}, {127, 211}, {31, 179}, {6, 170}, {5, 169}, {67, 239}, {5, 170}, {6, 169}, {11, 187}, {44, 156}, {12, 188}, {7, 182}, {45, 156}, {71, 246}, {7, 181}, {15, 189}, {14, 188}, {71, 245}, {3, 176}, {15, 188}, {14, 189}, {67, 240}, {4, 176}, {65, 245}, {68, 240}, {73, 253}, {74, 254}, {65, 244}, {96, 213}, {45, 155}, {96, 214}, {66, 244}, {11, 188}, {44, 155}, {12, 187}, {66, 245}, {73, 254}, {74, 253}, {46, 150}, {126, 198}, {121, 193}, {100, 220}, {47, 150}, {101, 220}, {69, 252}, {47, 149}, {122, 192}, {64, 250}, {70, 252}, {46, 149}, {123, 192}, {64, 251}, {38, 154}, {41, 149}, {40, 148}, {39, 155}, {8, 181}, {41, 148}, {40, 149}, {39, 154}, {38, 155}, {70, 251}, {72, 245}, {8, 182}, {101, 219}, {69, 251}, {72, 246}, {100, 219}, {126, 193}, {121, 198}, {83, 147}, {123, 187}, {114, 178}, {82, 147}, {122, 187}, {110, 172}, {16, 211}, {114, 177}, {111, 172}, {16, 212}, {111, 171}, {63, 251}, {13, 200}, {110, 171}, {63, 250}, {14, 200}, {124, 186}, {29, 219}, {28, 218}, {19, 213}, {82, 148}, {19, 212}, {125, 186}, {29, 218}, {28, 219}, {24, 223}, {83, 148}, {9, 193}, {125, 181}, {23, 223}, {10, 194}, {81, 153}, {14, 199}, {124, 181}, {19, 218}, {80, 153}, {13, 199}, {19, 217}, {80, 154}, {9, 194}, {10, 193}, {81, 154}, {84, 159}, {24, 212}, {32, 236}, {20, 217}, {32, 237}, {24, 213}, {13, 195}, {20, 218}, {13, 194}, {18, 194}, {57, 233}, {35, 243}, {62, 238}, {79, 159}, {18, 195}, {115, 162}, {57, 232}, {35, 242}, {62, 239}, {58, 232}, {61, 239}, {58, 233}, {61, 238}, {61, 233}, {113, 165}, {112, 165}, {36, 242}, {112, 166}, {36, 243}, {113, 166}, {61, 234}, {33, 249}, {59, 227}, {33, 248}, {59, 226}, {20, 206}, {120, 162}, {34, 248}, {21, 207}, {62, 228}, {15, 212}, {34, 249}, {21, 206}, {20, 207}, {63, 228}, {15, 211}, {109, 177}, {18, 206}, {17, 205}, {63, 227}, {62, 227}, {22, 200}, {23, 201}, {60, 226}, {17, 206}, {109, 178}, {23, 200}, {22, 201}, {18, 205}, {60, 227}, {55, 215}, {118, 150}, {88, 184}, {78, 175}, {119, 150}, {89, 184}, {52, 214}, {117, 151}, {70, 164}, {71, 165}, {75, 169}, {27, 248}, {116, 151}, {52, 215}, {70, 165}, {71, 164}, {74, 169}, {28, 248}, {56, 220}, {53, 209}, {51, 215}, {60, 216}, {74, 174}, {76, 168}, {51, 214}, {120, 157}, {56, 221}, {53, 208}, {75, 174}, {77, 168}, {54, 208}, {119, 145}, {73, 175}, {54, 209}, {118, 145}, {45, 197}, {116, 156}, {57, 209}, {86, 190}, {45, 196}, {117, 156}, {56, 209}, {87, 190}, {46, 196}, {56, 210}, {55, 221}, {87, 189}, {28, 247}, {57, 210}, {55, 220}, {46, 197}, {60, 215}, {86, 189}, {27, 247}, {30, 242}, {29, 241}, {68, 170}, {115, 157}, {69, 171}, {77, 