[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 288, 208 ] =
BGCG({4,4}_6,6;K2;{2,5}).
(I) Following is a form readable by MAGMA:
g:=Graph<288|{ {131, 151}, {141, 153}, {137, 159}, {142, 153}, {143, 151}, {134,
152}, {134, 164}, {135, 164}, {144, 181}, {134, 160}, {133, 171}, {136, 186},
{128, 179}, {137, 186}, {131, 180}, {132, 189}, {138, 176}, {143, 181}, {139,
176}, {144, 171}, {130, 188}, {128, 192}, {131, 194}, {129, 197}, {128, 197},
{132, 194}, {139, 205}, {136, 206}, {142, 212}, {143, 212}, {140, 238}, {143,
237}, {137, 236}, {129, 231}, {140, 235}, {128, 235}, {132, 234}, {133, 244},
{142, 248}, {135, 240}, {130, 250}, {136, 240}, {131, 250}, {139, 242}, {130,
248}, {139, 247}, {129, 252}, {142, 243}, {130, 252}, {140, 242}, {82, 210},
{93, 221}, {39, 166}, {58, 187}, {83, 210}, {92, 221}, {98, 227}, {101, 228},
{27, 153}, {60, 190}, {35, 161}, {94, 220}, {85, 214}, {90, 217}, {91, 216},
{38, 162}, {113, 245}, {73, 205}, {28, 153}, {106, 239}, {96, 230}, {111, 233},
{105, 239}, {56, 191}, {114, 245}, {20, 156}, {127, 247}, {59, 179}, {55, 191},
{74, 195}, {17, 155}, {73, 195}, {56, 180}, {113, 253}, {16, 157}, {112, 253},
{67, 206}, {64, 205}, {49, 188}, {87, 218}, {31, 145}, {47, 161}, {40, 166},
{85, 219}, {36, 171}, {109, 226}, {49, 190}, {88, 215}, {3, 147}, {39, 183},
{86, 198}, {97, 241}, {2, 147}, {125, 236}, {61, 172}, {32, 177}, {75, 218},
{87, 198}, {42, 184}, {123, 233}, {120, 234}, {117, 231}, {94, 204}, {13, 158},
{95, 204}, {98, 241}, {8, 156}, {71, 211}, {46, 187}, {70, 211}, {93, 200},
{126, 232}, {8, 159}, {78, 217}, {44, 180}, {4, 157}, {37, 188}, {51, 169},
{120, 226}, {114, 232}, {41, 178}, {47, 179}, {63, 163}, {82, 206}, {44, 177},
{62, 163}, {53, 168}, {52, 169}, {90, 199}, {5, 155}, {54, 168}, {8, 150}, {95,
193}, {1, 158}, {9, 150}, {14, 174}, {77, 237}, {89, 249}, {105, 201}, {62,
159}, {88, 249}, {94, 255}, {96, 193}, {102, 199}, {105, 200}, {84, 246}, {59,
152}, {115, 208}, {74, 238}, {122, 222}, {15, 170}, {123, 222}, {50, 151}, {83,
246}, {94, 251}, {11, 173}, {119, 209}, {108, 202}, {30, 184}, {28, 186}, {93,
251}, {29, 186}, {118, 209}, {29, 181}, {68, 236}, {73, 225}, {62, 151}, {118,
223}, {71, 238}, {68, 237}, {65, 235}, {127, 213}, {117, 223}, {11, 160}, {126,
213}, {30, 181}, {75, 224}, {2, 174}, {27, 183}, {9, 165}, {76, 224}, {82, 255},
{19, 189}, {30, 176}, {10, 165}, {127, 208}, {64, 239}, {31, 176}, {29, 178},
{18, 189}, {34, 146}, {116, 196}, {70, 247}, {25, 171}, {120, 202}, {70, 244},
{67, 241}, {38, 148}, {76, 254}, {84, 230}, {39, 148}, {124, 207}, {77, 254},
{100, 215}, {81, 229}, {18, 167}, {68, 241}, {84, 225}, {86, 227}, {17, 167},
{125, 203}, {96, 214}, {106, 220}, {115, 196}, {124, 203}, {26, 162}, {107,
211}, {45, 149}, {93, 229}, {44, 149}, {106, 211}, {16, 170}, {43, 145}, {23,
173}, {97, 219}, {67, 248}, {79, 244}, {46, 146}, {117, 201}, {89, 228}, {26,
164}, {27, 164}, {127, 192}, {112, 207}, {76, 243}, {103, 216}, {99, 163}, {113,
