C4graphGraph forms for C4 [ 288, 179 ] = PL(CS({4,4}_6,0[4^18],1))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 179 ] = PL(CS({4,4}_6,0[4^18],1)).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {144, 159}, {143, 159}, {141, 156}, {142, 156}, {142, 155}, {141, 155}, {128, 161}, {130, 163}, {129, 163}, {132, 167}, {131, 167}, {129, 164}, {130, 164}, {128, 168}, {131, 168}, {132, 168}, {143, 160}, {133, 181}, {144, 160}, {136, 184}, {133, 180}, {134, 180}, {134, 181}, {139, 184}, {140, 184}, {135, 177}, {136, 177}, {138, 179}, {137, 179}, {140, 183}, {139, 183}, {137, 180}, {138, 180}, {135, 184}, {71, 199}, {120, 248}, {119, 247}, {72, 200}, {69, 196}, {117, 244}, {70, 196}, {118, 244}, {27, 152}, {28, 152}, {70, 195}, {118, 243}, {24, 158}, {117, 243}, {69, 195}, {24, 159}, {40, 175}, {31, 152}, {23, 159}, {39, 175}, {31, 151}, {23, 158}, {37, 172}, {29, 148}, {27, 145}, {38, 172}, {35, 169}, {30, 148}, {22, 154}, {33, 173}, {25, 149}, {22, 155}, {38, 171}, {36, 169}, {33, 172}, {30, 147}, {28, 145}, {25, 148}, {21, 155}, {37, 171}, {34, 172}, {29, 147}, {26, 148}, {21, 154}, {120, 247}, {119, 248}, {96, 239}, {48, 191}, {34, 173}, {26, 149}, {71, 200}, {72, 199}, {80, 223}, {1, 145}, {96, 240}, {47, 191}, {7, 151}, {2, 146}, {79, 223}, {4, 149}, {106, 251}, {104, 249}, {45, 188}, {7, 150}, {64, 209}, {66, 211}, {77, 220}, {4, 150}, {105, 251}, {99, 241}, {46, 188}, {43, 185}, {65, 211}, {75, 217}, {78, 220}, {1, 146}, {108, 255}, {35, 176}, {2, 145}, {68, 215}, {6, 146}, {107, 255}, {97, 245}, {41, 189}, {36, 176}, {67, 215}, {73, 221}, {3, 150}, {105, 252}, {100, 241}, {97, 244}, {46, 187}, {44, 185}, {41, 188}, {6, 147}, {65, 212}, {73, 220}, {76, 217}, {78, 219}, {3, 149}, {106, 252}, {98, 244}, {96, 246}, {45, 187}, {42, 188}, {5, 147}, {66, 212}, {74, 220}, {77, 219}, {5, 146}, {98, 245}, {96, 247}, {42, 189}, {39, 176}, {74, 221}, {2, 154}, {101, 253}, {40, 176}, {64, 216}, {3, 154}, {101, 252}, {4, 157}, {3, 153}, {102, 252}, {4, 158}, {2, 153}, {102, 253}, {99, 248}, {67, 216}, {1, 157}, {100, 248}, {68, 216}, {8, 150}, {103, 249}, {1, 158}, {8, 151}, {5, 165}, {18, 178}, {15, 175}, {10, 170}, {11, 170}, {18, 179}, {15, 174}, {12, 173}, {11, 169}, {20, 182}, {17, 179}, {12, 174}, {5, 166}, {20, 183}, {17, 178}, {10, 169}, {6, 162}, {19, 183}, {14, 170}, {9, 173}, {7, 162}, {19, 182}, {16, 181}, {14, 171}, {7, 161}, {24, 190}, {16, 182}, {13, 171}, {64, 230}, {72, 238}, {6, 161}, {24, 191}, {13, 170}, {9, 174}, {64, 231}, {72, 239}, {10, 162}, {83, 251}, {18, 186}, {66, 234}, {82, 250}, {10, 163}, {83, 250}, {20, 189}, {19, 186}, {67, 234}, {68, 237}, {82, 251}, {9, 163}, {93, 