C4graphGraph forms for C4 [ 288, 204 ] = BGCG(KE_12(1,7,4,9,1),C_3,10)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 204 ] = BGCG(KE_12(1,7,4,9,1),C_3,10).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {96, 121}, {192, 217}, {33, 59}, {225, 251}, {129, 155}, {33, 60}, {225, 252}, {129, 156}, {19, 51}, {211, 243}, {95, 127}, {83, 115}, {67, 99}, {131, 163}, {138, 170}, {143, 175}, {19, 50}, {217, 248}, {211, 242}, {67, 98}, {64, 97}, {25, 56}, {138, 171}, {91, 121}, {137, 171}, {92, 127}, {27, 63}, {219, 255}, {70, 98}, {86, 115}, {192, 229}, {137, 172}, {131, 164}, {84, 125}, {132, 173}, {66, 104}, {87, 125}, {68, 110}, {132, 174}, {31, 52}, {223, 244}, {94, 117}, {72, 99}, {31, 51}, {223, 243}, {68, 105}, {21, 59}, {217, 247}, {213, 251}, {91, 117}, {71, 105}, {25, 55}, {21, 58}, {213, 250}, {71, 104}, {65, 110}, {1, 49}, {207, 255}, {194, 242}, {193, 241}, {95, 111}, {15, 63}, {2, 50}, {134, 182}, {15, 62}, {207, 254}, {69, 116}, {128, 177}, {134, 183}, {141, 188}, {7, 53}, {199, 245}, {64, 114}, {128, 178}, {133, 183}, {2, 49}, {199, 244}, {194, 241}, {7, 52}, {9, 61}, {202, 254}, {201, 253}, {79, 123}, {10, 62}, {142, 186}, {9, 60}, {201, 252}, {90, 111}, {142, 187}, {136, 190}, {141, 187}, {10, 61}, {202, 253}, {76, 123}, {136, 191}, {79, 119}, {130, 186}, {135, 191}, {139, 179}, {1, 56}, {193, 248}, {3, 57}, {205, 247}, {195, 249}, {87, 109}, {75, 113}, {13, 55}, {13, 54}, {205, 246}, {65, 122}, {130, 185}, {70, 122}, {72, 116}, {4, 57}, {200, 245}, {196, 249}, {74, 119}, {8, 53}, {133, 184}, {4, 58}, {200, 246}, {196, 250}, {8, 54}, {140, 178}, {144, 174}, {78, 113}, {82, 109}, {139, 180}, {140, 179}, {143, 176}, {144, 175}, {173, 237}, {16, 81}, {173, 236}, {57, 120}, {28, 93}, {153, 216}, {22, 84}, {52, 118}, {28, 94}, {148, 214}, {162, 224}, {3, 64}, {61, 126}, {22, 85}, {157, 222}, {5, 65}, {60, 120}, {58, 126}, {24, 92}, {6, 66}, {154, 222}, {156, 216}, {24, 93}, {165, 224}, {53, 112}, {149, 208}, {170, 236}, {6, 65}, {49, 118}, {39, 96}, {14, 73}, {135, 192}, {145, 214}, {16, 88}, {174, 230}, {56, 112}, {152, 208}, {12, 69}, {53, 124}, {149, 220}, {12, 70}, {186, 240}, {171, 225}, {18, 89}, {172, 231}, {26, 86}, {5, 72}, {189, 240}, {11, 69}, {169, 231}, {50, 124}, {146, 220}, {11, 68}, {169, 230}, {61, 114}, {26, 85}, {157, 210}, {179, 227}, {52, 101}, {176, 225}, {148, 197}, {55, 101}, {185, 235}, {62, 108}, {151, 197}, {158, 204}, {55, 100}, {185, 234}, {56, 107}, {151, 196}, {152, 203}, {23, 67}, {190, 234}, {30, 74}, {23, 66}, {29, 72}, {17, 71}, {50, 100}, {146, 196}, {17, 70}, {188, 235}, {184, 239}, {59, 108}, {30, 73}, {155, 204}, {20, 76}, {189, 229}, {177, 233}, {63, 103}, {51, 107}, {147, 203}, {159, 199}, {20, 77}, {177, 232}, {63, 102}, {51, 106}, {147, 202}, {159, 198}, {29, 71}, {181, 239}, {59, 97}, {155, 193}, {27, 64}, {184, 227}, {181, 238}, {60, 103}, {156, 199}, {54, 106}, {178, 238}, {58, 102}, {150, 202}, {154, 198}, {176, 237}, {180, 