177}, {108, 172}, {58, 251}, {98, 163}, {57, 251}, {121, 187}, {59, 249}, {58,
249}, {119, 180}, {98, 161}, {19, 215}, {121, 189}, {37, 225}, {28, 216}, {81,
149}, {1, 196}, {114, 183}, {45, 232}, {25, 220}, {80, 149}, {89, 156}, {2,
196}, {116, 178}, {88, 158}, {10, 205}, {116, 179}, {92, 155}, {16, 216}, {31,
215}, {18, 218}, {85, 157}, {103, 175}, {102, 175}, {107, 162}, {15, 197}, {118,
188}, {111, 165}, {20, 222}, {14, 197}, {21, 222}, {80, 155}, {83, 159}, {22,
219}, {58, 247}, {45, 224}, {42, 231}, {39, 234}, {24, 213}, {97, 172}, {46,
224}, {61, 243}, {1, 206}, {110, 161}, {55, 248}, {63, 239}, {102, 182}, {13,
220}, {123, 170}, {57, 232}, {54, 231}, {48, 225}, {33, 240}, {77, 156}, {102,
183}, {21, 199}, {34, 240}, {76, 158}, {19, 192}, {101, 182}, {20, 192}, {56,
236}, {73, 157}, {101, 177}, {23, 194}, {119, 162}, {112, 165}, {60, 233}, {15,
217}, {124, 170}, {109, 187}, {40, 254}, {30, 200}, {41, 254}, {111, 184}, {13,
213}, {48, 233}, {126, 167}, {51, 234}, {3, 217}, {125, 167}, {24, 194}, {18,
200}, {11, 209}, {104, 178}, {4, 223}, {10, 209}, {99, 184}, {3, 223}, {70,
154}, {42, 246}, {23, 203}, {6, 218}, {101, 185}, {22, 203}, {100, 185}, {53,
235}, {74, 148}, {41, 246}, {71, 152}, {69, 154}, {75, 148}, {54, 214}, {55,
214}, {115, 146}, {65, 160}, {116, 150}, {122, 152}, {1, 226}, {117, 150}, {92,
191}, {43, 207}, {72, 172}, {52, 208}, {90, 190}, {91, 191}, {91, 190}, {33,
199}, {45, 202}, {118, 145}, {74, 173}, {26, 242}, {43, 195}, {12, 229}, {21,
252}, {14, 228}, {22, 252}, {16, 250}, {5, 238}, {33, 202}, {25, 242}, {17,
250}, {19, 255}, {67, 175}, {36, 201}, {66, 175}, {12, 226}, {51, 221}, {2,
237}, {50, 221}, {44, 195}, {9, 230}, {4, 244}, {80, 160}, {71, 182}, {88, 169},
{89, 168}, {95, 174}, {17, 227}, {90, 168}, {21, 230}, {7, 243}, {82, 166},
{103, 146}, {34, 212}, {35, 212}, {81, 166}, {5, 253}, {65, 185}, {55, 207},
{52, 204}, {40, 208}, {7, 255}, {4, 253}, {64, 185}, {53, 204}, {48, 201}, {34,
219}, {12, 245}, {99, 154}, {59, 193}, {86, 173}, {106, 145}, {46, 210}, {111,
147}, {24, 229}, {110, 147}, {60, 193}, {47, 210}, {83, 174}, {11, 245}, {56,
198}, {29, 227}, {26, 228}, {72, 182}, {87, 169}, {100, 154}, {57, 198}, {37,
288}, {38, 288}, {27, 275}, {10, 256}, {24, 276}, {31, 272}, {6, 279}, {3, 273},
{28, 270}, {7, 277}, {5, 279}, {6, 277}, {9, 282}, {25, 269}, {14, 283}, {23,
258}, {20, 257}, {13, 283}, {22, 256}, {8, 287}, {7, 287}, {15, 275}, {12, 274},
{6, 281}, {38, 262}, {32, 257}, {63, 286}, {35, 258}, {33, 259}, {32, 259}, {63,
282}, {40, 270}, {37, 269}, {48, 280}, {35, 265}, {54, 285}, {41, 261}, {36,
265}, {51, 286}, {49, 284}, {50, 284}, {32, 272}, {60, 268}, {53, 261}, {36,
276}, {62, 271}, {57, 267}, {61, 271}, {50, 262}, {49, 263}, {47, 280}, {61,
263}, {42, 278}, {52, 264}, {43, 278}, {68, 260}, {69, 260}, {87, 276}, {72,
268}, {84, 273}, {64, 264}, {66, 266}, {81, 281}, {85, 284}, {86, 284}, {65,
