[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 288, 205 ] =
BGCG(KE_12(1,7,4,9,1),C_3,11).
(I) Following is a form readable by MAGMA:
g:=Graph<288|{ {33, 59}, {225, 251}, {129, 155}, {33, 60}, {225, 252}, {129,
156}, {96, 127}, {192, 223}, {19, 51}, {211, 243}, {66, 98}, {131, 163}, {138,
170}, {143, 175}, {19, 50}, {217, 248}, {211, 242}, {82, 115}, {72, 105}, {25,
56}, {138, 171}, {137, 171}, {27, 63}, {219, 255}, {91, 127}, {87, 115}, {71,
99}, {71, 98}, {92, 121}, {88, 125}, {137, 172}, {72, 110}, {95, 121}, {64,
103}, {68, 99}, {131, 164}, {132, 173}, {67, 105}, {95, 117}, {132, 174}, {31,
52}, {223, 244}, {192, 235}, {80, 123}, {69, 110}, {67, 104}, {31, 51}, {223,
243}, {21, 59}, {217, 247}, {213, 251}, {83, 125}, {70, 104}, {25, 55}, {21,
58}, {213, 250}, {90, 117}, {1, 49}, {207, 255}, {194, 242}, {193, 241}, {75,
123}, {68, 116}, {15, 63}, {2, 50}, {134, 182}, {15, 62}, {207, 254}, {94, 111},
{128, 177}, {134, 183}, {141, 188}, {7, 53}, {199, 245}, {128, 178}, {133, 183},
{2, 49}, {199, 244}, {194, 241}, {7, 52}, {9, 61}, {202, 254}, {201, 253}, {91,
111}, {10, 62}, {142, 186}, {9, 60}, {201, 252}, {65, 116}, {142, 187}, {136,
190}, {141, 187}, {10, 61}, {202, 253}, {136, 191}, {64, 120}, {66, 122}, {130,
186}, {135, 191}, {139, 179}, {1, 56}, {193, 248}, {78, 119}, {3, 57}, {205,
247}, {195, 249}, {13, 55}, {13, 54}, {205, 246}, {86, 109}, {74, 113}, {130,
185}, {75, 119}, {4, 57}, {200, 245}, {196, 249}, {8, 53}, {133, 184}, {4, 58},
{200, 246}, {196, 250}, {83, 109}, {79, 113}, {8, 54}, {140, 178}, {144, 174},
{69, 122}, {139, 180}, {140, 179}, {143, 176}, {144, 175}, {62, 126}, {158,
222}, {16, 81}, {172, 237}, {161, 224}, {49, 112}, {28, 93}, {145, 208}, {22,
84}, {174, 236}, {28, 94}, {3, 64}, {53, 118}, {22, 85}, {149, 214}, {5, 65},
{169, 237}, {52, 112}, {24, 92}, {6, 66}, {148, 208}, {24, 93}, {169, 236}, {61,
120}, {157, 216}, {166, 224}, {6, 65}, {57, 126}, {39, 96}, {14, 73}, {135,
192}, {153, 222}, {16, 88}, {12, 69}, {185, 240}, {12, 70}, {173, 231}, {54,
124}, {150, 220}, {18, 89}, {173, 230}, {57, 114}, {153, 210}, {26, 86}, {170,
230}, {5, 72}, {172, 225}, {49, 124}, {145, 220}, {11, 69}, {190, 240}, {175,
225}, {60, 114}, {56, 118}, {152, 214}, {156, 210}, {11, 68}, {26, 85}, {186,
234}, {184, 233}, {54, 100}, {150, 196}, {63, 108}, {159, 204}, {23, 67}, {183,
227}, {30, 74}, {23, 66}, {29, 72}, {17, 71}, {189, 235}, {58, 108}, {51, 101},
{147, 197}, {154, 204}, {17, 70}, {189, 234}, {180, 227}, {176, 231}, {51, 100},
{30, 73}, {147, 196}, {20, 76}, {182, 238}, {62, 102}, {50, 106}, {146, 202},
{158, 198}, {20, 77}, {188, 229}, {29, 71}, {178, 232}, {27, 64}, {180, 239},
{55, 107}, {185, 229}, {181, 233}, {59, 103}, {151, 203}, {155, 199}, {55, 106},
{181, 232}, {60, 97}, {59, 102}, {56, 101}, {151, 202}, {152, 197}, {155, 198},
{156, 193}, {14, 80}, {177, 239}, {63, 97}, {159, 193}, {52, 107}, {177, 238},
