C4graphGraph forms for C4 [ 288, 192 ] = BGCG(R_24(20,7),C_3,{3,5})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 192 ] = BGCG(R_24(20,7),C_3,{3,5}).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {96, 98}, {192, 194}, {37, 52}, {229, 244}, {133, 148}, {44, 62}, {236, 254}, {140, 158}, {44, 63}, {236, 255}, {140, 159}, {37, 51}, {229, 243}, {133, 147}, {32, 58}, {224, 250}, {192, 218}, {96, 122}, {128, 154}, {32, 59}, {231, 252}, {224, 251}, {39, 60}, {128, 155}, {135, 156}, {39, 59}, {234, 246}, {231, 251}, {42, 54}, {135, 155}, {138, 150}, {42, 55}, {234, 247}, {138, 151}, {88, 120}, {130, 162}, {139, 171}, {25, 56}, {217, 248}, {130, 163}, {27, 63}, {219, 255}, {91, 127}, {78, 107}, {95, 122}, {90, 127}, {76, 106}, {80, 118}, {77, 107}, {77, 106}, {139, 172}, {142, 166}, {81, 120}, {142, 167}, {137, 163}, {30, 50}, {222, 242}, {69, 105}, {68, 104}, {16, 61}, {222, 243}, {208, 253}, {69, 104}, {30, 51}, {137, 164}, {16, 62}, {217, 247}, {208, 254}, {83, 125}, {25, 55}, {132, 170}, {70, 105}, {82, 125}, {132, 171}, {1, 49}, {194, 242}, {193, 241}, {81, 97}, {75, 123}, {2, 50}, {74, 123}, {94, 111}, {15, 61}, {207, 253}, {93, 111}, {92, 110}, {64, 114}, {136, 186}, {2, 49}, {207, 252}, {194, 241}, {93, 110}, {82, 97}, {15, 60}, {136, 187}, {143, 188}, {65, 117}, {134, 178}, {143, 187}, {65, 116}, {134, 179}, {129, 183}, {66, 117}, {13, 53}, {206, 246}, {205, 245}, {85, 109}, {84, 108}, {14, 54}, {1, 56}, {205, 244}, {193, 248}, {90, 99}, {85, 108}, {13, 52}, {129, 184}, {141, 180}, {3, 57}, {195, 249}, {89, 99}, {67, 121}, {14, 53}, {206, 245}, {89, 98}, {86, 109}, {66, 121}, {72, 116}, {131, 191}, {4, 57}, {196, 249}, {74, 119}, {4, 58}, {196, 250}, {73, 119}, {141, 179}, {144, 174}, {73, 118}, {144, 175}, {21, 85}, {49, 113}, {22, 86}, {145, 209}, {8, 73}, {175, 238}, {49, 112}, {21, 84}, {145, 208}, {8, 74}, {60, 126}, {28, 94}, {156, 222}, {167, 229}, {3, 64}, {50, 113}, {35, 96}, {28, 95}, {22, 85}, {131, 192}, {146, 209}, {163, 224}, {166, 229}, {5, 65}, {168, 236}, {6, 66}, {164, 224}, {24, 93}, {59, 126}, {155, 222}, {24, 94}, {6, 65}, {183, 240}, {52, 124}, {184, 240}, {175, 231}, {56, 112}, {148, 220}, {152, 208}, {58, 115}, {174, 231}, {171, 226}, {154, 211}, {23, 93}, {57, 115}, {153, 211}, {160, 234}, {23, 92}, {57, 114}, {153, 210}, {167, 236}, {26, 86}, {5, 72}, {26, 87}, {7, 73}, {172, 226}, {31, 80}, {51, 124}, {147, 220}, {31, 79}, {180, 228}, {53, 101}, {52, 100}, {148, 196}, {149, 197}, {9, 88}, {53, 100}, {149, 196}, {11, 89}, {54, 101}, {150, 197}, {17, 69}, {191, 235}, {18, 70}, {12, 89}, {190, 235}, {29, 72}, {17, 68}, {12, 90}, {7, 80}, {179, 228}, {18, 69}, {9, 81}, {10, 82}, {20, 77}, {62, 103}, {158, 199}, {20, 78}, {188, 230}, {61, 103}, {60, 102}, {29, 71}, {156, 198}, {157, 199}, {10, 81}, {61, 102}, {27, 64}, {157, 198}, {187, 230}, {19, 77}, {183, 233}, {176, 238}, {19, 76}, {182, 233}, {34, 66}, {184, 216}, {43, 75}, {34, 