233}, {14, 80}, {182, 232}, {35, 67}, {191, 223}, {179, 211}, {47, 79}, {42, 74}, {163, 195}, {42, 75}, {160, 193}, {163, 194}, {41, 75}, {187, 217}, {188, 223}, {166, 194}, {41, 76}, {182, 211}, {35, 68}, {36, 77}, {180, 221}, {36, 78}, {183, 221}, {162, 200}, {164, 206}, {168, 195}, {190, 213}, {164, 201}, {167, 201}, {187, 213}, {161, 206}, {167, 200}, {38, 86}, {191, 207}, {32, 81}, {45, 92}, {38, 87}, {165, 212}, {18, 96}, {37, 87}, {32, 82}, {160, 210}, {145, 226}, {46, 90}, {175, 219}, {150, 226}, {46, 91}, {186, 207}, {40, 94}, {45, 91}, {40, 95}, {172, 219}, {34, 90}, {175, 215}, {43, 83}, {39, 95}, {158, 228}, {183, 205}, {171, 209}, {34, 89}, {161, 218}, {166, 218}, {168, 212}, {37, 88}, {170, 215}, {153, 228}, {44, 82}, {48, 78}, {43, 84}, {178, 205}, {174, 209}, {48, 79}, {47, 80}, {44, 83}, {114, 192}, {49, 130}, {54, 130}, {62, 132}, {57, 132}, {77, 141}, {77, 140}, {112, 177}, {124, 189}, {66, 128}, {118, 180}, {124, 190}, {99, 160}, {118, 181}, {101, 161}, {102, 162}, {120, 188}, {69, 128}, {120, 189}, {74, 140}, {102, 161}, {110, 169}, {78, 134}, {112, 184}, {108, 165}, {75, 129}, {108, 166}, {90, 144}, {76, 135}, {114, 185}, {122, 182}, {93, 144}, {101, 168}, {73, 135}, {107, 165}, {73, 134}, {107, 164}, {122, 181}, {83, 131}, {80, 129}, {89, 139}, {34, 241}, {89, 138}, {34, 246}, {94, 138}, {119, 163}, {126, 170}, {119, 162}, {125, 168}, {113, 167}, {88, 143}, {92, 139}, {113, 166}, {126, 169}, {81, 137}, {93, 133}, {116, 172}, {81, 136}, {116, 173}, {36, 254}, {85, 143}, {125, 167}, {85, 142}, {88, 131}, {123, 160}, {82, 142}, {36, 249}, {84, 137}, {80, 141}, {86, 136}, {110, 176}, {115, 147}, {24, 249}, {115, 146}, {121, 152}, {22, 244}, {30, 253}, {24, 252}, {30, 250}, {123, 159}, {16, 245}, {96, 133}, {22, 241}, {16, 248}, {28, 245}, {127, 148}, {127, 147}, {28, 242}, {117, 155}, {121, 151}, {18, 253}, {117, 154}, {97, 145}, {98, 146}, {111, 159}, {5, 244}, {111, 158}, {5, 247}, {103, 149}, {12, 254}, {4, 247}, {103, 148}, {98, 145}, {11, 248}, {105, 157}, {106, 158}, {105, 156}, {4, 242}, {12, 251}, {106, 157}, {7, 255}, {11, 243}, {6, 255}, {97, 152}, {10, 243}, {1, 251}, {99, 153}, {109, 151}, {7, 252}, {109, 150}, {6, 250}, {10, 246}, {100, 153}, {104, 149}, {100, 154}, {104, 150}, {3, 259}, {31, 287}, {19, 275}, {1, 256}, {2, 259}, {25, 283}, {31, 284}, {2, 262}, {19, 278}, {37, 288}, {29, 276}, {8, 258}, {29, 279}, {14, 260}, {3, 264}, {21, 286}, {9, 260}, {9, 263}, {21, 283}, {8, 263}, {14, 257}, {15, 287}, {20, 261}, {18, 256}, {27, 271}, {15, 282}, {27, 268}, {23, 271}, {13, 279}, {17, 267}, {26, 257}, {20, 264}, {26, 262}, {23, 266}, {13, 274}, {17, 270}, {45, 269}, {44, 269}, {32, 258}, {32, 261}, {44, 266}, {38, 270}, {33, 267}, {48, 282}, {39, 268}, {48, 285}, {39, 265}, {38, 265}, {35, 275}, {33, 272}, {43, 281}, {42, 281}, {42, 286}, {43, 284}, {47, 280}, {37, 285}, {41, 273}, {25, 288}, {40, 273}, {47, 277}, {35, 280}, {46, 277}, {46, 