247}, {84, 254}, {21, 191}, {20, 190}, {19, 185}, {12, 166}, {67, 233}, {68, 238}, {69, 239}, {9, 162}, {93, 246}, {91, 240}, {84, 255}, {21, 190}, {18, 185}, {12, 167}, {66, 233}, {69, 238}, {75, 224}, {11, 167}, {95, 243}, {94, 242}, {92, 240}, {23, 187}, {22, 186}, {17, 189}, {65, 237}, {70, 234}, {71, 235}, {76, 224}, {8, 165}, {95, 242}, {94, 243}, {23, 186}, {22, 187}, {11, 166}, {70, 235}, {71, 234}, {80, 253}, {8, 166}, {80, 254}, {81, 255}, {17, 190}, {95, 240}, {65, 238}, {79, 224}, {81, 254}, {77, 253}, {95, 239}, {88, 232}, {87, 231}, {80, 224}, {85, 228}, {93, 236}, {83, 225}, {94, 236}, {91, 233}, {86, 228}, {77, 254}, {78, 250}, {89, 237}, {81, 229}, {79, 250}, {94, 235}, {92, 233}, {89, 236}, {86, 227}, {84, 225}, {81, 228}, {79, 249}, {93, 235}, {90, 236}, {85, 227}, {82, 228}, {32, 151}, {90, 237}, {78, 249}, {82, 229}, {13, 181}, {32, 152}, {74, 242}, {75, 242}, {76, 245}, {75, 241}, {76, 246}, {13, 182}, {74, 241}, {83, 232}, {14, 178}, {84, 232}, {73, 245}, {15, 178}, {15, 177}, {16, 174}, {14, 177}, {88, 231}, {87, 232}, {16, 175}, {73, 246}, {29, 205}, {29, 206}, {30, 202}, {31, 202}, {31, 201}, {30, 201}, {127, 168}, {26, 194}, {125, 165}, {58, 226}, {27, 194}, {125, 164}, {28, 197}, {59, 226}, {60, 229}, {27, 193}, {126, 164}, {28, 198}, {59, 225}, {60, 230}, {61, 231}, {26, 193}, {126, 165}, {123, 160}, {58, 225}, {61, 230}, {25, 197}, {124, 160}, {57, 229}, {62, 226}, {63, 227}, {62, 227}, {63, 226}, {127, 161}, {25, 198}, {57, 230}, {123, 153}, {121, 157}, {121, 156}, {124, 153}, {56, 222}, {122, 156}, {55, 208}, {122, 157}, {56, 223}, {63, 216}, {34, 202}, {50, 218}, {35, 203}, {56, 208}, {61, 213}, {34, 203}, {52, 221}, {51, 218}, {35, 202}, {61, 212}, {36, 206}, {53, 223}, {52, 222}, {51, 217}, {45, 199}, {62, 212}, {36, 207}, {53, 222}, {50, 217}, {45, 198}, {43, 192}, {59, 208}, {62, 213}, {44, 192}, {49, 221}, {47, 195}, {46, 194}, {54, 218}, {55, 219}, {60, 208}, {32, 205}, {47, 194}, {46, 195}, {54, 219}, {55, 218}, {32, 206}, {33, 207}, {63, 209}, {33, 206}, {49, 222}, {47, 192}, {37, 213}, {48, 192}, {56, 201}, {58, 203}, {51, 193}, {57, 203}, {37, 214}, {60, 207}, {38, 210}, {49, 197}, {59, 207}, {39, 210}, {52, 193}, {49, 196}, {57, 204}, {39, 209}, {50, 196}, {48, 198}, {58, 204}, {38, 209}, {50, 197}, {48, 199}, {42, 210}, {53, 205}, {43, 211}, {42, 211}, {53, 204}, {43, 210}, {44, 214}, {54, 204}, {44, 215}, {54, 205}, {51, 200}, {52, 200}, {40, 213}, {40, 214}, {41, 215}, {55, 201}, {41, 214}, {85, 261}, {85, 262}, {86, 258}, {87, 258}, {87, 257}, {86, 257}, {90, 258}, {91, 259}, {90, 259}, {91, 258}, {92, 262}, {92, 263}, {88, 261}, {88, 262}, {89, 263}, {89, 