{148, 203}, {35, 67}, {162, 194}, {47, 79}, {42, 74}, {42, 75}, {178, 211},
{168, 201}, {41, 75}, {167, 195}, {187, 223}, {183, 211}, {41, 76}, {188, 217},
{184, 221}, {167, 194}, {168, 206}, {191, 217}, {35, 68}, {164, 195}, {160,
199}, {36, 77}, {36, 78}, {191, 213}, {163, 201}, {163, 200}, {176, 219}, {165,
206}, {166, 200}, {179, 221}, {186, 213}, {38, 86}, {171, 219}, {164, 212},
{146, 226}, {32, 81}, {190, 207}, {45, 92}, {38, 87}, {18, 96}, {37, 87}, {32,
82}, {46, 90}, {187, 207}, {46, 91}, {161, 212}, {40, 94}, {45, 91}, {40, 95},
{149, 226}, {34, 90}, {162, 218}, {43, 83}, {39, 95}, {160, 216}, {157, 228},
{174, 215}, {34, 89}, {182, 205}, {170, 209}, {171, 215}, {37, 88}, {44, 82},
{179, 205}, {175, 209}, {48, 78}, {154, 228}, {43, 84}, {165, 218}, {48, 79},
{47, 80}, {44, 83}, {50, 130}, {114, 192}, {53, 130}, {61, 132}, {58, 132}, {65,
128}, {76, 141}, {112, 177}, {124, 189}, {78, 140}, {118, 180}, {124, 190}, {99,
160}, {118, 181}, {73, 141}, {102, 162}, {101, 161}, {120, 188}, {73, 140},
{120, 189}, {70, 128}, {102, 161}, {110, 169}, {112, 184}, {89, 144}, {108,
165}, {77, 135}, {108, 166}, {77, 134}, {114, 185}, {74, 134}, {122, 182}, {76,
129}, {101, 168}, {79, 129}, {94, 144}, {107, 165}, {107, 164}, {122, 181}, {34,
242}, {90, 138}, {88, 137}, {87, 131}, {119, 163}, {126, 170}, {119, 162}, {125,
168}, {93, 139}, {113, 167}, {34, 245}, {93, 138}, {84, 131}, {80, 135}, {113,
166}, {126, 169}, {86, 142}, {116, 172}, {36, 253}, {92, 133}, {116, 173}, {82,
136}, {125, 167}, {84, 143}, {123, 160}, {85, 137}, {89, 133}, {85, 136}, {36,
250}, {81, 143}, {110, 176}, {81, 142}, {30, 254}, {115, 147}, {16, 241}, {115,
146}, {121, 152}, {22, 245}, {16, 244}, {123, 159}, {24, 253}, {30, 249}, {28,
246}, {18, 249}, {96, 139}, {127, 148}, {127, 147}, {28, 241}, {18, 252}, {22,
248}, {117, 155}, {121, 151}, {117, 154}, {97, 145}, {98, 146}, {111, 159},
{111, 158}, {4, 246}, {103, 149}, {12, 255}, {103, 148}, {98, 145}, {105, 157},
{106, 158}, {105, 156}, {5, 243}, {12, 250}, {4, 243}, {106, 157}, {6, 254},
{10, 242}, {97, 152}, {99, 153}, {109, 151}, {109, 150}, {7, 251}, {11, 247},
{1, 252}, {104, 149}, {100, 153}, {10, 247}, {6, 251}, {5, 248}, {1, 255}, {100,
154}, {104, 150}, {11, 244}, {2, 258}, {9, 264}, {19, 274}, {3, 263}, {31, 283},
{19, 279}, {2, 263}, {29, 280}, {25, 284}, {14, 264}, {25, 287}, {3, 260}, {7,
256}, {9, 259}, {21, 287}, {8, 259}, {43, 288}, {27, 272}, {14, 261}, {8, 262},
{29, 275}, {21, 282}, {20, 260}, {27, 267}, {15, 286}, {15, 283}, {20, 257},
{24, 256}, {26, 258}, {23, 270}, {13, 278}, {17, 266}, {23, 267}, {13, 275},
{17, 271}, {26, 261}, {32, 257}, {45, 268}, {44, 270}, {45, 265}, {44, 265},
{32, 262}, {48, 281}, {39, 269}, {38, 269}, {38, 266}, {33, 268}, {33, 271},
{48, 286}, {42, 282}, {41, 280}, {35, 279}, {43, 285}, {35, 276}, {42, 285},
{39, 272}, {46, 278}, {37, 284}, {40, 274}, {47, 276}, {37, 281}, {41, 277},