163}, {89, 183}, {29, 242}, {55, 216}, {30, 241}, {68, 171}, {69, 170}, {76, 163}, {79, 160}, {88, 183}, {21, 229}, {59, 203}, {54, 198}, {22, 230}, {26, 235}, {58, 203}, {25, 235}, {50, 192}, {31, 237}, {67, 177}, {21, 230}, {54, 197}, {51, 192}, {31, 236}, {22, 229}, {67, 176}, {49, 197}, {84, 160}, {25, 236}, {26, 236}, {58, 204}, {23, 224}, {59, 204}, {49, 198}, {24, 224}, {50, 202}, {30, 230}, {72, 176}, {30, 231}, {50, 203}, {72, 177}, {26, 224}, {49, 203}, {27, 225}, {78, 180}, {26, 225}, {49, 202}, {27, 224}, {73, 180}, {25, 231}, {25, 230}, {79, 271}, {93, 285}, {80, 272}, {75, 266}, {93, 284}, {84, 277}, {75, 265}, {94, 284}, {84, 278}, {94, 285}, {76, 265}, {83, 278}, {76, 266}, {83, 277}, {95, 279}, {77, 260}, {95, 278}, {82, 283}, {78, 260}, {91, 273}, {81, 283}, {91, 272}, {92, 272}, {78, 259}, {92, 273}, {81, 284}, {77, 259}, {82, 284}, {88, 266}, {88, 267}, {87, 267}, {89, 261}, {87, 266}, {89, 260}, {90, 260}, {79, 272}, {80, 271}, {90, 261}, {101, 261}, {120, 280}, {115, 275}, {102, 262}, {97, 256}, {120, 281}, {115, 274}, {98, 256}, {111, 269}, {101, 262}, {111, 268}, {102, 261}, {116, 274}, {116, 275}, {99, 267}, {118, 286}, {100, 268}, {118, 287}, {117, 287}, {117, 286}, {127, 276}, {109, 257}, {127, 275}, {109, 256}, {110, 256}, {119, 281}, {99, 268}, {119, 280}, {110, 257}, {100, 267}, {124, 269}, {124, 270}, {107, 280}, {105, 285}, {114, 262}, {108, 280}, {106, 286}, {103, 274}, {125, 264}, {123, 270}, {114, 263}, {96, 278}, {126, 264}, {123, 269}, {113, 263}, {103, 273}, {96, 279}, {113, 262}, {106, 285}, {105, 286}, {121, 257}, {122, 258}, {104, 273}, {126, 263}, {104, 274}, {125, 263}, {108, 279}, {122, 257}, {121, 258}, {107, 279}, {112, 268}, {112, 269}, {136, 265}, {137, 264}, {138, 264}, {140, 271}, {134, 258}, {139, 271}, {144, 277}, {136, 270}, {133, 258}, {135, 270}, {138, 259}, {137, 259}, {144, 282}, {135, 265}, {128, 275}, {128, 276}, {142, 283}, {143, 282}, {141, 283}, {140, 276}, {131, 282}, {131, 281}, {143, 277}, {130, 287}, {132, 281}, {129, 287}, {132, 282}, {139, 276}, {129, 288}, {130, 288}, {141, 288}, {142, 288} }>;

(II) A more general form is to represent the graph as the orbit of {131, 199} under the group generated by the following permutations:

