C4graphGraph forms for C4 [ 288, 189 ] = BGCG(Pr_12(1,1,5,5),C_4,1)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 189 ] = BGCG(Pr_12(1,1,5,5),C_4,1).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {72, 74}, {216, 218}, {144, 146}, {68, 76}, {215, 223}, {212, 220}, {71, 79}, {68, 77}, {215, 222}, {212, 221}, {71, 78}, {65, 75}, {209, 219}, {65, 74}, {209, 218}, {144, 158}, {64, 79}, {208, 223}, {66, 82}, {201, 217}, {129, 145}, {138, 154}, {69, 84}, {141, 156}, {67, 81}, {207, 221}, {135, 149}, {139, 153}, {130, 150}, {202, 222}, {70, 83}, {142, 155}, {132, 147}, {206, 217}, {204, 219}, {134, 145}, {70, 94}, {128, 152}, {131, 155}, {140, 148}, {143, 151}, {128, 153}, {131, 154}, {140, 149}, {143, 150}, {33, 59}, {229, 255}, {64, 90}, {132, 158}, {134, 156}, {137, 147}, {137, 146}, {229, 254}, {199, 220}, {35, 63}, {66, 94}, {161, 189}, {163, 191}, {33, 60}, {98, 127}, {35, 62}, {133, 152}, {161, 188}, {72, 86}, {67, 92}, {136, 151}, {30, 62}, {202, 234}, {197, 229}, {130, 162}, {23, 54}, {205, 236}, {95, 126}, {133, 164}, {23, 53}, {95, 125}, {26, 56}, {19, 48}, {91, 120}, {30, 61}, {1, 37}, {218, 254}, {217, 253}, {74, 110}, {73, 109}, {2, 38}, {145, 181}, {146, 182}, {15, 42}, {213, 240}, {87, 114}, {69, 96}, {141, 168}, {159, 186}, {1, 39}, {217, 255}, {93, 123}, {87, 113}, {80, 118}, {73, 111}, {31, 57}, {28, 58}, {21, 51}, {15, 41}, {8, 46}, {145, 183}, {152, 190}, {159, 185}, {2, 37}, {218, 253}, {207, 232}, {93, 122}, {80, 119}, {74, 109}, {31, 56}, {28, 59}, {21, 50}, {8, 47}, {135, 160}, {146, 181}, {152, 191}, {5, 45}, {203, 227}, {200, 224}, {195, 235}, {84, 124}, {82, 122}, {81, 121}, {142, 166}, {149, 189}, {3, 42}, {203, 226}, {200, 225}, {192, 233}, {86, 127}, {84, 125}, {7, 46}, {129, 168}, {147, 186}, {151, 190}, {6, 44}, {206, 228}, {204, 230}, {81, 123}, {16, 58}, {13, 39}, {136, 162}, {150, 188}, {157, 183}, {3, 40}, {198, 237}, {82, 121}, {13, 38}, {147, 184}, {157, 182}, {4, 40}, {91, 119}, {89, 117}, {16, 60}, {138, 166}, {148, 184}, {4, 41}, {205, 224}, {194, 239}, {89, 116}, {83, 126}, {26, 55}, {18, 63}, {6, 43}, {148, 185}, {150, 187}, {5, 43}, {149, 187}, {18, 61}, {199, 232}, {83, 124}, {139, 164}, {210, 226}, {196, 245}, {213, 228}, {193, 243}, {211, 225}, {197, 246}, {195, 247}, {192, 245}, {214, 227}, {194, 244}, {7, 48}, {79, 120}, {14, 57}, {9, 49}, {214, 238}, {77, 117}, {12, 52}, {10, 50}, {12, 53}, {201, 240}, {193, 248}, {79, 118}, {75, 114}, {14, 55}, {9, 51}, {208, 234}, {85, 111}, {78, 116}, {10, 49}, {85, 110}, {75, 112}, {17, 45}, {210, 238}, {76, 112}, {19, 47}, {11, 54}, {78, 115}, {76, 113}, {17, 44}, {77, 115}, {216, 230}, {196, 250}, {11, 52}, {211, 236}, {198, 249}, {43, 107}, {188, 252}, {187, 251}, {44, 108}, {40, 105}, {184, 249}, {37, 103}, {181, 247}, {41, 106}, {185, 250}, {46, 102}, {190, 246}, {37, 108}, {181, 252}, {40, 98}, {184, 242}, {42, 97}, {186, 241}, {39, 107}, {183, 251}, {47, 98}, {191, 242}, {38, 