262}, {104, 270}, {120, 286}, {112, 278}, {103, 256}, {120, 287}, {112, 279}, {111, 264}, {104, 271}, {98, 266}, {114, 282}, {109, 261}, {104, 256}, {99, 266}, {121, 272}, {116, 285}, {115, 282}, {109, 260}, {100, 269}, {99, 265}, {117, 287}, {116, 286}, {115, 281}, {110, 260}, {101, 271}, {100, 270}, {98, 265}, {117, 286}, {114, 281}, {110, 261}, {107, 256}, {101, 270}, {97, 269}, {124, 272}, {119, 283}, {118, 282}, {113, 285}, {108, 256}, {103, 267}, {102, 266}, {102, 267}, {125, 272}, {119, 282}, {118, 283}, {103, 266}, {111, 257}, {97, 270}, {113, 286}, {121, 265}, {112, 257}, {114, 259}, {113, 259}, {126, 268}, {125, 271}, {116, 263}, {127, 268}, {115, 263}, {127, 267}, {113, 260}, {126, 267}, {124, 265}, {114, 260}, {123, 269}, {122, 268}, {122, 269}, {123, 268}, {106, 274}, {112, 264}, {107, 274}, {108, 277}, {107, 273}, {109, 279}, {108, 278}, {106, 273}, {115, 264}, {109, 278}, {105, 277}, {116, 264}, {111, 275}, {110, 274}, {110, 275}, {111, 274}, {105, 278}, {128, 271}, {144, 287}, {128, 272}, {137, 281}, {136, 280}, {129, 273}, {133, 279}, {142, 284}, {141, 287}, {134, 276}, {135, 276}, {143, 284}, {135, 275}, {143, 283}, {132, 273}, {142, 283}, {140, 281}, {134, 275}, {130, 276}, {139, 285}, {138, 284}, {131, 277}, {130, 277}, {139, 284}, {138, 285}, {131, 276}, {129, 280}, {132, 280}, {133, 280}, {136, 279}, {137, 288}, {140, 288}, {141, 288}, {144, 288} }>;

(II) A more general form is to represent the graph as the orbit of {144, 159} under the group generated by the following permutations:

a: (77, 78)(79, 80)(81, 82)(83, 84)(101, 104)(102, 103)(105, 108)(106, 107)(249, 253)(250, 254)(251, 255)(252, 256)
b: (113, 114)(115, 116)(117, 118)(119, 120)(137, 138)(139, 140)(141, 142)(143, 144)(281, 285)(282, 286)(283, 287)(284, 288)
c: (85, 86)(87, 88)(89, 90)(91, 92)(105, 106)(107, 108)(109, 111)(110, 112)(113, 116)(114, 115)(129, 130)(131, 132)(133, 134)(135, 136)(257, 261)(258, 262)(259, 263)(260, 264)(273, 277)(274, 278)(275, 279)(276, 280)
d: (105, 106)(107, 108)(109, 110)(111, 112)(129, 130)(131, 132)(133, 134)(135, 136)(273, 277)(274, 278)(275, 279)(276, 280)
e: (13, 14)(15, 16)(17, 20)(18, 19)(133, 136)(134, 135)(137, 140)(138, 139)(177, 181)(178, 182)(179, 183)(180, 184)
f: (17, 18)(19, 20)(21, 22)(23, 24)(41, 44)(42, 43)(45, 48)(46, 47)(185, 189)(186, 190)(187, 191)(188, 192)
g: (49, 50)(51, 52)(53, 54)(55, 56)(73, 76)(74, 75)(77, 80)(78, 79)(217, 221)(218, 222)(219, 223)(220, 224)
h: (57, 58)(59, 60)(61, 62)(63, 64)(81, 84)(82, 83)(85, 88)(86, 87)(225, 229)(226, 230)(227, 231)(228, 232)
m: (37, 38)(39, 40)(41, 42)(43, 44)(57, 58)(59, 60)(61, 63)(62, 64)(65, 68)(66, 67)(81, 84)(82, 83)(85, 88)(86, 87)(209, 213)(210, 214)(211, 215)(212, 216)(225, 229)(226, 230)(227, 231)(228, 232)