274}, {41, 276}, {45, 272}, {40, 278}, {208, 273}, {220, 285}, {214, 276}, {220, 286}, {195, 256}, {214, 277}, {197, 257}, {216, 284}, {198, 258}, {216, 285}, {198, 257}, {231, 288}, {206, 265}, {208, 280}, {204, 261}, {204, 262}, {210, 281}, {218, 278}, {197, 264}, {203, 261}, {203, 260}, {218, 277}, {215, 259}, {222, 266}, {215, 258}, {221, 264}, {209, 263}, {209, 262}, {222, 265}, {212, 268}, {212, 269}, {221, 263}, {219, 256}, {206, 272}, {227, 259}, {239, 271}, {234, 266}, {234, 267}, {233, 267}, {233, 268}, {227, 260}, {228, 269}, {228, 270}, {230, 278}, {224, 273}, {237, 284}, {230, 279}, {210, 288}, {229, 279}, {224, 274}, {238, 282}, {238, 283}, {232, 286}, {237, 283}, {232, 287}, {226, 282}, {235, 275}, {231, 287}, {226, 281}, {229, 280}, {236, 274}, {240, 270}, {235, 276}, {240, 271}, {239, 272}, {236, 275} }>;

(II) A more general form is to represent the graph as the orbit of {96, 121} under the group generated by the following permutations:

a: (1, 130)(2, 118)(3, 139)(4, 127)(5, 115)(6, 136)(7, 124)(8, 112)(9, 133)(10, 121)(11, 109)(12, 142)(13, 107)(14, 134)(15, 117)(16, 104)(17, 143)(18, 114)(19, 101)(20, 140)(21, 111)(22, 98)(23, 137)(24, 120)(25, 106)(26, 122)(27, 138)(28, 103)(29, 131)(30, 135)(31, 100)(32, 128)(33, 144)(34, 97)(35, 125)(36, 141)(37, 105)(38, 110)(39, 126)(40, 102)(41, 119)(42, 123)(43, 99)(44, 116)(45, 132)(46, 108)(47, 113)(48, 129)(50, 52)(51, 55)(54, 56)(57, 92)(58, 95)(59, 90)(60, 93)(61, 96)(62, 91)(63, 94)(64, 89)(65, 86)(66, 81)(67, 84)(68, 87)(69, 82)(70, 85)(71, 88)(72, 83)(74, 76)(75, 79)(78, 80)(145, 241)(146, 244)(147, 247)(148, 242)(149, 245)(150, 248)(151, 243)(152, 246)(153, 284)(154, 287)(155, 282)(156, 285)(157, 288)(158, 283)(159, 286)(160, 281)(161, 278)(162, 273)(163, 276)(164, 279)(165, 274)(166, 277)(167, 280)(168, 275)(169, 265)(170, 268)(171, 271)(172, 266)(173, 269)(174, 272)(175, 267)(176, 270)(177, 258)(178, 261)(179, 264)(180, 259)(181, 262)(182, 257)(183, 260)(184, 263)(185, 256)(186, 251)(187, 254)(188, 249)(189, 252)(190, 255)(191, 250)(192, 253)(193, 226)(194, 214)(195, 235)(196, 223)(197, 211)(198, 232)(199, 220)(200, 208)(201, 229)(202, 217)(203, 205)(204, 238)(206, 230)(207, 213)(209, 239)(212, 236)(215, 233)(219, 234)(221, 227)(222, 231)(225, 240)(228, 237)
b: (2, 12)(3, 11)(4, 10)(5, 9)(6, 8)(13, 30)(14, 29)(15, 28)(16, 27)(17, 26)(18, 25)(19, 36)(20, 35)(21, 34)(22, 33)(23, 32)(24, 31)(37, 39)(40, 48)(41, 47)(42, 46)(43, 45)(49, 251)(50, 254)(51, 249)(52, 252)(53, 255)(54, 250)(55, 253)(56, 256)(57, 243)(58, 246)(59, 241)(60, 244)(61, 247)(62, 242)(63, 245)(64, 248)(65, 263)(66, 258)(67, 261)(68, 264)(69, 259)(70, 262)(71, 257)(72, 260)(73, 279)(74, 274)(75, 277)(76, 280)(77, 275)(78, 278)(79, 273)(80, 276)(81, 271)(82, 266)(83, 269)(84, 272)(85, 267)(86, 270)(87, 265)(88, 268)(89, 283)(90, 286)(91, 281)(92, 284)(93, 287)(94, 282)(95, 285)(96, 288)(97, 193)(98, 204)(99, 203)(100, 202)(101, 201)(102, 