104}, {189, 243}, {182, 248}, {45, 99}, {43, 100}, {190, 241}, {187, 244}, {46, 97}, {24, 72}, {185, 233}, {52, 101}, {182, 231}, {49, 99}, {191, 237}, {22, 69}, {53, 102}, {20, 64}, {51, 103}, {22, 67}, {48, 101}, {20, 66}, {50, 100}, {151, 192}, {188, 235}, {158, 201}, {25, 65}, {183, 239}, {27, 67}, {153, 193}, {154, 194}, {156, 196}, {25, 64}, {57, 96}, {49, 104}, {156, 197}, {158, 199}, {29, 71}, {189, 231}, {153, 195}, {29, 70}, {154, 193}, {155, 198}, {24, 70}, {52, 106}, {27, 68}, {186, 229}, {54, 105}, {155, 196}, {53, 85}, {174, 206}, {58, 90}, {32, 65}, {176, 209}, {167, 198}, {61, 92}, {32, 66}, {176, 210}, {170, 200}, {167, 197}, {36, 71}, {180, 215}, {174, 205}, {163, 192}, {34, 68}, {178, 212}, {175, 201}, {172, 202}, {165, 195}, {34, 69}, {178, 213}, {175, 200}, {172, 203}, {165, 194}, {63, 88}, {51, 91}, {59, 83}, {56, 80}, {48, 89}, {59, 82}, {56, 81}, {60, 86}, {62, 84}, {160, 202}, {54, 93}, {36, 72}, {180, 216}, {160, 204}, {50, 95}, {170, 199}, {61, 80}, {162, 207}, {55, 88}, {162, 205}, {41, 89}, {168, 216}, {57, 73}, {38, 87}, {47, 93}, {63, 77}, {166, 213}, {58, 78}, {164, 208}, {166, 211}, {164, 210}, {44, 91}, {62, 73}, {60, 75}, {39, 95}, {171, 211}, {169, 209}, {169, 208}, {45, 87}, {177, 203}, {173, 215}, {55, 76}, {173, 214}, {179, 207}, {177, 204}, {179, 206}, {168, 214}, {42, 85}, {171, 212}, {115, 179}, {116, 180}, {112, 177}, {109, 175}, {113, 178}, {111, 167}, {121, 176}, {124, 178}, {126, 177}, {113, 161}, {124, 173}, {119, 165}, {121, 171}, {94, 141}, {125, 174}, {92, 136}, {123, 175}, {94, 139}, {120, 173}, {92, 138}, {122, 172}, {86, 129}, {116, 163}, {118, 174}, {123, 163}, {36, 253}, {109, 180}, {120, 161}, {88, 130}, {112, 170}, {114, 169}, {126, 165}, {35, 255}, {88, 132}, {111, 179}, {90, 135}, {119, 170}, {122, 167}, {32, 254}, {110, 176}, {117, 171}, {90, 133}, {115, 172}, {118, 169}, {127, 160}, {102, 134}, {125, 157}, {104, 137}, {31, 253}, {98, 128}, {104, 138}, {102, 133}, {108, 143}, {100, 130}, {103, 129}, {106, 140}, {100, 131}, {103, 128}, {106, 141}, {23, 255}, {97, 137}, {99, 139}, {97, 136}, {101, 143}, {105, 131}, {117, 159}, {101, 142}, {127, 148}, {107, 135}, {105, 132}, {107, 134}, {96, 142}, {99, 140}, {114, 157}, {96, 144}, {15, 254}, {110, 159}, {108, 144}, {13, 269}, {18, 274}, {20, 277}, {24, 285}, {16, 279}, {22, 286}, {24, 273}, {15, 261}, {18, 280}, {4, 271}, {22, 282}, {13, 258}, {20, 283}, {1, 273}, {17, 257}, {10, 282}, {12, 285}, {29, 268}, {5, 279}, {27, 265}, {21, 263}, {9, 283}, {30, 269}, {6, 274}, {31, 267}, {11, 286}, {29, 264}, {28, 266}, {1, 278}, {19, 260}, {3, 276}, {4, 284}, {30, 262}, {19, 267}, {11, 275}, {8, 272}, {7, 287}, {5, 284}, {17, 264}, {10, 275}, {9, 272}, {6, 287}, {3, 281}, {26, 256}, {14, 276}, {12, 278}, {2, 281}, {25, 258}, {21, 270}, {8, 277}, {26, 263}, {23, 266}, {27, 261}, {7, 280}, {28, 259}, {25, 262}, {16, 271}, {35, 259}, {36, 260}, {33, 256}, {2, 288}, {34, 257}, {32, 