266}, {69, 267}, {79, 256}, {66, 274}, {72, 281}, {69, 273}, {78, 282}, {77,
280}, {78, 280}, {78, 278}, {75, 274}, {79, 278}, {91, 256}, {92, 258}, {95,
257}, {66, 285}, {119, 279}, {126, 286}, {107, 266}, {122, 283}, {121, 283},
{109, 270}, {108, 266}, {123, 285}, {115, 277}, {104, 271}, {114, 277}, {103,
271}, {100, 269}, {104, 258}, {107, 257}, {110, 261}, {104, 260}, {105, 260},
{79, 288}, {120, 279}, {97, 270}, {80, 288}, {110, 287}, {121, 264}, {109, 287},
{96, 275}, {99, 276}, {113, 262}, {124, 263}, {125, 262}, {112, 269}, {108,
275}, {122, 261}, {137, 265}, {141, 268}, {138, 265}, {144, 282}, {129, 268},
{133, 264}, {141, 259}, {132, 267}, {140, 259}, {136, 263}, {138, 286}, {133,
272}, {134, 272}, {135, 285}, {138, 273}, {144, 267}, {135, 281}, {141, 274}
}>;
(II) A more general form is to represent the graph as the orbit of {131, 151}
under the group generated by the following permutations:
a: (2, 13, 12, 67)(3, 25, 11, 55)(4, 37, 10, 43)(5, 49, 9, 31)(6, 61, 8, 19)(14,
24, 66, 68)(15, 36, 65, 56)(16, 48, 64, 44)(17, 60, 63, 32)(18, 72, 62, 20)(21,
30, 71, 50)(22, 42, 70, 38)(23, 54, 69, 26)(27, 35, 53, 57)(28, 47, 52, 45)(29,
59, 51, 33)(34, 41, 58, 39)(40, 46)(74, 85, 84, 139)(75, 97, 83, 127)(76, 109,
82, 115)(77, 121, 81, 103)(78, 133, 80, 91)(86, 96, 138, 140)(87, 108, 137,
128)(88, 120, 136, 116)(89, 132, 135, 104)(90, 144, 134, 92)(93, 102, 143,
122)(94, 114, 142, 110)(95, 126, 141, 98)(99, 107, 125, 129)(100, 119, 124,
117)(101, 131, 123, 105)(106, 113, 130, 111)(112, 118)(145, 253, 188, 165)(146,
254, 187, 166)(147, 220, 245, 248)(148, 219, 246, 247)(149, 216, 280, 264)(150,
215, 279, 263)(151, 222, 200, 182)(152, 221, 199, 181)(153, 161, 204, 232)(154,
162, 203, 231)(155, 190, 282, 272)(156, 189, 281, 271)(157, 225, 205, 195)(158,
226, 206, 196)(159, 192, 218, 172)(160, 191, 217, 171)(163, 257, 167, 268)(164,
258, 168, 267)(169, 202, 186, 179)(170, 201, 185, 180)(173, 214, 273, 242)(174,
213, 274, 241)(175, 237, 283, 229)(176, 238, 284, 230)(177, 250, 233, 239)(178,
249, 234, 240)(183, 212, 261, 251)(184, 211, 262, 252)(193, 286, 259, 227)(194,
285, 260, 228)(197, 276, 266, 236)(198, 275, 265, 235)(207, 223, 269, 209)(208,
224, 270, 210)(243, 287, 255, 277)(244, 288, 256, 278) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (13, 67)(14, 68)(15, 69)(16, 70)(17, 71)(18, 72)(19, 61)(20, 62)(21, 63)(22,
64)(23, 65)(24, 66)(25, 55)(26, 56)(27, 57)(28, 58)(29, 59)(30, 60)(31, 49)(32,
50)(33, 51)(34, 52)(35, 53)(36, 54)(37, 43)(38, 44)(39, 45)(40, 46)(41, 47)(42,
48)(73, 79)(74, 80)(75, 81)(76, 82)(77, 83)(78, 84)(85, 133)(86, 134)(87,
135)(88, 136)(89, 137)(90, 138)(91, 139)(92, 140)(93, 141)(94, 142)(95, 143)(96,
144)(97, 121)(98, 122)(99, 123)(100, 124)(101, 125)(102, 126)(103, 127)(104,
128)(105, 129)(106, 130)(107, 131)(108, 132)(145, 188)(146, 208)(148, 149)(151,
257)(152, 227)(153, 251)(154, 170)(155, 238)(156, 159)(157, 244)(158, 206)(160,