a: (1, 2)(3, 6)(4, 5)(7, 8)(9, 12)(10, 11)(13, 14)(15, 18)(16, 17)(19, 20)(21, 24)(22, 23)(25, 26)(27, 30)(28, 29)(31, 32)(33, 36)(34, 35)(37, 38)(39, 42)(40, 41)(43, 44)(45, 48)(46, 47)(49, 50)(51, 54)(52, 53)(55, 56)(57, 60)(58, 59)(61, 62)(63, 66)(64, 65)(67, 68)(69, 72)(70, 71)(73, 74)(75, 78)(76, 77)(79, 80)(81, 84)(82, 83)(85, 86)(87, 90)(88, 89)(91, 92)(93, 96)(94, 95)(97, 98)(99, 102)(100, 101)(103, 104)(105, 108)(106, 107)(109, 110)(111, 114)(112, 113)(115, 116)(117, 120)(118, 119)(121, 122)(123, 126)(124, 125)(127, 128)(129, 132)(130, 131)(133, 134)(135, 138)(136, 137)(139, 140)(141, 144)(142, 143)(151, 157)(152, 158)(153, 159)(154, 160)(155, 161)(156, 162)(169, 175)(170, 176)(171, 177)(172, 178)(173, 179)(174, 180)(187, 193)(188, 194)(189, 195)(190, 196)(191, 197)(192, 198)(205, 211)(206, 212)(207, 213)(208, 214)(209, 215)(210, 216)(223, 229)(224, 230)(225, 231)(226, 232)(227, 233)(228, 234)(241, 247)(242, 248)(243, 249)(244, 250)(245, 251)(246, 252)(259, 265)(260, 266)(261, 267)(262, 268)(263, 269)(264, 270)(277, 283)(278, 284)(279, 285)(280, 286)(281, 287)(282, 288)
b: (7, 115)(8, 116)(9, 117)(10, 118)(11, 119)(12, 120)(13, 130)(14, 131)(15, 132)(16, 127)(17, 128)(18, 129)(19, 55)(20, 56)(21, 57)(22, 58)(23, 59)(24, 60)(25, 97)(26, 98)(27, 99)(28, 100)(29, 101)(30, 102)(31, 109)(32, 110)(33, 111)(34, 112)(35, 113)(36, 114)(43, 79)(44, 80)(45, 81)(46, 82)(47, 83)(48, 84)(49, 94)(50, 95)(51, 96)(52, 91)(53, 92)(54, 93)(61, 133)(62, 134)(63, 135)(64, 136)(65, 137)(66, 138)(67, 73)(68, 74)(69, 75)(70, 76)(71, 77)(72, 78)(85, 142)(86, 143)(87, 144)(88, 139)(89, 140)(90, 141)(103, 124)(104, 125)(105, 126)(106, 121)(107, 122)(108, 123)(145, 146)(147, 150)(148, 149)(151, 152)(153, 156)(154, 155)(157, 158)(159, 162)(160, 161)(163, 164)(165, 168)(166, 167)(169, 170)(171, 174)(172, 173)(175, 176)(177, 180)(178, 179)(181, 274)(182, 275)(183, 276)(184, 271)(185, 272)(186, 273)(187, 280)(188, 281)(189, 282)(190, 277)(191, 278)(192, 279)(193, 286)(194, 287)(195, 288)(196, 283)(197, 284)(198, 285)(200, 204)(201, 203)(206, 210)(207, 209)(212, 216)(213, 215)(217, 221)(218, 220)(223, 227)(224, 226)(229, 233)(230, 232)(235, 255)(236, 256)(237, 257)(238, 258)(239, 253)(240, 254)(241, 261)(242, 262)(243, 263)(244, 264)(245, 259)(246, 260)(247, 267)(248, 268)(249, 269)(250, 270)(251, 265)(252, 266)
c: (2, 6)(3, 5)(7, 70)(8, 69)(9, 68)(10, 67)(11, 72)(12, 71)(13, 61)(14, 66)(15, 65)(16, 64)(17, 63)(18, 62)(19, 55)(20, 60)(21, 59)(22, 58)(23, 57)(24, 56)(25, 49)(26, 54)(27, 53)(28, 52)(29, 51)(30, 50)(31, 46)(32, 45)(33, 44)(34, 43)(35, 48)(36, 47)(38, 42)(39, 41)(73, 118)(74, 117)(75, 116)(76, 115)(77, 120)(78, 119)(79, 112)(80, 111)(81, 110)(82, 109)(83, 114)(84, 113)(85, 106)(86, 105)(87, 104)(88, 103)(89, 108)(90, 107)(91, 100)(92, 99)(93, 98)(94, 97)(95, 102)(96, 101)(121, 142)(122, 141)(123, 140)(124, 139)(125, 144)(126, 143)(127, 136)(128, 