265}, {14, 288}, {34, 268}, {33, 270}, {240, 288}, {223, 264}, {221, 261}, {219, 258}, {223, 262}, {222, 260}, {219, 256}, {220, 256}, {252, 288}, {220, 257}, {222, 259}, {221, 259}, {246, 278}, {239, 270}, {248, 281}, {239, 269}, {248, 282}, {242, 272}, {235, 264}, {252, 287}, {246, 277}, {231, 258}, {224, 262}, {250, 284}, {247, 273}, {244, 274}, {237, 267}, {231, 257}, {224, 263}, {250, 285}, {247, 272}, {244, 275}, {237, 266}, {225, 265}, {243, 283}, {241, 281}, {228, 268}, {226, 266}, {228, 269}, {241, 280}, {230, 271}, {225, 267}, {249, 275}, {245, 287}, {226, 265}, {245, 286}, {233, 261}, {251, 279}, {235, 263}, {227, 270}, {251, 278}, {249, 276}, {233, 260}, {240, 286}, {227, 268}, {243, 284}, {238, 285}, {236, 280}, {238, 283}, {236, 282}, {230, 273}, {232, 274}, {232, 276}, {234, 279}, {242, 271}, {234, 277} }>;

(II) A more general form is to represent the graph as the orbit of {72, 74} under the group generated by the following permutations:

a: (2, 24)(3, 29)(4, 17)(6, 16)(7, 33)(8, 21)(10, 20)(11, 25)(12, 13)(14, 36)(15, 34)(18, 28)(19, 26)(22, 32)(23, 30)(37, 273)(38, 285)(39, 278)(40, 264)(41, 257)(42, 268)(43, 279)(44, 271)(45, 284)(46, 270)(47, 263)(48, 256)(49, 283)(50, 277)(51, 272)(52, 258)(53, 269)(54, 262)(55, 260)(56, 267)(57, 253)(58, 274)(59, 280)(60, 287)(61, 266)(62, 255)(63, 259)(64, 275)(65, 286)(66, 282)(67, 265)(68, 261)(69, 254)(70, 281)(71, 276)(72, 288)(73, 217)(74, 240)(75, 245)(76, 233)(77, 221)(78, 232)(79, 249)(80, 237)(81, 225)(82, 236)(83, 241)(84, 229)(85, 228)(86, 252)(87, 250)(88, 222)(89, 220)(90, 244)(91, 242)(92, 226)(93, 224)(94, 248)(95, 246)(96, 218)(97, 227)(98, 235)(99, 243)(100, 234)(101, 219)(102, 239)(103, 247)(104, 238)(105, 223)(106, 231)(107, 251)(108, 230)(109, 201)(110, 213)(111, 206)(112, 192)(113, 185)(114, 196)(115, 207)(116, 199)(117, 212)(118, 198)(119, 191)(120, 184)(121, 211)(122, 205)(123, 200)(124, 186)(125, 197)(126, 190)(127, 188)(128, 195)(129, 181)(130, 202)(131, 208)(132, 215)(133, 194)(134, 183)(135, 187)(136, 203)(137, 214)(138, 210)(139, 193)(140, 189)(141, 182)(142, 209)(143, 204)(144, 216)(146, 168)(147, 173)(148, 161)(150, 160)(151, 177)(152, 165)(154, 164)(155, 169)(156, 157)(158, 180)(159, 178)(162, 172)(163, 170)(166, 176)(167, 174)
b: (2, 13)(3, 25)(4, 20)(5, 9)(6, 21)(7, 33)(8, 16)(10, 17)(11, 29)(12, 24)(14, 30)(15, 32)(18, 26)(19, 28)(22, 34)(23, 36)(31, 35)(37, 39)(40, 64)(41, 66)(42, 65)(43, 51)(44, 50)(45, 49)(46, 60)(47, 58)(48, 59)(52, 70)(53, 72)(54, 71)(55, 61)(56, 63)(57, 62)(67, 68)(74, 85)(75, 97)(76, 92)(77, 81)(78, 93)(79, 105)(80, 88)(82, 89)(83, 101)(84, 96)(86, 102)(87, 104)(90, 98)(91, 100)(94, 106)(95, 108)(103, 107)(109, 111)(112, 136)(113, 138)(114, 137)(115, 123)(116, 122)(117, 121)(118, 132)(119, 130)(120, 131)(124, 142)(125, 144)(126, 143)(127, 133)(128, 135)(129, 134)(139, 140)(146, 157)(147, 169)(148, 164)(149, 153)(150, 165)(151, 177)(152, 160)(154, 161)(155, 173)(156, 