{40, 277}, {47, 273}, {31, 288}, {46, 273}, {208, 273}, {220, 285}, {214, 276},
{220, 286}, {195, 256}, {214, 277}, {197, 257}, {216, 284}, {198, 258}, {216,
285}, {198, 257}, {231, 288}, {206, 265}, {208, 280}, {204, 261}, {204, 262},
{210, 281}, {218, 278}, {197, 264}, {203, 261}, {203, 260}, {218, 277}, {215,
259}, {222, 266}, {215, 258}, {221, 264}, {209, 263}, {209, 262}, {222, 265},
{212, 268}, {212, 269}, {221, 263}, {219, 256}, {206, 272}, {227, 259}, {239,
271}, {234, 266}, {234, 267}, {233, 267}, {233, 268}, {227, 260}, {228, 269},
{228, 270}, {230, 278}, {224, 273}, {237, 284}, {230, 279}, {210, 288}, {229,
279}, {224, 274}, {238, 282}, {238, 283}, {232, 286}, {237, 283}, {232, 287},
{226, 282}, {235, 275}, {231, 287}, {226, 281}, {229, 280}, {236, 274}, {240,
270}, {235, 276}, {240, 271}, {239, 272}, {236, 275} }>;
(II) A more general form is to represent the graph as the orbit of {33, 59}
under the group generated by the following permutations:
a: (1, 2)(3, 12)(4, 11)(5, 10)(6, 9)(7, 8)(13, 31)(14, 30)(15, 29)(16, 28)(17,
27)(18, 26)(19, 25)(20, 36)(21, 35)(22, 34)(23, 33)(24, 32)(37, 40)(38, 39)(41,
48)(42, 47)(43, 46)(44, 45)(50, 56)(51, 55)(52, 54)(57, 69)(58, 68)(59, 67)(60,
66)(61, 65)(62, 72)(63, 71)(64, 70)(74, 80)(75, 79)(76, 78)(81, 93)(82, 92)(83,
91)(84, 90)(85, 89)(86, 96)(87, 95)(88, 94)(97, 98)(99, 108)(100, 107)(101,
106)(102, 105)(103, 104)(109, 127)(110, 126)(111, 125)(112, 124)(113, 123)(114,
122)(115, 121)(116, 132)(117, 131)(118, 130)(119, 129)(120, 128)(133, 136)(134,
135)(137, 144)(138, 143)(139, 142)(140, 141)(146, 152)(147, 151)(148, 150)(153,
165)(154, 164)(155, 163)(156, 162)(157, 161)(158, 168)(159, 167)(160, 166)(170,
176)(171, 175)(172, 174)(177, 189)(178, 188)(179, 187)(180, 186)(181, 185)(182,
192)(183, 191)(184, 190)(193, 194)(195, 204)(196, 203)(197, 202)(198, 201)(199,
200)(205, 223)(206, 222)(207, 221)(208, 220)(209, 219)(210, 218)(211, 217)(212,
228)(213, 227)(214, 226)(215, 225)(216, 224)(229, 232)(230, 231)(233, 240)(234,
239)(235, 238)(236, 237)(242, 248)(243, 247)(244, 246)(249, 261)(250, 260)(251,
259)(252, 258)(253, 257)(254, 264)(255, 263)(256, 262)(266, 272)(267, 271)(268,
270)(273, 285)(274, 284)(275, 283)(276, 282)(277, 281)(278, 288)(279, 287)(280,
286) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 12)(3, 11)(4, 10)(5, 9)(6, 8)(13, 30)(14, 29)(15, 28)(16, 27)(17, 26)(18,
25)(19, 36)(20, 35)(21, 34)(22, 33)(23, 32)(24, 31)(37, 39)(40, 48)(41, 47)(42,
46)(43, 45)(49, 255)(50, 250)(51, 253)(52, 256)(53, 251)(54, 254)(55, 249)(56,
252)(57, 247)(58, 242)(59, 245)(60, 248)(61, 243)(62, 246)(63, 241)(64, 244)(65,
259)(66, 262)(67, 257)(68, 260)(69, 263)(70, 258)(71, 261)(72, 264)(73, 275)(74,
278)(75, 273)(76, 276)(77, 279)(78, 274)(79, 277)(80, 280)(81, 267)(82, 270)(83,
265)(84, 268)(85, 271)(86, 266)(87, 269)(88, 272)(89, 287)(90, 282)(91, 285)(92,
288)(93, 283)(94, 286)(95, 281)(96, 284)(97, 193)(98, 204)(99, 203)(100,