173)(161, 261)(162, 180)(163, 222)(164, 198)(166, 224)(167, 182)(168, 265)(169,
240)(171, 214)(172, 189)(174, 237)(175, 213)(176, 190)(177, 262)(178, 179)(181,
193)(183, 232)(184, 233)(185, 203)(186, 249)(187, 270)(191, 242)(192, 271)(194,
266)(195, 288)(197, 260)(199, 286)(200, 268)(201, 231)(202, 234)(204, 212)(205,
256)(207, 269)(210, 254)(211, 250)(215, 263)(216, 247)(217, 273)(218, 281)(219,
264)(220, 248)(221, 259)(225, 278)(228, 236)(229, 274)(230, 282)(235, 258)(239,
252)(241, 283)(243, 255)(246, 280)(267, 275)(272, 284)(276, 285)
c: (1, 2, 68, 67)(3, 56, 66, 13)(4, 44, 65, 25)(5, 32, 64, 37)(6, 20, 63, 49)(7,
8, 62, 61)(9, 50, 72, 19)(10, 38, 71, 31)(11, 26, 70, 43)(12, 14, 69, 55)(15,
57, 54, 24)(16, 45, 53, 36)(17, 33, 52, 48)(18, 21, 51, 60)(22, 39, 59, 30)(23,
27, 58, 42)(28, 46, 41, 35)(29, 34, 40, 47)(73, 80, 140, 133)(74, 134, 139,
79)(75, 122, 138, 91)(76, 110, 137, 103)(77, 98, 136, 115)(78, 86, 135, 127)(81,
128, 144, 85)(82, 116, 143, 97)(83, 104, 142, 109)(84, 92, 141, 121)(87, 123,
126, 90)(88, 111, 125, 102)(89, 99, 124, 114)(93, 129, 132, 96)(94, 117, 131,
108)(95, 105, 130, 120)(100, 112, 113, 101)(106, 118, 119, 107)(145, 209, 162,
211)(146, 254, 161, 186)(147, 236, 175, 158)(148, 152, 176, 256)(149, 235, 171,
157)(150, 151, 172, 255)(153, 187, 246, 258)(154, 207, 245, 228)(155, 259, 264,
225)(156, 163, 263, 277)(159, 271, 243, 287)(160, 242, 244, 195)(164, 247, 278,
173)(165, 262, 182, 215)(166, 179, 181, 219)(167, 199, 169, 233)(168, 276, 170,
232)(174, 260, 248, 226)(177, 185, 269, 253)(178, 212, 270, 210)(180, 266, 220,
223)(183, 249, 184, 203)(188, 279, 257, 239)(189, 230, 221, 268)(190, 218, 222,
286)(191, 274, 283, 273)(192, 282, 284, 281)(193, 200, 252, 234)(194, 275, 251,
231)(196, 237, 241, 206)(197, 267, 214, 229)(198, 285, 213, 217)(201, 250, 202,
204)(205, 288, 238, 272)(208, 280, 227, 240)(216, 224, 261, 265)
d: (1, 73)(2, 74)(3, 75)(4, 76)(5, 77)(6, 78)(7, 79)(8, 80)(9, 81)(10, 82)(11,
83)(12, 84)(13, 85)(14, 86)(15, 87)(16, 88)(17, 89)(18, 90)(19, 91)(20, 92)(21,
93)(22, 94)(23, 95)(24, 96)(25, 97)(26, 98)(27, 99)(28, 100)(29, 101)(30,
102)(31, 103)(32, 104)(33, 105)(34, 106)(35, 107)(36, 108)(37, 109)(38, 110)(39,
111)(40, 112)(41, 113)(42, 114)(43, 115)(44, 116)(45, 117)(46, 118)(47, 119)(48,
120)(49, 121)(50, 122)(51, 123)(52, 124)(53, 125)(54, 126)(55, 127)(56, 128)(57,
129)(58, 130)(59, 131)(60, 132)(61, 133)(62, 134)(63, 135)(64, 136)(65, 137)(66,
138)(67, 139)(68, 140)(69, 141)(70, 142)(71, 143)(72, 144)(145, 146)(147,
148)(149, 150)(151, 152)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163,
164)(165, 166)(167, 168)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179,
180)(181, 182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)(193, 194)(195,
196)(197, 198)(199, 200)(201, 202)(203, 204)(205, 206)(207, 208)(209, 210)(211,
212)(213, 214)(215, 216)(217, 218)(219, 220)(221, 222)(223, 224)(225, 226)(227,