200)(103, 199)(104, 198)(105, 197)(106, 196)(107, 195)(108, 194)(109, 222)(110, 221)(111, 220)(112, 219)(113, 218)(114, 217)(115, 228)(116, 227)(117, 226)(118, 225)(119, 224)(120, 223)(121, 210)(122, 209)(123, 208)(124, 207)(125, 206)(126, 205)(127, 216)(128, 215)(129, 214)(130, 213)(131, 212)(132, 211)(133, 231)(134, 230)(135, 229)(136, 240)(137, 239)(138, 238)(139, 237)(140, 236)(141, 235)(142, 234)(143, 233)(144, 232)(145, 155)(146, 158)(147, 153)(148, 156)(149, 159)(150, 154)(151, 157)(152, 160)(161, 167)(163, 165)(164, 168)(169, 183)(170, 178)(171, 181)(172, 184)(173, 179)(174, 182)(175, 177)(176, 180)(185, 187)(186, 190)(189, 191)
c: (1, 2, 19, 31, 7, 8, 13, 25)(3, 35, 43, 24, 9, 29, 37, 18)(4, 11, 22, 28, 10, 5, 16, 34)(6, 32, 46, 21, 12, 26, 40, 15)(14, 41, 48, 30, 20, 47, 42, 36)(17, 38, 39, 27, 23, 44, 45, 33)(49, 50, 51, 52, 53, 54, 55, 56)(57, 68, 84, 93, 61, 72, 88, 89)(58, 69, 85, 94, 62, 65, 81, 90)(59, 70, 86, 95, 63, 66, 82, 91)(60, 71, 87, 96, 64, 67, 83, 92)(73, 76, 79, 74, 77, 80, 75, 78)(97, 98, 115, 127, 103, 104, 109, 121)(99, 131, 139, 120, 105, 125, 133, 114)(100, 107, 118, 124, 106, 101, 112, 130)(102, 128, 142, 117, 108, 122, 136, 111)(110, 137, 144, 126, 116, 143, 138, 132)(113, 134, 135, 123, 119, 140, 141, 129)(145, 146, 147, 148, 149, 150, 151, 152)(153, 164, 180, 189, 157, 168, 184, 185)(154, 165, 181, 190, 158, 161, 177, 186)(155, 166, 182, 191, 159, 162, 178, 187)(156, 167, 183, 192, 160, 163, 179, 188)(169, 172, 175, 170, 173, 176, 171, 174)(193, 194, 211, 223, 199, 200, 205, 217)(195, 227, 235, 216, 201, 221, 229, 210)(196, 203, 214, 220, 202, 197, 208, 226)(198, 224, 238, 213, 204, 218, 232, 207)(206, 233, 240, 222, 212, 239, 234, 228)(209, 230, 231, 219, 215, 236, 237, 225)(241, 242, 243, 244, 245, 246, 247, 248)(249, 260, 276, 285, 253, 264, 280, 281)(250, 261, 277, 286, 254, 257, 273, 282)(251, 262, 278, 287, 255, 258, 274, 283)(252, 263, 279, 288, 256, 259, 275, 284)(265, 268, 271, 266, 269, 272, 267, 270)
d: (2, 25)(3, 21)(5, 28)(6, 24)(8, 31)(9, 15)(11, 34)(12, 18)(13, 19)(14, 48)(16, 22)(17, 39)(20, 42)(23, 45)(26, 37)(27, 33)(29, 40)(30, 36)(32, 43)(35, 46)(49, 56)(50, 55)(51, 54)(52, 53)(57, 58)(59, 64)(60, 63)(61, 62)(65, 93)(66, 92)(67, 91)(68, 90)(69, 89)(70, 96)(71, 95)(72, 94)(73, 78)(74, 77)(75, 76)(79, 80)(81, 84)(82, 83)(85, 88)(86, 87)(98, 121)(99, 117)(101, 124)(102, 120)(104, 127)(105, 111)(107, 130)(108, 114)(109, 115)(110, 144)(112, 118)(113, 135)(116, 138)(119, 141)(122, 133)(123, 129)(125, 136)(126, 132)(128, 139)(131, 142)(145, 152)(146, 151)(147, 150)(148, 149)(153, 154)(155, 160)(156, 159)(157, 158)(161, 189)(162, 188)(163, 187)(164, 186)(165, 185)(166, 192)(167, 191)(168, 190)(169, 174)(170, 173)(171, 172)(175, 176)(177, 180)(178, 179)(181, 184)(182, 183)(194, 217)(195, 213)(197, 220)(198, 216)(200, 223)(201, 207)(203, 226)(204, 210)(205, 211)(206, 240)(208, 214)(209, 231)(212, 234)(215, 237)(218, 229)(219, 225)(221, 232)(222, 228)(224, 235)(227, 238)(241, 248)(242, 247)(243, 246)(244, 245)(249, 250)(251, 256)(252, 255)(253, 254)(257, 285)(258, 284)(259, 283)(260, 282)(261, 281)(262, 288)(263, 287)(264, 286)(265, 270)(266, 269)(267, 268)(271, 272)(273, 276)(274, 275)(277, 280)(278, 279)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 204 ]