67}, {187, 223}, {174, 203}, {191, 218}, {186, 223}, {172, 202}, {176, 214}, {173, 203}, {43, 76}, {173, 202}, {46, 70}, {46, 71}, {177, 216}, {41, 67}, {11, 96}, {164, 200}, {165, 201}, {41, 68}, {165, 200}, {36, 74}, {179, 221}, {36, 75}, {178, 221}, {166, 201}, {152, 232}, {177, 193}, {171, 219}, {170, 219}, {190, 207}, {40, 90}, {189, 207}, {188, 206}, {160, 210}, {40, 91}, {189, 206}, {178, 193}, {47, 92}, {38, 82}, {47, 91}, {155, 239}, {161, 213}, {38, 83}, {154, 239}, {159, 234}, {161, 212}, {33, 87}, {151, 225}, {150, 225}, {162, 213}, {180, 204}, {181, 205}, {33, 88}, {186, 195}, {181, 204}, {45, 84}, {163, 217}, {185, 195}, {162, 217}, {185, 194}, {182, 205}, {35, 95}, {159, 227}, {168, 212}, {158, 227}, {170, 215}, {45, 83}, {169, 215}, {48, 78}, {147, 237}, {48, 79}, {169, 214}, {146, 237}, {151, 232}, {107, 192}, {56, 136}, {59, 143}, {58, 143}, {63, 138}, {55, 129}, {54, 129}, {63, 131}, {62, 131}, {51, 141}, {50, 141}, {55, 136}, {117, 181}, {118, 182}, {79, 142}, {104, 169}, {117, 180}, {71, 133}, {104, 170}, {124, 190}, {67, 128}, {99, 160}, {70, 133}, {118, 181}, {124, 191}, {68, 128}, {102, 162}, {101, 161}, {72, 140}, {120, 189}, {120, 190}, {87, 144}, {102, 161}, {79, 135}, {88, 144}, {75, 130}, {78, 135}, {64, 138}, {119, 189}, {71, 140}, {119, 188}, {122, 182}, {101, 168}, {122, 183}, {76, 130}, {103, 169}, {127, 176}, {40, 248}, {84, 132}, {127, 175}, {105, 184}, {107, 185}, {47, 251}, {95, 139}, {113, 165}, {114, 166}, {42, 255}, {94, 139}, {47, 250}, {108, 185}, {113, 164}, {125, 168}, {33, 247}, {108, 186}, {33, 246}, {103, 176}, {83, 132}, {114, 165}, {105, 177}, {106, 178}, {116, 173}, {92, 134}, {116, 174}, {125, 167}, {106, 177}, {123, 160}, {35, 255}, {35, 254}, {91, 134}, {45, 243}, {87, 137}, {80, 142}, {115, 173}, {40, 247}, {86, 137}, {45, 242}, {115, 172}, {17, 241}, {16, 241}, {121, 152}, {30, 252}, {17, 242}, {123, 159}, {30, 251}, {16, 248}, {28, 244}, {19, 250}, {19, 249}, {18, 249}, {126, 146}, {112, 157}, {126, 147}, {112, 158}, {121, 151}, {28, 243}, {4, 244}, {98, 146}, {97, 145}, {5, 245}, {4, 245}, {111, 157}, {5, 246}, {98, 145}, {111, 156}, {109, 149}, {110, 150}, {7, 254}, {97, 152}, {109, 148}, {6, 252}, {99, 153}, {7, 253}, {6, 253}, {110, 149}, {100, 153}, {100, 154}, {24, 280}, {31, 283}, {11, 270}, {31, 282}, {26, 287}, {10, 268}, {22, 272}, {11, 269}, {10, 269}, {24, 273}, {8, 260}, {9, 261}, {8, 261}, {29, 275}, {9, 262}, {29, 274}, {1, 273}, {27, 267}, {15, 286}, {27, 266}, {14, 284}, {18, 256}, {15, 285}, {1, 274}, {14, 285}, {21, 257}, {20, 257}, {21, 258}, {12, 276}, {13, 277}, {3, 282}, {12, 277}, {3, 281}, {25, 259}, {2, 281}, {25, 258}, {13, 278}, {20, 264}, {23, 266}, {23, 265}, {22, 265}, {46, 271}, {2, 288}, {37, 263}, {32, 259}, {37, 262}, {32, 260}, {44, 264}, {48, 279}, {39, 271}, {48, 280}, {34, 267}, {39, 270}, {42, 256}, {44, 263}, {34, 268}, {36, 276}, {43, 287}, {43, 286}, {36, 275}, {26, 288}, {38, 