228)(229, 230)(231, 232)(233, 234)(235, 236)(237, 238)(239, 240)(241, 242)(243,
244)(245, 246)(247, 248)(249, 250)(251, 252)(253, 254)(255, 256)(257, 258)(259,
260)(261, 262)(263, 264)(265, 266)(267, 268)(269, 270)(271, 272)(273, 274)(275,
276)(277, 278)(279, 280)(281, 282)(283, 284)(285, 286)(287, 288)
C4[ 288, 208 ]
288
-1 158 226 206 196
-2 147 237 174 196
-3 223 147 217 273
-4 253 244 157 223
-5 253 155 279 238
-6 277 279 281 218
-7 243 287 255 277
-8 287 156 159 150
-9 165 150 282 230
-10 165 209 256 205
-11 209 245 160 173
-12 245 226 229 274
-13 220 158 213 283
-14 228 283 174 197
-15 275 170 217 197
-16 157 170 216 250
-17 155 167 227 250
-18 167 189 200 218
-19 189 255 192 215
-20 156 222 257 192
-21 199 222 230 252
-22 256 203 219 252
-23 203 258 194 173
-24 276 213 194 229
-25 220 242 269 171
-26 242 162 228 164
-27 275 183 153 164
-28 270 216 153 186
-29 178 181 227 186
-30 176 200 181 184
-31 176 145 215 272
-32 177 257 259 272
-33 199 202 259 240
-34 146 212 240 219
-35 265 212 258 161
-36 265 276 201 171
-37 188 288 225 269
-38 288 148 162 262
-39 166 234 148 183
-40 166 254 270 208
-41 254 178 246 261
-42 231 278 246 184
-43 145 278 195 207
-44 177 180 149 195
-45 232 202 224 149
-46 187 210 146 224
-47 210 179 280 161
-48 233 201 225 280
-49 188 190 284 263
-50 221 151 262 284
-51 286 221 234 169
-52 264 169 204 208
-53 168 235 204 261
-54 231 168 214 285
-55 191 214 248 207
-56 198 180 191 236
-57 198 232 267 251
-58 187 247 249 251
-59 179 193 249 152
-60 233 190 268 193
-61 243 172 271 263
-62 159 271 151 163
-63 286 282 239 163
-64 264 205 239 185
-65 266 235 160 185
-66 266 175 274 285
-67 248 206 175 241
-68 236 237 260 241
-69 154 267 260 273
-70 154 211 244 247
-71 211 182 238 152
-72 268 182 281 172
-73 157 225 205 195
-74 148 238 173 195
-75 224 148 218 274
-76 243 254 158 224
-77 254 156 280 237
-78 278 280 282 217
-79 244 288 256 278
-80 155 288 149 160
-81 166 149 281 229
-82 166 210 255 206
-83 210 246 159 174
-84 246 225 273 230
-85 157 214 284 219
-86 198 227 173 284
-87 198 276 169 218
-88 158 169 215 249
-89 156 168 249 228
-90 199 168 190 217
-91 190 256 191 216
-92 155 221 191 258
-93 221 200 229 251
-94 220 255 204 251
-95 257 193 204 174
-96 275 214 193 230
-97 270 172 219 241
-98 161 227 163 241
-99 154 276 184 163
-100 154 269 215 185
-101 177 182 228 185
-102 199 182 183 175
-103 146 216 271 175
-104 178 258 260 271
-105 200 201 260 239
-106 220 145 211 239
-107 211 266 257 162
-108 275 266 202 172
-109 187 287 226 270
-110 287 147 161 261
-111 165 233 147 184
-112 165 253 269 207
-113 253 177 245 262
-114 232 277 245 183
-115 277 146 196 208
-116 178 179 150 196
-117 231 201 223 150
-118 209 188 145 223
-119 209 180 279 162
-120 234 202 279 226
-121 187 264 189 283
-122 222 261 283 152
-123 222 233 170 285
-124 170 203 207 263
-125 167 203 236 262
-126 286 232 167 213
-127 213 192 247 208
-128 179 235 192 197