135)(129, 134)(130, 133)(131, 138)(132, 137)(145, 175)(146, 176)(147, 177)(148, 178)(149, 179)(150, 180)(151, 169)(152, 170)(153, 171)(154, 172)(155, 173)(156, 174)(157, 163)(158, 164)(159, 165)(160, 166)(161, 167)(162, 168)(181, 252)(182, 251)(183, 250)(184, 249)(185, 248)(186, 247)(187, 246)(188, 245)(189, 244)(190, 243)(191, 242)(192, 241)(193, 240)(194, 239)(195, 238)(196, 237)(197, 236)(198, 235)(199, 234)(200, 233)(201, 232)(202, 231)(203, 230)(204, 229)(205, 228)(206, 227)(207, 226)(208, 225)(209, 224)(210, 223)(211, 222)(212, 221)(213, 220)(214, 219)(215, 218)(216, 217)(253, 287)(254, 286)(255, 285)(256, 284)(257, 283)(258, 288)(259, 281)(260, 280)(261, 279)(262, 278)(263, 277)(264, 282)(265, 275)(266, 274)(267, 273)(268, 272)(269, 271)(270, 276)
d: (1, 7, 79, 37, 43, 115)(2, 8, 80, 38, 44, 116)(3, 9, 81, 39, 45, 117)(4, 10, 82, 40, 46, 118)(5, 11, 83, 41, 47, 119)(6, 12, 84, 42, 48, 120)(13, 142, 109, 49, 106, 73)(14, 143, 110, 50, 107, 74)(15, 144, 111, 51, 108, 75)(16, 139, 112, 52, 103, 76)(17, 140, 113, 53, 104, 77)(18, 141, 114, 54, 105, 78)(19, 28, 100, 55, 64, 136)(20, 29, 101, 56, 65, 137)(21, 30, 102, 57, 66, 138)(22, 25, 97, 58, 61, 133)(23, 26, 98, 59, 62, 134)(24, 27, 99, 60, 63, 135)(31, 85, 130, 67, 121, 94)(32, 86, 131, 68, 122, 95)(33, 87, 132, 69, 123, 96)(34, 88, 127, 70, 124, 91)(35, 89, 128, 71, 125, 92)(36, 90, 129, 72, 126, 93)(145, 146, 147, 148, 149, 150)(151, 152, 153, 154, 155, 156)(157, 158, 159, 160, 161, 162)(163, 182, 271, 166, 185, 274)(164, 181, 272, 167, 184, 275)(165, 186, 273, 168, 183, 276)(169, 188, 277, 172, 191, 280)(170, 187, 278, 173, 190, 281)(171, 192, 279, 174, 189, 282)(175, 194, 283, 178, 197, 286)(176, 193, 284, 179, 196, 287)(177, 198, 285, 180, 195, 288)(199, 240, 257, 202, 237, 254)(200, 235, 256, 203, 238, 253)(201, 236, 255, 204, 239, 258)(205, 246, 263, 208, 243, 260)(206, 241, 262, 209, 244, 259)(207, 242, 261, 210, 245, 264)(211, 252, 269, 214, 249, 266)(212, 247, 268, 215, 250, 265)(213, 248, 267, 216, 251, 270)(217, 218, 219, 220, 221, 222)(223, 224, 225, 226, 227, 228)(229, 230, 231, 232, 233, 234)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 173 ]
288
-1 157 158 163 164
-2 151 152 163 164
-3 176 151 152 175
-4 176 145 146 175
-5 145 146 169 170
-6 157 158 169 170
-7 158 159 181 182
-8 181 182 152 153
-9 193 194 152 153
-10 146 147 193 194
-11 187 188 146 147
-12 187 188 158 159
-13 199 200 194 195
-14 188 199 189 200
-15 188 189 211 212
-16 211 212 182 183
-17 182 183 205 206
-18 194 205 195 206
-19 212 213 217 218
-20 206 217 207 218