284}, {38, 283}, {41, 279}, {46, 272}, {41, 278}, {213, 277}, {214, 278}, {200, 265}, {213, 276}, {200, 266}, {220, 286}, {195, 256}, {227, 288}, {220, 287}, {214, 277}, {197, 257}, {198, 258}, {216, 285}, {216, 286}, {198, 257}, {215, 285}, {215, 284}, {218, 278}, {197, 264}, {218, 279}, {199, 265}, {223, 272}, {223, 271}, {201, 280}, {203, 281}, {209, 261}, {210, 262}, {204, 281}, {221, 264}, {209, 260}, {204, 282}, {199, 272}, {210, 261}, {201, 273}, {202, 274}, {212, 269}, {212, 270}, {221, 263}, {202, 273}, {219, 256}, {211, 269}, {211, 268}, {226, 258}, {235, 267}, {226, 259}, {235, 268}, {238, 262}, {238, 263}, {233, 259}, {203, 288}, {233, 260}, {228, 266}, {228, 267}, {232, 282}, {232, 283}, {239, 284}, {230, 274}, {239, 283}, {230, 275}, {225, 279}, {225, 280}, {237, 276}, {227, 287}, {237, 275}, {240, 270}, {240, 271} }>;

(II) A more general form is to represent the graph as the orbit of {96, 98} under the group generated by the following permutations:

a: (1, 112)(2, 113)(3, 137)(4, 109)(5, 110)(6, 134)(7, 106)(8, 107)(9, 131)(10, 103)(11, 104)(12, 128)(13, 100)(14, 101)(15, 125)(16, 97)(17, 98)(18, 122)(19, 118)(20, 119)(21, 143)(22, 115)(23, 116)(24, 140)(25, 136)(26, 114)(27, 144)(28, 133)(29, 111)(30, 141)(31, 130)(32, 108)(33, 138)(34, 127)(35, 105)(36, 135)(37, 124)(38, 102)(39, 132)(40, 121)(41, 99)(42, 129)(43, 142)(44, 120)(45, 126)(46, 139)(47, 117)(48, 123)(57, 86)(58, 85)(59, 84)(60, 83)(61, 82)(62, 81)(63, 88)(64, 87)(65, 92)(66, 91)(67, 90)(68, 89)(69, 96)(70, 95)(71, 94)(72, 93)(73, 77)(74, 78)(75, 79)(76, 80)(145, 241)(146, 242)(147, 243)(148, 244)(149, 245)(150, 246)(151, 247)(152, 248)(153, 278)(154, 277)(155, 276)(156, 275)(157, 274)(158, 273)(159, 280)(160, 279)(161, 284)(162, 283)(163, 282)(164, 281)(165, 288)(166, 287)(167, 286)(168, 285)(169, 269)(170, 270)(171, 271)(172, 272)(173, 265)(174, 266)(175, 267)(176, 268)(177, 254)(178, 253)(179, 252)(180, 251)(181, 250)(182, 249)(183, 256)(184, 255)(185, 260)(186, 259)(187, 258)(188, 257)(189, 264)(190, 263)(191, 262)(192, 261)(193, 208)(194, 209)(195, 233)(196, 205)(197, 206)(198, 230)(199, 202)(200, 203)(201, 227)(204, 224)(207, 221)(210, 218)(211, 214)(212, 215)(213, 239)(216, 236)(217, 232)(219, 240)(220, 229)(222, 237)(223, 226)(225, 234)(228, 231)(235, 238)
b: (2, 24)(3, 23)(4, 22)(5, 21)(6, 20)(7, 19)(8, 18)(9, 17)(10, 16)(11, 15)(12, 14)(25, 29)(26, 28)(30, 48)(31, 47)(32, 46)(33, 45)(34, 44)(35, 43)(36, 42)(37, 41)(38, 40)(49, 273)(50, 280)(51, 279)(52, 278)(53, 277)(54, 276)(55, 275)(56, 274)(57, 265)(58, 272)(59, 271)(60, 270)(61, 269)(62, 268)(63, 267)(64, 266)(65, 257)(66, 264)(67, 263)(68, 262)(69, 261)(70, 260)(71, 259)(72, 258)(73, 249)(74, 256)(75, 255)(76, 254)(77, 253)(78, 252)(79, 251)(80, 250)(81, 241)(82, 248)(83, 247)(84, 246)(85, 245)(86, 244)(87, 243)(88, 242)(89, 285)(90, 284)(91, 283)(92, 282)(93, 281)(94, 288)(95, 287)(96, 286)(97, 193)(98, 216)(99, 215)(100, 