202)(101, 201)(102, 200)(103, 199)(104, 198)(105, 197)(106, 196)(107, 195)(108,
194)(109, 222)(110, 221)(111, 220)(112, 219)(113, 218)(114, 217)(115, 228)(116,
227)(117, 226)(118, 225)(119, 224)(120, 223)(121, 210)(122, 209)(123, 208)(124,
207)(125, 206)(126, 205)(127, 216)(128, 215)(129, 214)(130, 213)(131, 212)(132,
211)(133, 231)(134, 230)(135, 229)(136, 240)(137, 239)(138, 238)(139, 237)(140,
236)(141, 235)(142, 234)(143, 233)(144, 232)(145, 159)(146, 154)(147, 157)(148,
160)(149, 155)(150, 158)(151, 153)(152, 156)(161, 163)(162, 166)(165, 167)(169,
179)(170, 182)(171, 177)(172, 180)(173, 183)(174, 178)(175, 181)(176, 184)(185,
191)(187, 189)(188, 192)
c: (1, 97)(2, 108)(3, 107)(4, 106)(5, 105)(6, 104)(7, 103)(8, 102)(9, 101)(10,
100)(11, 99)(12, 98)(13, 126)(14, 125)(15, 124)(16, 123)(17, 122)(18, 121)(19,
132)(20, 131)(21, 130)(22, 129)(23, 128)(24, 127)(25, 114)(26, 113)(27, 112)(28,
111)(29, 110)(30, 109)(31, 120)(32, 119)(33, 118)(34, 117)(35, 116)(36, 115)(37,
135)(38, 134)(39, 133)(40, 144)(41, 143)(42, 142)(43, 141)(44, 140)(45, 139)(46,
138)(47, 137)(48, 136)(49, 63)(50, 58)(51, 61)(52, 64)(53, 59)(54, 62)(55,
57)(56, 60)(65, 67)(66, 70)(69, 71)(73, 83)(74, 86)(75, 81)(76, 84)(77, 87)(78,
82)(79, 85)(80, 88)(89, 95)(91, 93)(92, 96)(145, 255)(146, 250)(147, 253)(148,
256)(149, 251)(150, 254)(151, 249)(152, 252)(153, 247)(154, 242)(155, 245)(156,
248)(157, 243)(158, 246)(159, 241)(160, 244)(161, 259)(162, 262)(163, 257)(164,
260)(165, 263)(166, 258)(167, 261)(168, 264)(169, 275)(170, 278)(171, 273)(172,
276)(173, 279)(174, 274)(175, 277)(176, 280)(177, 267)(178, 270)(179, 265)(180,
268)(181, 271)(182, 266)(183, 269)(184, 272)(185, 287)(186, 282)(187, 285)(188,
288)(189, 283)(190, 286)(191, 281)(192, 284)(194, 204)(195, 203)(196, 202)(197,
201)(198, 200)(205, 222)(206, 221)(207, 220)(208, 219)(209, 218)(210, 217)(211,
228)(212, 227)(213, 226)(214, 225)(215, 224)(216, 223)(229, 231)(232, 240)(233,
239)(234, 238)(235, 237)
d: (2, 25)(3, 21)(5, 28)(6, 24)(8, 31)(9, 15)(11, 34)(12, 18)(13, 19)(14,
48)(16, 22)(17, 39)(20, 42)(23, 45)(26, 37)(27, 33)(29, 40)(30, 36)(32, 43)(35,
46)(49, 56)(50, 55)(51, 54)(52, 53)(57, 58)(59, 64)(60, 63)(61, 62)(65, 93)(66,
92)(67, 91)(68, 90)(69, 89)(70, 96)(71, 95)(72, 94)(73, 78)(74, 77)(75, 76)(79,
80)(81, 84)(82, 83)(85, 88)(86, 87)(98, 121)(99, 117)(101, 124)(102, 120)(104,
127)(105, 111)(107, 130)(108, 114)(109, 115)(110, 144)(112, 118)(113, 135)(116,
138)(119, 141)(122, 133)(123, 129)(125, 136)(126, 132)(128, 139)(131, 142)(145,
152)(146, 151)(147, 150)(148, 149)(153, 154)(155, 160)(156, 159)(157, 158)(161,
189)(162, 188)(163, 187)(164, 186)(165, 185)(166, 192)(167, 191)(168, 190)(169,
174)(170, 173)(171, 172)(175, 176)(177, 180)(178, 179)(181, 184)(182, 183)(194,
217)(195, 213)(197, 220)(198, 216)(200, 223)(201, 207)(203, 226)(204, 210)(205,
211)(206, 240)(208, 214)(209, 231)(212, 234)(215, 237)(218, 229)(219, 225)(221,