n1: (73, 74)(75, 76)(93, 94)(95, 96)(97, 100)(98, 99)(113, 114)(115, 116)(117, 119)(118, 120)(137, 138)(139, 140)(141, 142)(143, 144)(241, 245)(242, 246)(243, 247)(244, 248)(281, 285)(282, 286)(283, 287)(284, 288)
a1: (9, 10)(11, 12)(13, 16)(14, 15)(33, 36)(34, 35)(37, 40)(38, 39)(169, 173)(170, 174)(171, 175)(172, 176)
b1: (2, 4)(5, 122)(6, 121)(7, 124)(8, 123)(9, 98)(10, 99)(11, 100)(12, 97)(13, 74, 14, 75)(15, 76, 16, 73)(17, 50, 19, 52)(18, 51, 20, 49)(21, 25, 22, 26)(23, 27, 24, 28)(29, 141)(30, 142)(31, 143)(32, 144)(33, 117)(34, 118)(35, 119)(36, 120)(37, 94, 38, 95)(39, 96, 40, 93)(41, 70, 43, 72)(42, 69, 44, 71)(45, 46, 47, 48)(53, 137, 54, 140)(55, 139, 56, 138)(57, 115, 58, 114)(59, 113, 60, 116)(61, 89, 63, 91)(62, 90, 64, 92)(65, 68, 67, 66)(77, 136, 80, 133)(78, 135, 79, 134)(81, 112, 84, 109)(82, 111, 83, 110)(85, 86, 87, 88)(101, 132)(102, 129)(103, 130)(104, 131)(105, 107)(125, 127)(145, 158)(146, 157)(147, 156)(148, 155)(149, 154)(150, 153)(151, 160)(152, 159)(161, 272)(162, 265)(163, 266)(164, 267)(165, 268)(166, 269)(167, 270)(168, 271)(169, 248)(170, 241)(171, 242)(172, 243)(173, 244)(174, 245)(175, 246)(176, 247)(177, 224, 181, 220)(178, 217, 182, 221)(179, 218, 183, 222)(180, 219, 184, 223)(185, 200, 189, 196)(186, 193, 190, 197)(187, 194, 191, 198)(188, 195, 192, 199)(201, 284)(202, 283)(203, 282)(204, 281)(205, 288)(206, 287)(207, 286)(208, 285)(209, 240, 213, 236)(210, 239, 214, 235)(211, 238, 215, 234)(212, 237, 216, 233)(225, 260, 229, 264)(226, 259, 230, 263)(227, 258, 231, 262)(228, 257, 232, 261)(249, 276)(250, 275)(251, 274)(252, 273)(253, 280)(254, 279)(255, 278)(256, 277)
c1: (65, 66)(67, 68)(69, 70)(71, 72)(89, 92)(90, 91)(93, 96)(94, 95)(233, 237)(234, 238)(235, 239)(236, 240)
d1: (29, 30)(31, 32)(33, 34)(35, 36)(53, 56)(54, 55)(57, 60)(58, 59)(201, 205)(202, 206)(203, 207)(204, 208)
e1: (1, 2)(3, 4)(21, 24)(22, 23)(121, 124)(122, 123)(141, 144)(142, 143)(153, 157)(154, 158)(155, 159)(156, 160)
f1: (1, 5)(2, 6)(3, 7)(4, 8)(9, 21, 10, 22)(11, 23, 12, 24)(13, 18, 16, 17)(14, 19, 15, 20)(25, 32)(26, 31)(27, 30)(28, 29)(33, 48, 36, 45)(34, 47, 35, 46)(37, 43, 40, 42)(38, 44, 39, 41)(49, 54)(50, 53)(51, 56)(52, 55)(57, 69)(58, 70)(59, 71)(60, 72)(61, 65)(62, 66)(63, 67)(64, 68)(73, 77)(74, 78)(75, 79)(76, 80)(81, 96)(82, 95)(83, 94)(84, 93)(85, 91)(86, 92)(87, 89)(88, 90)(97, 101)(98, 102)(99, 103)(100, 104)(105, 117)(106, 118)(107, 119)(108, 120)(109, 113)(110, 114)(111, 115)(112, 116)(121, 126)(122, 125)(123, 128)(124, 127)(129, 142)(130, 141)(131, 144)(132, 143)(133, 138)(134, 