168)(158, 174)(159, 176)(162, 170)(163, 172)(166, 178)(167, 180)(175, 179)(181, 183)(184, 208)(185, 210)(186, 209)(187, 195)(188, 194)(189, 193)(190, 204)(191, 202)(192, 203)(196, 214)(197, 216)(198, 215)(199, 205)(200, 207)(201, 206)(211, 212)(218, 229)(219, 241)(220, 236)(221, 225)(222, 237)(223, 249)(224, 232)(226, 233)(227, 245)(228, 240)(230, 246)(231, 248)(234, 242)(235, 244)(238, 250)(239, 252)(247, 251)(253, 255)(256, 280)(257, 282)(258, 281)(259, 267)(260, 266)(261, 265)(262, 276)(263, 274)(264, 275)(268, 286)(269, 288)(270, 287)(271, 277)(272, 279)(273, 278)(283, 284)
c: (1, 108)(2, 103)(3, 98)(4, 105)(5, 100)(6, 107)(7, 102)(8, 97)(9, 104)(10, 99)(11, 106)(12, 101)(13, 91)(14, 86)(15, 93)(16, 88)(17, 95)(18, 90)(19, 85)(20, 92)(21, 87)(22, 94)(23, 89)(24, 96)(25, 80)(26, 75)(27, 82)(28, 77)(29, 84)(30, 79)(31, 74)(32, 81)(33, 76)(34, 83)(35, 78)(36, 73)(38, 51)(39, 44)(41, 54)(42, 47)(45, 50)(48, 53)(55, 60)(56, 65)(57, 72)(58, 63)(59, 68)(61, 64)(62, 71)(66, 67)(69, 70)(109, 253)(110, 267)(111, 260)(112, 256)(113, 270)(114, 263)(115, 259)(116, 255)(117, 266)(118, 262)(119, 258)(120, 269)(121, 265)(122, 261)(123, 254)(124, 268)(125, 264)(126, 257)(127, 276)(128, 281)(129, 288)(130, 279)(131, 284)(132, 271)(133, 280)(134, 287)(135, 274)(136, 277)(137, 272)(138, 283)(139, 282)(140, 275)(141, 286)(142, 285)(143, 278)(144, 273)(145, 252)(146, 247)(147, 242)(148, 249)(149, 244)(150, 251)(151, 246)(152, 241)(153, 248)(154, 243)(155, 250)(156, 245)(157, 235)(158, 230)(159, 237)(160, 232)(161, 239)(162, 234)(163, 229)(164, 236)(165, 231)(166, 238)(167, 233)(168, 240)(169, 224)(170, 219)(171, 226)(172, 221)(173, 228)(174, 223)(175, 218)(176, 225)(177, 220)(178, 227)(179, 222)(180, 217)(182, 195)(183, 188)(185, 198)(186, 191)(189, 194)(192, 197)(199, 204)(200, 209)(201, 216)(202, 207)(203, 212)(205, 208)(206, 215)(210, 211)(213, 214)
d: (1, 2, 13)(3, 30, 24)(4, 18, 29)(5, 6, 17)(7, 34, 16)(8, 22, 33)(9, 10, 21)(11, 26, 20)(12, 14, 25)(15, 35, 36)(19, 27, 28)(23, 31, 32)(37, 38, 39)(40, 61, 70)(41, 63, 71)(42, 62, 72)(43, 44, 45)(46, 69, 60)(47, 67, 59)(48, 68, 58)(49, 50, 51)(52, 55, 64)(53, 57, 65)(54, 56, 66)(73, 74, 85)(75, 102, 96)(76, 90, 101)(77, 78, 89)(79, 106, 88)(80, 94, 105)(81, 82, 93)(83, 98, 92)(84, 86, 97)(87, 107, 108)(91, 99, 100)(95, 103, 104)(109, 110, 111)(112, 133, 142)(113, 135, 143)(114, 134, 144)(115, 116, 117)(118, 141, 132)(119, 139, 131)(120, 140, 130)(121, 122, 123)(124, 127, 136)(125, 129, 137)(126, 128, 138)(145, 146, 157)(147, 174, 168)(148, 162, 173)(149, 150, 161)(151, 178, 160)(152, 166, 177)(153, 154, 165)(155, 170, 164)(156, 158, 169)(159, 179, 180)(163, 171, 172)(167, 175, 176)(181, 182, 183)(184, 205, 214)(185, 207, 215)(186, 206, 216)(187, 188, 189)(190, 213, 204)(191, 211, 203)(192, 212, 202)(193, 194, 195)(196, 199, 208)(197, 201, 209)(198, 200, 210)(217, 218, 229)(219, 246, 240)(220, 234, 245)(221, 222, 233)(223, 250, 232)(224, 238, 249)(225, 226, 237)(227, 242, 236)(228, 230, 241)(231, 251, 252)(235, 243, 244)(239, 247, 248)(253, 254, 255)(256, 277, 286)(257, 279, 287)(258, 278, 288)(259, 260, 261)(262, 285, 276)(263, 283, 275)(264, 284, 274)(265, 266, 267)(268, 271, 280)(269, 273, 281)(270, 272, 282)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 189 ]