-129 231 268 197 252
-130 188 248 250 252
-131 180 194 151 250
-132 189 234 267 194
-133 264 244 171 272
-134 160 272 152 164
-135 281 240 164 285
-136 206 240 186 263
-137 265 159 236 186
-138 176 286 265 273
-139 176 242 247 205
-140 242 235 259 238
-141 268 259 153 274
-142 243 212 248 153
-143 212 181 237 151
-144 267 181 171 282
-145 106 118 31 43
-146 34 46 103 115
-147 110 111 2 3
-148 38 39 74 75
-149 44 45 80 81
-150 116 117 8 9
-151 143 50 62 131
-152 122 134 59 71
-153 27 28 141 142
-154 99 100 69 70
-155 80 92 5 17
-156 77 89 8 20
-157 4 16 73 85
-158 88 1 13 76
-159 137 83 62 8
-160 11 134 80 65
-161 110 35 47 98
-162 26 38 107 119
-163 99 62 63 98
-164 134 135 26 27
-165 111 112 9 10
-166 81 82 39 40
-167 125 126 17 18
-168 89 90 53 54
-169 88 51 52 87
-170 123 124 15 16
-171 133 144 25 36
-172 61 72 97 108
-173 11 23 74 86
-174 2 14 83 95
-175 66 67 102 103
-176 138 139 30 31
-177 44 101 113 32
-178 104 116 29 41
-179 47 59 116 128
-180 44 56 119 131
-181 143 144 29 30
-182 101 102 71 72
-183 102 114 27 39
-184 99 111 30 42
-185 100 101 64 65
-186 136 137 28 29
-187 121 46 58 109
-188 37 49 118 130
-189 121 132 18 19
-190 90 91 49 60
-191 55 56 91 92
-192 127 128 19 20
-193 59 60 95 96
-194 132 23 24 131
-195 44 73 74 43
-196 1 2 115 116
-197 14 15 128 129
-198 56 57 86 87
-199 33 90 102 21
-200 93 105 18 30
-201 36 48 105 117
-202 33 45 108 120
-203 22 23 124 125
-204 94 95 52 53
-205 73 139 64 10
-206 1 67 136 82
-207 55 112 124 43
-208 115 127 40 52
-209 11 118 119 10
-210 46 47 82 83
-211 70 71 106 107
-212 143 34 35 142
-213 13 24 126 127
-214 55 85 96 54
-215 88 100 19 31
-216 91 103 16 28
-217 78 90 3 15
-218 6 18 75 87
-219 22 34 85 97
-220 13 25 94 106
-221 92 93 50 51
-222 122 123 20 21
-223 3 4 117 118
-224 45 46 75 76
-225 37 48 73 84
-226 1 12 109 120
-227 17 29 86 98
-228 89 101 14 26
-229 12 24 81 93
-230 84 96 9 21
-231 117 129 42 54
-232 45 57 114 126
-233 111 123 48 60
-234 132 39 51 120
-235 128 140 53 65
-236 56 68 125 137
-237 77 143 2 68
-238 5 71 74 140
-239 105 106 63 64
-240 33 34 135 136
-241 67 68 97 98
-242 25 26 139 140
-243 61 7 76 142
-244 133 79 4 70
-245 11 12 113 114
-246 83 84 41 42
-247 58 70 127 139
-248 55 67 130 142
-249 88 89 58 59
-250 16 17 130 131
-251 57 58 93 94
-252 22 129 130 21
-253 112 113 4 5
-254 77 40 41 76
-255 82 94 7 19
-256 22 79 91 10
-257 95 107 20 32
-258 23 35 92 104
-259 33 140 141 32
-260 68 69 104 105
-261 110 122 41 53
-262 113 125 38 50
-263 124 136 49 61
-264 121 133 52 64
-265 35 36 137 138
-266 66 107 108 65
-267 132 144 57 69
-268 60 72 129 141
-269 100 112 25 37
-270 28 40 97 109
-271 103 104 61 62
-272 133 134 31 32
-273 3 69 138 84
-274 66 12 75 141
-275 15 27 96 108
-276 99 24 36 87
-277 114 115 6 7
-278 78 79 42 43
-279 5 6 119 120
-280 77 78 47 48
-281 135 81 6 72
-282 78 144 63 9
-283 121 122 13 14
-284 49 50 85 86
-285 66 123 135 54
-286 126 138 51 63
-287 110 7 8 109
-288 79 80 37 38
0