232)(222, 228)(224, 235)(227, 238)(241, 248)(242, 247)(243, 246)(244, 245)(249,
250)(251, 256)(252, 255)(253, 254)(257, 285)(258, 284)(259, 283)(260, 282)(261,
281)(262, 288)(263, 287)(264, 286)(265, 270)(266, 269)(267, 268)(271, 272)(273,
276)(274, 275)(277, 280)(278, 279)
C4[ 288, 205 ]
288
-1 56 255 49 252
-2 49 258 50 263
-3 57 260 64 263
-4 243 57 58 246
-5 243 72 248 65
-6 66 254 251 65
-7 256 52 53 251
-8 259 53 262 54
-9 264 60 61 259
-10 242 247 61 62
-11 68 244 69 247
-12 255 69 70 250
-13 55 275 278 54
-14 264 80 73 261
-15 286 62 63 283
-16 88 244 81 241
-17 266 70 71 271
-18 89 249 96 252
-19 279 50 51 274
-20 77 257 260 76
-21 287 58 59 282
-22 245 248 84 85
-23 66 67 267 270
-24 253 256 92 93
-25 55 56 287 284
-26 258 85 261 86
-27 267 63 272 64
-28 246 93 94 241
-29 275 71 280 72
-30 254 73 249 74
-31 288 51 52 283
-32 81 257 82 262
-33 59 268 60 271
-34 242 89 90 245
-35 67 276 68 279
-36 77 253 78 250
-37 88 281 284 87
-38 266 269 86 87
-39 269 95 96 272
-40 277 94 95 274
-41 277 280 75 76
-42 282 74 75 285
-43 288 83 84 285
-44 265 82 83 270
-45 265 91 92 268
-46 90 91 278 273
-47 276 79 80 273
-48 286 78 79 281
-49 1 2 112 124
-50 2 106 19 130
-51 100 101 19 31
-52 112 7 107 31
-53 7 8 118 130
-54 100 13 124 8
-55 13 25 106 107
-56 1 101 25 118
-57 3 4 114 126
-58 132 4 108 21
-59 33 102 103 21
-60 33 114 9 97
-61 132 9 10 120
-62 102 15 126 10
-63 15 27 97 108
-64 3 103 27 120
-65 5 6 116 128
-66 23 122 6 98
-67 23 35 104 105
-68 11 99 35 116
-69 11 110 12 122
-70 12 104 17 128
-71 99 17 29 98
-72 110 5 105 29
-73 14 30 140 141
-74 134 113 30 42
-75 123 41 42 119
-76 41 129 20 141
-77 134 36 135 20
-78 36 48 140 119
-79 47 113 48 129
-80 123 14 47 135
-81 143 16 32 142
-82 44 136 115 32
-83 44 125 43 109
-84 22 143 43 131
-85 22 26 136 137
-86 26 38 109 142
-87 37 38 115 131
-88 37 125 16 137
-89 34 133 144 18
-90 34 46 138 117
-91 45 111 46 127
-92 121 45 133 24
-93 24 28 138 139
-94 111 144 28 40
-95 121 39 40 117
-96 39 127 18 139
-97 145 60 63 152
-98 66 145 146 71
-99 68 71 160 153
-100 154 51 54 153
-101 56 168 51 161
-102 59 62 161 162
-103 59 148 149 64
-104 67 70 149 150
-105 67 156 157 72
-106 55 157 158 50
-107 55 165 52 164
-108 165 166 58 63
-109 83 150 151 86
-110 176 69 169 72
-111 91 158 159 94
-112 177 49 52 184
-113 166 79 167 74
-114 57 60 192 185
-115 146 147 82 87
-116 68 172 173 65
-117 154 155 90 95
-118 56 180 181 53
-119 78 162 75 163
-120 188 189 61 64
-121 92 95 151 152
-122 66 69 181 182
-123 80 159 160 75
-124 189 190 49 54
-125 88 167 168 83
-126 57 169 170 62
-127 91 147 148 96
-128 177 178 70 65
-129 155 79 156 76
-130 50 53 185 186
-131 84 163 87 164
-132 58 61 173 174
-133 89 92 183 184
-134 77 182 183 74
-135 77 80 191 192
-136 190 191 82 85
-137 88 171 172 85
-138 90 93 170 171
-139 179 180 93 96
-140 78 178 179 73
-141 187 188 73 76
-142 187 81 86 186
-143 176 81 84 175
-144 89 94 174 175