214)(101, 213)(102, 212)(103, 211)(104, 210)(105, 209)(106, 208)(107, 207)(108, 206)(109, 205)(110, 204)(111, 203)(112, 202)(113, 201)(114, 200)(115, 199)(116, 198)(117, 197)(118, 196)(119, 195)(120, 194)(121, 221)(122, 220)(123, 219)(124, 218)(125, 217)(126, 240)(127, 239)(128, 238)(129, 237)(130, 236)(131, 235)(132, 234)(133, 233)(134, 232)(135, 231)(136, 230)(137, 229)(138, 228)(139, 227)(140, 226)(141, 225)(142, 224)(143, 223)(144, 222)(145, 177)(146, 184)(147, 183)(148, 182)(149, 181)(150, 180)(151, 179)(152, 178)(153, 169)(154, 176)(155, 175)(156, 174)(157, 173)(158, 172)(159, 171)(160, 170)(162, 168)(163, 167)(164, 166)(185, 189)(186, 188)(190, 192)
c: (1, 2)(3, 29)(4, 5)(6, 32)(7, 8)(9, 35)(10, 11)(12, 38)(13, 14)(15, 41)(16, 17)(18, 44)(19, 20)(21, 47)(22, 23)(24, 26)(25, 30)(27, 46)(28, 33)(31, 36)(34, 39)(37, 42)(40, 45)(43, 48)(50, 56)(51, 55)(52, 54)(57, 72)(58, 65)(59, 66)(60, 67)(61, 68)(62, 69)(63, 70)(64, 71)(74, 80)(75, 79)(76, 78)(81, 96)(82, 89)(83, 90)(84, 91)(85, 92)(86, 93)(87, 94)(88, 95)(97, 98)(99, 125)(100, 101)(102, 128)(103, 104)(105, 131)(106, 107)(108, 134)(109, 110)(111, 137)(112, 113)(114, 140)(115, 116)(117, 143)(118, 119)(120, 122)(121, 126)(123, 142)(124, 129)(127, 132)(130, 135)(133, 138)(136, 141)(139, 144)(146, 152)(147, 151)(148, 150)(153, 168)(154, 161)(155, 162)(156, 163)(157, 164)(158, 165)(159, 166)(160, 167)(170, 176)(171, 175)(172, 174)(177, 192)(178, 185)(179, 186)(180, 187)(181, 188)(182, 189)(183, 190)(184, 191)(193, 194)(195, 221)(196, 197)(198, 224)(199, 200)(201, 227)(202, 203)(204, 230)(205, 206)(207, 233)(208, 209)(210, 236)(211, 212)(213, 239)(214, 215)(216, 218)(217, 222)(219, 238)(220, 225)(223, 228)(226, 231)(229, 234)(232, 237)(235, 240)(242, 248)(243, 247)(244, 246)(249, 264)(250, 257)(251, 258)(252, 259)(253, 260)(254, 261)(255, 262)(256, 263)(266, 272)(267, 271)(268, 270)(273, 288)(274, 281)(275, 282)(276, 283)(277, 284)(278, 285)(279, 286)(280, 287)
d: (2, 25)(3, 32)(5, 28)(6, 35)(8, 31)(9, 38)(11, 34)(12, 41)(14, 37)(15, 44)(17, 40)(18, 47)(20, 43)(21, 26)(23, 46)(24, 29)(27, 39)(30, 42)(33, 45)(36, 48)(49, 56)(50, 55)(51, 54)(52, 53)(57, 58)(59, 64)(60, 63)(61, 62)(65, 95)(66, 96)(67, 89)(68, 90)(69, 91)(70, 92)(71, 93)(72, 94)(73, 80)(74, 79)(75, 78)(76, 77)(81, 82)(83, 88)(84, 87)(85, 86)(98, 121)(99, 128)(101, 124)(102, 131)(104, 127)(105, 134)(107, 130)(108, 137)(110, 133)(111, 140)(113, 136)(114, 143)(116, 139)(117, 122)(119, 142)(120, 125)(123, 135)(126, 138)(129, 141)(132, 144)(145, 152)(146, 151)(147, 150)(148, 149)(153, 154)(155, 160)(156, 159)(157, 158)(161, 191)(162, 192)(163, 185)(164, 186)(165, 187)(166, 188)(167, 189)(168, 190)(169, 176)(170, 175)(171, 174)(172, 173)(177, 178)(179, 184)(180, 183)(181, 182)(194, 217)(195, 224)(197, 220)(198, 227)(200, 223)(201, 230)(203, 226)(204, 233)(206, 229)(207, 236)(209, 232)(210, 239)(212, 235)(213, 218)(215, 238)(216, 221)(219, 231)(222, 234)(225, 237)(228, 240)(241, 248)(242, 247)(243, 246)(244, 245)(249, 250)(251, 256)(252, 255)(253, 254)(257, 287)(258, 288)(259, 281)(260, 282)(261, 283)(262, 284)(263, 285)(264, 286)(265, 272)(266, 271)(267, 270)(268, 269)(273, 274)(275, 280)(276, 279)(277, 278)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 192 ]