288
-1 56 256 49 251
-2 49 50 259 262
-3 264 57 259 64
-4 242 57 58 247
-5 244 247 72 65
-6 66 255 250 65
-7 255 52 53 252
-8 258 53 54 263
-9 60 61 260 263
-10 243 246 61 62
-11 243 68 69 248
-12 254 69 70 251
-13 55 279 54 274
-14 80 257 73 260
-15 287 62 282 63
-16 88 245 81 248
-17 267 70 71 270
-18 253 89 256 96
-19 275 278 50 51
-20 77 264 261 76
-21 286 58 59 283
-22 244 84 85 241
-23 66 67 266 271
-24 92 93 249 252
-25 55 56 288 283
-26 257 85 86 262
-27 268 271 63 64
-28 242 245 93 94
-29 276 279 71 72
-30 253 73 74 250
-31 287 51 52 284
-32 81 82 258 261
-33 267 59 60 272
-34 89 90 246 241
-35 275 67 68 280
-36 77 78 254 249
-37 88 288 87 285
-38 265 270 86 87
-39 265 268 95 96
-40 278 94 95 273
-41 276 75 273 76
-42 286 281 74 75
-43 83 281 84 284
-44 266 82 269 83
-45 91 92 269 272
-46 90 277 91 274
-47 79 277 80 280
-48 78 79 282 285
-49 1 2 118 130
-50 100 2 124 19
-51 106 19 107 31
-52 101 7 118 31
-53 112 124 7 8
-54 13 106 8 130
-55 100 13 101 25
-56 1 112 25 107
-57 132 3 4 120
-58 102 4 126 21
-59 33 97 108 21
-60 33 103 9 120
-61 114 126 9 10
-62 132 15 108 10
-63 102 15 103 27
-64 3 114 27 97
-65 110 122 5 6
-66 23 104 6 128
-67 99 23 35 98
-68 11 110 35 105
-69 11 12 116 128
-70 12 122 17 98
-71 104 17 105 29
-72 99 5 116 29
-73 134 14 135 30
-74 30 140 42 119
-75 113 41 129 42
-76 123 135 41 20
-77 36 140 20 141
-78 134 36 113 48
-79 123 47 48 119
-80 14 47 129 141
-81 136 16 137 32
-82 44 32 109 142
-83 44 115 43 131
-84 22 125 137 43
-85 22 143 26 142
-86 26 136 38 115
-87 37 125 38 109
-88 143 37 16 131
-89 34 138 18 139
-90 34 111 144 46
-91 121 45 46 117
-92 45 24 127 139
-93 133 144 24 28
-94 28 138 40 117
-95 111 39 127 40
-96 121 133 39 18
-97 145 59 64 152
-98 67 145 146 70
-99 67 72 160 153
-100 55 154 50 153
-101 55 168 161 52
-102 58 161 63 162
-103 60 148 149 63
-104 66 71 149 150
-105 68 156 157 71
-106 157 158 51 54
-107 165 56 51 164
-108 165 166 59 62
-109 82 150 151 87
-110 176 68 169 65
-111 90 158 159 95
-112 56 177 184 53
-113 78 166 167 75
-114 192 61 64 185
-115 146 147 83 86
-116 69 72 172 173
-117 154 155 91 94
-118 180 49 181 52
-119 79 74 162 163
-120 188 57 189 60
-121 91 96 151 152
-122 70 181 182 65
-123 79 159 160 76
-124 189 190 50 53
-125 167 168 84 87
-126 58 169 170 61
-127 92 147 148 95
-128 66 177 178 69
-129 155 156 80 75
-130 49 185 54 186
-131 88 83 163 164
-132 57 62 173 174
-133 93 183 96 184
-134 78 182 73 183
-135 191 192 73 76
-136 190 81 191 86
-137 81 171 84 172
-138 89 170 94 171
-139 89 179 92 180
-140 77 178 179 74
-141 77 187 188 80
-142 187 82 85 186
-143 88 176 85 175