288
-1 278 37 39 273
-2 288 37 38 281
-3 276 281 40 42
-4 40 271 41 284
-5 45 279 284 43
-6 44 287 43 274
-7 287 46 48 280
-8 46 277 47 272
-9 49 51 272 283
-10 275 49 50 282
-11 275 286 52 54
-12 278 52 53 285
-13 38 258 269 39
-14 55 276 57 288
-15 254 41 261 42
-16 58 279 60 271
-17 44 264 45 257
-18 280 61 63 274
-19 47 267 48 260
-20 66 277 283 64
-21 50 270 51 263
-22 286 67 69 282
-23 255 266 53 54
-24 70 72 273 285
-25 258 64 262 65
-26 55 56 256 263
-27 67 265 68 261
-28 266 58 59 259
-29 264 70 268 71
-30 269 61 62 262
-31 253 56 57 267
-32 66 254 265 65
-33 256 59 60 270
-34 68 69 257 268
-35 255 259 62 63
-36 253 71 72 260
-37 1 2 103 108
-38 2 13 104 87
-39 1 13 95 107
-40 3 4 105 98
-41 89 4 15 106
-42 3 15 85 97
-43 100 5 6 107
-44 91 6 17 108
-45 99 5 17 87
-46 102 7 8 97
-47 93 8 19 98
-48 89 101 7 19
-49 99 104 9 10
-50 100 95 10 21
-51 91 103 9 21
-52 11 12 101 106
-53 12 23 102 85
-54 11 23 93 105
-55 88 14 26 76
-56 80 26 81 31
-57 14 73 96 31
-58 78 90 16 28
-59 33 82 28 83
-60 33 16 75 86
-61 80 92 18 30
-62 35 73 84 30
-63 77 88 35 18
-64 79 90 25 20
-65 25 74 75 32
-66 82 94 20 32
-67 22 81 92 27
-68 77 34 27 76
-69 22 34 84 96
-70 24 83 94 29
-71 78 79 36 29
-72 24 36 74 86
-73 111 57 62 109
-74 110 72 65 109
-75 112 114 60 65
-76 55 68 112 113
-77 68 115 117 63
-78 58 71 115 116
-79 71 118 64 120
-80 56 61 118 119
-81 121 56 67 123
-82 66 121 122 59
-83 124 59 70 126
-84 69 124 125 62
-85 110 111 42 53
-86 60 72 127 129
-87 45 113 114 38
-88 55 132 63 130
-89 48 116 117 41
-90 133 58 135 64
-91 44 51 119 120
-92 67 136 61 138
-93 122 123 47 54
-94 66 70 139 141
-95 125 126 39 50
-96 144 57 69 142
-97 46 136 137 42
-98 47 127 40 128
-99 45 49 139 140
-100 50 130 43 131
-101 143 48 52 142
-102 133 46 134 53
-103 37 51 128 129
-104 38 49 137 138
-105 132 40 54 131
-106 41 52 140 141
-107 134 135 39 43
-108 44 143 144 37
-109 180 73 74 175
-110 176 159 74 85
-111 167 179 73 85
-112 177 170 75 76
-113 178 161 76 87
-114 157 169 75 87
-115 77 78 179 172
-116 78 89 180 163
-117 77 89 159 171
-118 79 80 169 174
-119 165 80 91 170
-120 79 91 161 173
-121 176 81 82 171
-122 167 82 93 172
-123 81 93 163 175
-124 178 83 84 173
-125 157 84 95 174
-126 165 177 83 95
-127 148 160 86 98
-128 103 152 98 153
-129 145 168 103 86
-130 88 100 150 162
-131 154 100 155 105
-132 88 147 158 105
-133 90 102 152 164
-134 145 156 102 107
-135 90 149 160 107
-136 92 151 162 97
-137 146 147 104 97
-138 154 166 92 104
-139 99 94 153 164
-140 99 148 149 106
-141 156 168 94 106
-142 155 166 101 96
-143 101 150 151 108
-144 146 158 96 108
-145 134 181 183 129