-145 220 97 98 208
-146 202 115 226 98
-147 115 127 196 197
-148 103 203 127 208
-149 103 104 214 226
-150 220 104 196 109
-151 121 202 203 109
-152 121 214 97 197
-153 99 100 210 222
-154 100 204 117 228
-155 198 199 117 129
-156 210 105 193 129
-157 105 106 216 228
-158 198 111 222 106
-159 111 123 193 204
-160 99 199 123 216
-161 101 102 212 224
-162 102 194 119 218
-163 200 201 119 131
-164 212 107 195 131
-165 107 206 108 218
-166 200 113 224 108
-167 113 125 194 195
-168 101 201 125 206
-169 110 126 236 237
-170 209 126 138 230
-171 137 138 215 219
-172 137 225 116 237
-173 132 231 116 230
-174 132 144 236 215
-175 143 209 144 225
-176 110 143 231 219
-177 112 128 238 239
-178 232 211 128 140
-179 221 139 205 140
-180 139 227 118 239
-181 122 232 233 118
-182 122 134 205 238
-183 133 134 211 227
-184 133 221 112 233
-185 114 130 229 240
-186 234 213 130 142
-187 223 141 207 142
-188 217 141 229 120
-189 124 234 235 120
-190 124 136 207 240
-191 135 136 213 217
-192 135 223 114 235
-193 156 159 248 241
-194 242 167 162 241
-195 167 256 249 164
-196 147 150 249 250
-197 264 147 257 152
-198 155 158 257 258
-199 155 244 245 160
-200 166 245 246 163
-201 253 168 163 252
-202 253 254 146 151
-203 148 260 151 261
-204 154 159 261 262
-205 179 246 247 182
-206 165 265 168 272
-207 187 254 255 190
-208 145 148 280 273
-209 170 262 175 263
-210 156 288 281 153
-211 242 243 178 183
-212 268 269 161 164
-213 191 250 251 186
-214 276 277 149 152
-215 258 171 259 174
-216 157 160 284 285
-217 188 191 247 248
-218 165 277 278 162
-219 176 255 256 171
-220 286 145 150 285
-221 264 179 184 263
-222 265 266 158 153
-223 187 243 244 192
-224 166 161 273 274
-225 172 251 175 252
-226 146 149 281 282
-227 180 259 183 260
-228 154 157 269 270
-229 188 279 280 185
-230 278 279 170 173
-231 176 287 288 173
-232 286 287 178 181
-233 267 268 181 184
-234 189 266 267 186
-235 275 276 189 192
-236 275 169 174 274
-237 169 172 283 284
-238 177 182 282 283
-239 177 180 271 272
-240 190 270 271 185
-241 16 28 193 194
-242 34 211 194 10
-243 211 223 4 5
-244 11 199 223 16
-245 22 34 199 200
-246 200 4 28 205
-247 11 205 217 10
-248 22 5 193 217
-249 18 30 195 196
-250 12 36 213 196
-251 213 225 6 7
-252 1 201 225 18
-253 24 36 201 202
-254 202 6 30 207
-255 1 12 207 219
-256 24 7 195 219
-257 198 20 32 197
-258 198 2 26 215
-259 215 227 8 9
-260 3 203 227 20
-261 14 26 203 204
-262 209 204 8 32
-263 209 221 2 3
-264 221 14 9 197
-265 44 45 222 206
-266 222 234 38 17
-267 23 233 234 27
-268 33 45 233 212
-269 212 38 39 228
-270 44 23 228 240
-271 33 17 239 240
-272 27 39 206 239
-273 46 47 224 208
-274 224 236 40 19
-275 13 235 236 29
-276 35 47 235 214
-277 214 40 41 218
-278 13 46 218 230
-279 35 19 229 230
-280 29 41 229 208
-281 210 37 48 226
-282 226 238 42 21
-283 15 237 238 31
-284 25 37 237 216
-285 220 216 42 43
-286 220 232 15 48
-287 231 232 25 21
-288 231 210 31 43
0