137)(135, 140)(136, 139)(145, 147)(148, 152)(149, 151)(153, 161)(154, 162)(155, 163)(156, 164)(157, 165)(158, 166)(159, 167)(160, 168)(169, 187, 173, 191)(170, 186, 174, 190)(171, 185, 175, 189)(172, 192, 176, 188)(177, 183)(178, 182)(179, 181)(193, 201)(194, 202)(195, 203)(196, 204)(197, 205)(198, 206)(199, 207)(200, 208)(209, 215)(210, 214)(211, 213)(217, 223)(218, 222)(219, 221)(225, 235)(226, 234)(227, 233)(228, 240)(229, 239)(230, 238)(231, 237)(232, 236)(241, 249)(242, 250)(243, 251)(244, 252)(245, 253)(246, 254)(247, 255)(248, 256)(257, 263)(258, 262)(259, 261)(265, 267)(268, 272)(269, 271)(273, 283)(274, 282)(275, 281)(276, 288)(277, 287)(278, 286)(279, 285)(280, 284)
g1: (5, 6)(7, 8)(9, 12)(10, 11)(125, 128)(126, 127)(129, 132)(130, 131)(161, 165)(162, 166)(163, 167)(164, 168)
h1: (5, 27)(6, 28)(7, 25)(8, 26)(9, 50)(10, 49)(11, 52)(12, 51)(13, 74)(14, 73)(15, 76)(16, 75)(17, 98, 18, 97)(19, 100, 20, 99)(21, 124, 22, 123)(23, 122, 24, 121)(29, 32)(30, 31)(33, 54)(34, 55)(35, 56)(36, 53)(37, 77, 38, 78)(39, 79, 40, 80)(41, 102, 43, 104)(42, 103, 44, 101)(45, 127, 48, 128)(46, 126, 47, 125)(57, 60)(58, 59)(61, 81, 64, 82)(62, 84, 63, 83)(65, 108, 68, 105)(66, 107, 67, 106)(69, 130)(70, 129)(71, 132)(72, 131)(85, 88)(86, 87)(89, 109)(90, 112)(91, 111)(92, 110)(93, 136)(94, 133)(95, 134)(96, 135)(113, 115)(114, 116)(117, 137)(118, 138)(119, 139)(120, 140)(141, 144)(142, 143)(145, 146)(147, 152)(148, 151)(149, 150)(153, 154)(155, 160)(156, 159)(157, 158)(161, 198)(162, 197)(163, 196)(164, 195)(165, 194)(166, 193)(167, 200)(168, 199)(169, 222)(170, 221)(171, 220)(172, 219)(173, 218)(174, 217)(175, 224)(176, 223)(177, 246)(178, 245)(179, 244)(180, 243)(181, 242)(182, 241)(183, 248)(184, 247)(185, 270, 189, 266)(186, 269, 190, 265)(187, 268, 191, 272)(188, 267, 192, 271)(201, 202)(203, 208)(204, 207)(205, 206)(209, 250, 213, 254)(210, 249, 214, 253)(211, 256, 215, 252)(212, 255, 216, 251)(225, 226)(227, 232)(228, 231)(229, 230)(233, 274)(234, 273)(235, 280)(236, 279)(237, 278)(238, 277)(239, 276)(240, 275)(257, 258)(259, 264)(260, 263)(261, 262)(281, 286)(282, 285)(283, 284)(287, 288)
m1: (25, 26)(27, 28)(45, 46)(47, 48)(49, 52)(50, 51)(69, 72)(70, 71)(193, 197)(194, 198)(195, 199)(196, 200)
n2: (97, 98)(99, 100)(101, 102)(103, 104)(121, 122)(123, 124)(125, 126)(127, 128)(265, 269)(266, 270)(267, 271)(268, 272)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 179 ]
288
-1 145 146 157 158
-2 154 145 146 153
-3 154 149 150 153
-4 157 158 149 150
-5 165 166 146 147
-6 146 147 161 162
-7 150 161 151 162
-8 165 166 150 151
-9 162 173 163 174
-10 169 170 162 163
-11 166 167 169 170
-12 166 167 173 174