-146 144 137 181 182
-147 132 137 184 186
-148 127 140 184 185
-149 187 189 135 140
-150 143 187 188 130
-151 143 190 136 192
-152 133 190 191 128
-153 193 128 139 195
-154 138 193 194 131
-155 198 196 131 142
-156 134 141 196 197
-157 114 125 182 183
-158 132 144 199 201
-159 110 117 185 186
-160 135 202 127 204
-161 188 189 113 120
-162 136 205 130 207
-163 123 191 192 116
-164 133 210 139 208
-165 126 194 195 119
-166 211 213 138 142
-167 198 111 122 197
-168 214 216 129 141
-169 209 114 118 208
-170 199 112 200 119
-171 121 211 212 117
-172 122 202 115 203
-173 124 214 215 120
-174 125 205 118 206
-175 123 200 201 109
-176 110 121 209 210
-177 112 126 203 204
-178 113 124 212 213
-179 111 115 206 207
-180 116 215 216 109
-181 145 146 247 252
-182 231 146 157 248
-183 145 157 239 251
-184 242 147 148 249
-185 233 148 159 250
-186 147 159 229 241
-187 244 149 150 251
-188 235 150 161 252
-189 231 243 149 161
-190 246 151 152 241
-191 242 237 152 163
-192 233 245 151 163
-193 154 243 248 153
-194 154 165 244 239
-195 165 235 247 153
-196 155 156 245 250
-197 156 167 246 229
-198 155 167 237 249
-199 220 232 158 170
-200 224 170 225 175
-201 158 217 240 175
-202 222 234 160 172
-203 177 226 172 227
-204 177 160 219 230
-205 224 236 162 174
-206 179 217 228 174
-207 221 232 179 162
-208 223 234 169 164
-209 176 169 218 219
-210 176 226 238 164
-211 166 225 236 171
-212 220 221 178 171
-213 166 178 228 240
-214 168 227 238 173
-215 222 223 180 173
-216 168 180 218 230
-217 253 255 201 206
-218 209 253 254 216
-219 209 256 258 204
-220 199 212 256 257
-221 212 259 261 207
-222 202 215 259 260
-223 264 215 262 208
-224 200 205 262 263
-225 265 200 211 267
-226 210 265 266 203
-227 268 203 214 270
-228 213 268 269 206
-229 254 255 186 197
-230 204 216 271 273
-231 189 257 258 182
-232 199 276 207 274
-233 192 260 261 185
-234 277 202 279 208
-235 264 188 195 263
-236 211 280 205 282
-237 198 266 267 191
-238 210 214 283 285
-239 269 270 183 194
-240 286 288 201 213
-241 190 280 281 186
-242 191 271 184 272
-243 189 193 283 284
-244 187 275 194 274
-245 286 287 192 196
-246 277 190 278 197
-247 181 195 272 273
-248 182 193 281 282
-249 198 275 276 184
-250 185 196 284 285
-251 187 278 279 183
-252 188 287 288 181
-253 36 217 31 218
-254 15 218 229 32
-255 23 35 217 229
-256 33 220 26 219
-257 220 231 34 17
-258 231 13 25 219
-259 221 35 222 28
-260 222 233 36 19
-261 221 233 15 27
-262 25 223 224 30
-263 26 224 235 21
-264 223 235 17 29
-265 27 225 226 32
-266 23 28 226 237
-267 225 237 19 31
-268 34 29 227 228
-269 13 30 228 239
-270 33 227 239 21
-271 242 4 16 230
-272 242 247 8 9
-273 1 24 247 230
-274 232 244 6 18
-275 11 244 249 10
-276 232 3 14 249
-277 234 246 8 20
-278 1 12 246 251
-279 234 5 16 251
-280 236 7 18 241
-281 2 3 248 241
-282 22 236 248 10
-283 243 238 9 20
-284 243 4 5 250
-285 12 24 238 250
-286 11 22 245 240
-287 245 6 7 252
-288 2 14 240 252
0

**************