-21 206 207 229 230
-22 200 201 229 230
-23 200 201 223 224
-24 212 223 213 224
-25 231 235 236 230
-26 224 235 225 236
-27 224 225 247 248
-28 247 248 218 219
-29 242 218 219 241
-30 231 242 230 241
-31 179 180 236 237
-32 236 237 173 174
-33 248 249 173 174
-34 167 168 248 249
-35 242 243 167 168
-36 242 243 179 180
-37 166 167 160 161
-38 154 155 166 167
-39 154 155 178 179
-40 178 179 148 149
-41 148 149 172 173
-42 160 161 172 173
-43 161 162 184 185
-44 155 156 184 185
-45 155 156 196 197
-46 149 150 196 197
-47 190 191 149 150
-48 190 191 161 162
-49 198 202 203 197
-50 191 202 192 203
-51 191 192 214 215
-52 214 215 185 186
-53 209 185 186 208
-54 198 209 197 208
-55 220 221 215 216
-56 209 220 210 221
-57 209 210 232 233
-58 232 233 203 204
-59 203 204 226 227
-60 215 226 216 227
-61 233 234 238 239
-62 227 238 228 239
-63 227 228 250 251
-64 221 222 250 251
-65 221 222 244 245
-66 233 244 234 245
-67 176 177 239 240
-68 170 171 239 240
-69 170 171 251 252
-70 165 251 164 252
-71 165 245 246 164
-72 176 177 245 246
-73 253 254 180 175
-74 253 254 169 174
-75 265 266 169 174
-76 265 266 168 163
-77 168 259 260 163
-78 180 259 260 175
-79 159 160 271 272
-80 154 271 272 153
-81 154 283 284 153
-82 147 148 283 284
-83 277 278 147 148
-84 277 278 159 160
-85 254 255 195 196
-86 254 189 255 190
-87 189 266 190 267
-88 266 267 183 184
-89 183 260 184 261
-90 260 195 261 196
-91 213 214 272 273
-92 272 207 273 208
-93 207 284 208 285
-94 201 202 284 285
-95 201 278 202 279
-96 278 213 279 214
-97 231 232 255 256
-98 255 256 225 226
-99 267 268 225 226
-100 220 267 268 219
-101 220 261 262 219
-102 231 232 261 262
-103 249 250 273 274
-104 243 244 273 274
-105 286 243 244 285
-106 286 237 238 285
-107 279 280 237 238
-108 279 280 249 250
-109 177 178 256 257
-110 256 257 171 172
-111 268 269 171 172
-112 165 166 268 269
-113 165 166 262 263
-114 177 178 262 263
-115 275 157 162 274
-116 275 156 151 274
-117 286 287 156 151
-118 286 287 145 150
-119 145 280 281 150
-120 157 280 281 162
-121 198 257 258 193
-122 187 257 192 258
-123 187 192 269 270
-124 181 269 270 186
-125 264 181 186 263
-126 198 264 193 263
-127 275 276 211 216
-128 275 210 276 205
-129 210 287 288 205
-130 199 287 288 204
-131 199 204 281 282
-132 211 281 216 282
-133 253 234 258 229
-134 253 223 258 228
-135 265 223 270 228
-136 265 222 270 217
-137 264 222 259 217
-138 264 234 259 229
-139 276 247 271 252
-140 276 246 271 241
-141 288 246 283 241
-142 288 235 283 240
-143 277 235 282 240
-144 277 247 282 252
-145 4 5 118 119
-146 11 4 5 10
-147 11 82 83 10