288
-1 56 49 273 274
-2 288 49 50 281
-3 57 281 282 64
-4 57 244 58 245
-5 245 246 72 65
-6 66 253 65 252
-7 253 254 80 73
-8 73 260 74 261
-9 88 81 261 262
-10 81 268 82 269
-11 89 269 270 96
-12 89 276 90 277
-13 277 278 52 53
-14 53 284 54 285
-15 286 60 61 285
-16 61 248 62 241
-17 242 68 69 241
-18 69 256 70 249
-19 77 249 250 76
-20 77 264 78 257
-21 257 258 84 85
-22 265 85 272 86
-23 265 266 92 93
-24 93 280 94 273
-25 55 56 258 259
-26 287 288 86 87
-27 266 267 63 64
-28 243 244 94 95
-29 275 71 72 274
-30 50 51 251 252
-31 79 80 282 283
-32 58 59 259 260
-33 88 246 247 87
-34 66 67 267 268
-35 254 255 95 96
-36 275 276 74 75
-37 51 52 262 263
-38 82 83 283 284
-39 59 60 270 271
-40 90 91 247 248
-41 67 68 278 279
-42 55 255 256 54
-43 286 287 75 76
-44 264 62 63 263
-45 242 243 83 84
-46 70 71 271 272
-47 91 92 250 251
-48 78 79 279 280
-49 1 2 112 113
-50 2 113 30 141
-51 124 37 30 141
-52 100 13 124 37
-53 100 13 101 14
-54 101 14 129 42
-55 25 136 129 42
-56 1 112 25 136
-57 3 4 114 115
-58 143 4 115 32
-59 143 126 39 32
-60 102 15 126 39
-61 102 15 103 16
-62 44 103 16 131
-63 44 27 138 131
-64 3 114 27 138
-65 5 6 116 117
-66 121 34 6 117
-67 121 34 128 41
-68 104 17 128 41
-69 104 17 105 18
-70 133 46 105 18
-71 133 46 29 140
-72 5 116 29 140
-73 7 8 118 119
-74 123 36 8 119
-75 123 36 130 43
-76 106 19 130 43
-77 106 19 107 20
-78 135 48 107 20
-79 135 48 31 142
-80 7 118 31 142
-81 9 97 10 120
-82 125 38 97 10
-83 132 45 125 38
-84 132 45 108 21
-85 22 108 21 109
-86 22 26 137 109
-87 33 144 26 137
-88 33 144 9 120
-89 11 99 12 98
-90 99 12 127 40
-91 134 47 127 40
-92 110 23 134 47
-93 110 23 111 24
-94 111 24 28 139
-95 122 35 28 139
-96 11 122 35 98
-97 145 81 82 152
-98 89 145 146 96
-99 89 90 160 153
-100 154 52 53 153
-101 168 161 53 54
-102 60 61 161 162
-103 176 169 61 62
-104 68 69 169 170
-105 177 69 70 184
-106 77 177 178 76
-107 77 78 192 185
-108 84 85 185 186
-109 148 149 85 86
-110 92 93 149 150
-111 156 157 93 94
-112 56 157 158 49
-113 165 49 50 164
-114 165 166 57 64
-115 57 58 172 173
-116 72 173 174 65
-117 66 180 181 65
-118 80 181 182 73
-119 188 189 73 74
-120 88 189 190 81
-121 66 67 151 152
-122 182 95 183 96
-123 159 160 74 75
-124 190 191 51 52
-125 167 168 82 83
-126 146 59 147 60
-127 176 90 91 175
-128 154 67 155 68
-129 55 183 184 54
-130 162 75 163 76
-131 191 192 62 63
-132 170 83 171 84
-133 70 147 71 148
-134 178 91 179 92
-135 78 155 79 156
-136 55 187 56 186
-137 86 163 87 164
-138 150 63 151 64
-139 94 171 95 172
-140 158 71 159 72
-141 179 180 50 51
-142 166 79 167 80
-143 187 188 58 59
-144 88 174 87 175