-13 170 181 171 182
-14 177 178 170 171
-15 177 178 174 175
-16 181 182 174 175
-17 178 189 179 190
-18 178 179 185 186
-19 182 183 185 186
-20 189 190 182 183
-21 154 155 190 191
-22 154 187 155 186
-23 187 158 159 186
-24 190 158 191 159
-25 198 148 149 197
-26 148 149 193 194
-27 145 193 194 152
-28 198 145 152 197
-29 147 148 205 206
-30 201 147 202 148
-31 201 202 151 152
-32 205 151 206 152
-33 172 173 206 207
-34 202 203 172 173
-35 176 169 202 203
-36 176 169 206 207
-37 213 214 171 172
-38 209 210 171 172
-39 176 209 210 175
-40 176 213 214 175
-41 188 189 214 215
-42 188 210 189 211
-43 210 211 192 185
-44 192 214 215 185
-45 187 198 188 199
-46 187 188 194 195
-47 191 192 194 195
-48 198 199 191 192
-49 221 222 196 197
-50 217 196 218 197
-51 200 193 217 218
-52 221 200 222 193
-53 222 223 204 205
-54 204 205 218 219
-55 201 218 208 219
-56 222 201 223 208
-57 203 204 229 230
-58 203 225 204 226
-59 225 226 207 208
-60 207 229 208 230
-61 231 212 213 230
-62 212 213 226 227
-63 209 226 216 227
-64 209 231 216 230
-65 211 212 237 238
-66 211 233 212 234
-67 233 234 215 216
-68 215 237 216 238
-69 238 195 239 196
-70 234 235 195 196
-71 199 200 234 235
-72 199 200 238 239
-73 220 221 245 246
-74 220 242 221 241
-75 242 224 217 241
-76 245 224 246 217
-77 220 253 254 219
-78 220 249 250 219
-79 223 224 249 250
-80 253 254 223 224
-81 254 255 228 229
-82 228 250 229 251
-83 232 225 250 251
-84 232 254 255 225
-85 227 228 261 262
-86 257 258 227 228
-87 231 232 257 258
-88 231 232 261 262
-89 236 237 262 263
-90 236 258 237 259
-91 233 258 259 240
-92 233 240 262 263
-93 235 246 236 247
-94 242 243 235 236
-95 242 243 239 240
-96 246 247 239 240
-97 244 245 269 270
-98 265 244 266 245
-99 265 266 248 241
-100 269 248 270 241
-101 253 270 271 252
-102 253 266 267 252
-103 266 256 267 249
-104 256 270 249 271
-105 277 278 251 252
-106 251 273 252 274
-107 255 256 273 274
-108 255 277 256 278
-109 278 279 260 261
-110 275 260 261 274
-111 264 275 257 274
-112 264 278 257 279
-113 286 259 260 285
-114 259 281 260 282
-115 264 281 282 263
-116 264 286 263 285
-117 286 243 287 244
-118 243 244 282 283
-119 247 248 282 283
-120 286 287 247 248
-121 265 156 157 272
-122 156 157 268 269
-123 268 269 160 153
-124 265 160 272 153
-125 165 271 272 164
-126 165 267 268 164
-127 168 267 268 161
-128 168 161 271 272
-129 280 163 273 164
-130 276 277 163 164
-131 276 167 277 168
-132 167 168 280 273
-133 180 279 181 280
-134 275 276 180 181
-135 275 177 276 184
-136 177 279 280 184
-137 288 179 180 281
-138 179 180 284 285
-139 183 184 284 285
-140 288 281 183 184
-141 155 287 156 288
-142 155 156 283 284