-144 90 93 174 175
-145 214 226 97 98
-146 220 115 196 98
-147 202 115 203 127
-148 103 214 127 197
-149 220 103 104 208
-150 202 104 226 109
-151 121 196 109 197
-152 121 203 97 208
-153 99 100 216 228
-154 198 100 222 117
-155 193 204 117 129
-156 199 105 216 129
-157 210 222 105 106
-158 111 204 106 228
-159 198 111 199 123
-160 99 210 123 193
-161 101 102 206 218
-162 200 102 224 119
-163 194 195 119 131
-164 201 107 206 131
-165 212 224 107 108
-166 113 194 108 218
-167 200 113 201 125
-168 101 212 125 195
-169 110 231 126 230
-170 126 236 138 215
-171 209 137 225 138
-172 231 137 116 219
-173 132 236 116 237
-174 132 209 144 230
-175 143 144 215 219
-176 110 143 225 237
-177 232 112 233 128
-178 128 205 238 140
-179 211 139 227 140
-180 221 233 139 118
-181 122 238 118 239
-182 122 232 134 211
-183 133 221 134 205
-184 133 112 227 239
-185 234 114 235 130
-186 130 207 240 142
-187 213 217 141 142
-188 223 235 141 120
-189 124 229 240 120
-190 124 234 136 213
-191 135 223 136 207
-192 135 114 217 229
-193 155 160 248 241
-194 242 166 163 241
-195 168 256 249 163
-196 146 249 151 250
-197 264 257 148 151
-198 154 257 159 258
-199 156 244 245 159
-200 167 245 246 162
-201 253 167 164 252
-202 253 254 147 150
-203 147 260 261 152
-204 155 158 261 262
-205 178 246 247 183
-206 265 161 272 164
-207 254 255 191 186
-208 280 149 152 273
-209 171 174 262 263
-210 288 157 160 281
-211 242 243 179 182
-212 165 168 268 269
-213 187 190 250 251
-214 276 145 277 148
-215 170 258 259 175
-216 156 284 153 285
-217 187 192 247 248
-218 166 277 278 161
-219 255 256 172 175
-220 286 146 149 285
-221 264 180 183 263
-222 154 265 266 157
-223 188 243 244 191
-224 165 162 273 274
-225 176 171 251 252
-226 145 281 150 282
-227 179 259 260 184
-228 158 269 270 153
-229 189 279 192 280
-230 278 169 279 174
-231 287 288 169 172
-232 286 177 287 182
-233 177 267 180 268
-234 266 190 267 185
-235 275 188 276 185
-236 275 170 173 274
-237 176 173 283 284
-238 178 181 282 283
-239 181 271 184 272
-240 189 270 271 186
-241 22 34 193 194
-242 211 4 28 194
-243 11 211 223 10
-244 22 199 223 5
-245 199 200 16 28
-246 34 200 205 10
-247 4 5 205 217
-248 11 16 193 217
-249 24 36 195 196
-250 213 6 30 196
-251 1 12 213 225
-252 24 201 225 7
-253 201 202 18 30
-254 12 36 202 207
-255 6 7 207 219
-256 1 18 195 219
-257 198 14 26 197
-258 198 215 8 32
-259 2 3 215 227
-260 14 203 227 9
-261 203 204 20 32
-262 209 2 26 204
-263 209 221 8 9
-264 221 3 20 197
-265 222 38 39 206
-266 44 23 222 234
-267 33 233 234 17
-268 233 212 27 39
-269 44 45 212 228
-270 38 17 228 240
-271 23 27 239 240
-272 33 45 206 239
-273 224 40 41 208
-274 13 46 224 236
-275 35 235 236 19
-276 235 214 29 41
-277 46 47 214 218
-278 40 19 218 230
-279 13 29 229 230
-280 35 47 229 208
-281 210 226 42 43
-282 15 48 226 238
-283 25 237 238 21
-284 237 216 31 43
-285 220 37 48 216
-286 220 232 42 21
-287 231 232 15 31
-288 231 210 25 37
0

**************