-148 82 83 40 41
-149 46 47 40 41
-150 46 47 118 119
-151 2 3 116 117
-152 2 3 8 9
-153 80 81 8 9
-154 80 81 38 39
-155 44 45 38 39
-156 44 45 116 117
-157 1 115 6 120
-158 1 12 6 7
-159 12 79 7 84
-160 79 37 84 42
-161 37 48 42 43
-162 48 115 43 120
-163 77 1 2 76
-164 1 2 70 71
-165 112 113 70 71
-166 112 113 37 38
-167 34 35 37 38
-168 77 34 35 76
-169 5 6 74 75
-170 68 69 5 6
-171 110 111 68 69
-172 110 111 41 42
-173 33 41 42 32
-174 33 74 75 32
-175 78 3 4 73
-176 67 3 4 72
-177 67 114 72 109
-178 114 39 40 109
-179 36 39 40 31
-180 78 36 73 31
-181 124 125 7 8
-182 16 17 7 8
-183 88 89 16 17
-184 44 88 89 43
-185 44 52 53 43
-186 124 125 52 53
-187 11 12 122 123
-188 11 12 14 15
-189 14 15 86 87
-190 47 48 86 87
-191 47 48 50 51
-192 122 123 50 51
-193 121 126 9 10
-194 13 18 9 10
-195 13 90 18 85
-196 45 46 90 85
-197 45 46 49 54
-198 121 49 126 54
-199 13 14 130 131
-200 22 23 13 14
-201 22 23 94 95
-202 49 50 94 95
-203 58 59 49 50
-204 58 59 130 131
-205 17 18 128 129
-206 17 18 20 21
-207 92 93 20 21
-208 92 93 53 54
-209 56 57 53 54
-210 56 57 128 129
-211 132 15 16 127
-212 24 15 16 19
-213 24 91 19 96
-214 91 51 52 96
-215 55 60 51 52
-216 55 132 60 127
-217 136 137 19 20
-218 28 29 19 20
-219 100 101 28 29
-220 55 56 100 101
-221 55 56 64 65
-222 136 137 64 65
-223 23 24 134 135
-224 23 24 26 27
-225 99 26 27 98
-226 99 59 60 98
-227 59 60 62 63
-228 134 135 62 63
-229 22 133 138 21
-230 22 25 30 21
-231 25 102 30 97
-232 57 58 102 97
-233 66 57 58 61
-234 66 133 61 138
-235 143 25 26 142
-236 25 26 31 32
-237 106 107 31 32
-238 61 62 106 107
-239 67 68 61 62
-240 143 67 68 142
-241 29 30 140 141
-242 35 36 29 30
-243 35 36 104 105
-244 66 104 105 65
-245 66 71 72 65
-246 71 72 140 141
-247 144 27 28 139
-248 33 34 27 28
-249 33 34 103 108
-250 103 63 64 108
-251 69 70 63 64
-252 144 69 70 139
-253 133 134 73 74
-254 73 74 85 86
-255 85 86 97 98
-256 110 97 98 109
-257 110 121 122 109
-258 121 122 133 134
-259 77 78 137 138
-260 77 78 89 90
-261 89 90 101 102
-262 101 102 113 114
-263 113 114 125 126
-264 125 126 137 138
-265 135 136 75 76
-266 88 75 76 87
-267 88 99 100 87
-268 99 100 111 112
-269 111 112 123 124
-270 123 124 135 136
-271 79 80 139 140
-272 79 80 91 92
-273 91 92 103 104
-274 103 104 115 116
-275 115 116 127 128
-276 127 128 139 140
-277 143 144 83 84
-278 83 84 95 96
-279 95 96 107 108
-280 107 108 119 120
-281 132 119 120 131
-282 132 143 144 131
-283 81 82 141 142
-284 81 82 93 94
-285 93 94 105 106
-286 105 106 117 118
-287 117 118 129 130
-288 129 130 141 142
0

**************