-143 159 160 283 284
-144 287 288 159 160
-145 1 2 27 28
-146 1 2 5 6
-147 5 6 29 30
-148 25 26 29 30
-149 3 25 4 26
-150 3 4 7 8
-151 7 8 31 32
-152 27 28 31 32
-153 2 123 3 124
-154 22 2 3 21
-155 22 141 21 142
-156 121 122 141 142
-157 121 1 122 4
-158 1 23 24 4
-159 143 23 144 24
-160 143 144 123 124
-161 6 127 7 128
-162 6 7 9 10
-163 129 9 130 10
-164 125 126 129 130
-165 125 5 126 8
-166 11 12 5 8
-167 11 132 12 131
-168 132 127 128 131
-169 11 35 36 10
-170 11 13 14 10
-171 13 14 37 38
-172 33 34 37 38
-173 33 12 34 9
-174 12 15 16 9
-175 15 16 39 40
-176 35 36 39 40
-177 14 135 15 136
-178 14 15 17 18
-179 137 17 138 18
-180 133 134 137 138
-181 133 13 134 16
-182 13 16 19 20
-183 139 19 140 20
-184 135 136 139 140
-185 44 18 19 43
-186 22 23 18 19
-187 22 23 45 46
-188 45 46 41 42
-189 17 41 20 42
-190 24 17 20 21
-191 24 47 48 21
-192 44 47 48 43
-193 26 27 51 52
-194 46 47 26 27
-195 46 47 69 70
-196 69 70 49 50
-197 25 49 28 50
-198 45 25 48 28
-199 45 48 71 72
-200 71 72 51 52
-201 55 56 30 31
-202 34 35 30 31
-203 34 35 57 58
-204 57 58 53 54
-205 29 53 32 54
-206 33 36 29 32
-207 33 36 59 60
-208 55 56 59 60
-209 38 39 63 64
-210 38 39 42 43
-211 66 42 43 65
-212 66 61 62 65
-213 37 61 40 62
-214 44 37 40 41
-215 44 67 68 41
-216 67 68 63 64
-217 50 51 75 76
-218 55 50 51 54
-219 55 77 78 54
-220 77 78 73 74
-221 49 73 52 74
-222 56 49 52 53
-223 56 79 80 53
-224 79 80 75 76
-225 58 59 83 84
-226 58 59 62 63
-227 62 63 85 86
-228 81 82 85 86
-229 57 81 60 82
-230 57 60 61 64
-231 88 61 64 87
-232 88 83 84 87
-233 66 67 91 92
-234 66 67 70 71
-235 70 71 93 94
-236 89 90 93 94
-237 89 68 90 65
-238 68 69 72 65
-239 69 72 95 96
-240 91 92 95 96
-241 99 100 74 75
-242 94 95 74 75
-243 94 95 117 118
-244 117 118 97 98
-245 73 97 76 98
-246 93 73 96 76
-247 93 96 119 120
-248 99 100 119 120
-249 78 79 103 104
-250 78 79 82 83
-251 82 83 105 106
-252 101 102 105 106
-253 77 101 80 102
-254 77 80 81 84
-255 81 84 107 108
-256 103 104 107 108
-257 111 112 86 87
-258 90 91 86 87
-259 90 91 113 114
-260 110 113 114 109
-261 88 110 85 109
-262 88 89 92 85
-263 89 92 115 116
-264 111 112 115 116
-265 99 121 124 98
-266 99 102 103 98
-267 102 103 126 127
-268 122 123 126 127
-269 100 122 123 97
-270 100 101 104 97
-271 101 125 104 128
-272 121 124 125 128
-273 132 106 107 129
-274 110 111 106 107
-275 110 111 134 135
-276 134 135 130 131
-277 105 108 130 131
-278 112 105 108 109
-279 133 112 136 109
-280 132 133 136 129
-281 114 115 137 140
-282 114 115 118 119
-283 143 118 119 142
-284 143 138 139 142
-285 113 116 138 139
-286 113 116 117 120
-287 144 117 141 120
-288 144 137 140 141
0

**************