-145 209 97 98 208
-146 209 126 237 98
-147 220 133 126 237
-148 220 133 196 109
-149 110 196 109 197
-150 110 225 138 197
-151 121 232 225 138
-152 121 232 97 208
-153 99 100 210 211
-154 100 211 128 239
-155 222 135 128 239
-156 198 111 222 135
-157 198 111 199 112
-158 199 112 227 140
-159 123 234 227 140
-160 99 210 123 234
-161 101 102 212 213
-162 102 213 217 130
-163 224 137 217 130
-164 200 113 224 137
-165 200 113 201 114
-166 201 114 229 142
-167 125 236 229 142
-168 101 212 125 236
-169 103 104 214 215
-170 132 104 215 219
-171 132 226 139 219
-172 202 115 226 139
-173 202 115 203 116
-174 231 144 203 116
-175 231 144 127 238
-176 103 214 127 238
-177 105 193 106 216
-178 221 134 193 106
-179 221 134 228 141
-180 204 117 228 141
-181 204 117 205 118
-182 122 233 205 118
-183 122 233 129 240
-184 105 216 129 240
-185 194 107 195 108
-186 223 136 195 108
-187 143 223 136 230
-188 143 206 119 230
-189 206 119 207 120
-190 124 235 207 120
-191 124 235 218 131
-192 194 107 218 131
-193 177 178 248 241
-194 242 192 185 241
-195 256 249 185 186
-196 148 149 249 250
-197 264 257 149 150
-198 156 157 257 258
-199 265 157 158 272
-200 165 265 266 164
-201 165 166 280 273
-202 172 173 273 274
-203 288 281 173 174
-204 180 181 281 282
-205 244 245 181 182
-206 188 189 245 246
-207 253 189 190 252
-208 253 254 145 152
-209 145 146 260 261
-210 160 261 262 153
-211 154 268 269 153
-212 168 269 270 161
-213 276 277 161 162
-214 176 277 278 169
-215 169 170 284 285
-216 286 177 184 285
-217 247 248 162 163
-218 278 191 279 192
-219 255 256 170 171
-220 286 287 147 148
-221 264 178 179 263
-222 242 155 243 156
-223 187 271 272 186
-224 250 163 251 164
-225 279 280 150 151
-226 258 171 259 172
-227 287 288 158 159
-228 266 179 267 180
-229 166 243 167 244
-230 187 275 188 274
-231 174 251 175 252
-232 282 151 283 152
-233 182 259 183 260
-234 246 159 247 160
-235 190 267 191 268
-236 254 167 255 168
-237 275 276 146 147
-238 176 262 175 263
-239 154 155 283 284
-240 270 183 271 184
-241 16 17 193 194
-242 45 222 17 194
-243 45 222 28 229
-244 4 28 205 229
-245 4 5 205 206
-246 33 234 5 206
-247 33 234 40 217
-248 16 193 40 217
-249 18 19 195 196
-250 47 224 19 196
-251 231 47 224 30
-252 231 6 30 207
-253 6 7 207 208
-254 35 236 7 208
-255 35 236 42 219
-256 18 195 42 219
-257 198 20 21 197
-258 198 25 226 21
-259 233 25 226 32
-260 209 233 8 32
-261 209 210 8 9
-262 210 37 238 9
-263 44 221 37 238
-264 44 221 20 197
-265 22 23 199 200
-266 23 200 27 228
-267 34 235 27 228
-268 34 211 235 10
-269 11 211 212 10
-270 11 212 39 240
-271 46 223 39 240
-272 22 199 46 223
-273 1 24 201 202
-274 1 202 29 230
-275 36 237 29 230
-276 12 36 213 237
-277 12 13 213 214
-278 13 214 41 218
-279 48 225 41 218
-280 24 201 48 225
-281 2 3 203 204
-282 232 3 204 31
-283 232 38 239 31
-284 14 38 215 239
-285 14 15 215 216
-286 220 15 216 43
-287 220 26 227 43
-288 2 26 203 227
0

**************