C4graphGraph forms for C4 [ 288, 210 ] = SDD({4,4}_<9,3>)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 210 ] = SDD({4,4}_<9,3>).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {128, 199}, {144, 215}, {136, 207}, {128, 200}, {144, 216}, {135, 207}, {134, 206}, {133, 205}, {132, 204}, {131, 203}, {130, 202}, {129, 201}, {129, 200}, {135, 206}, {133, 204}, {131, 202}, {130, 201}, {134, 205}, {132, 203}, {136, 208}, {143, 215}, {142, 214}, {141, 213}, {140, 212}, {139, 211}, {138, 210}, {137, 209}, {137, 208}, {143, 214}, {141, 212}, {139, 210}, {138, 209}, {142, 213}, {140, 211}, {24, 152}, {60, 188}, {26, 154}, {22, 151}, {25, 152}, {21, 151}, {57, 187}, {27, 153}, {63, 189}, {20, 151}, {26, 153}, {18, 150}, {30, 154}, {16, 149}, {31, 154}, {28, 153}, {19, 150}, {17, 151}, {29, 155}, {17, 150}, {29, 154}, {71, 192}, {72, 207}, {48, 184}, {70, 206}, {51, 185}, {74, 192}, {75, 193}, {20, 152}, {54, 186}, {44, 160}, {64, 204}, {79, 195}, {23, 153}, {47, 161}, {67, 205}, {23, 152}, {47, 160}, {77, 194}, {1, 145}, {50, 162}, {48, 160}, {36, 180}, {87, 199}, {49, 160}, {89, 200}, {3, 145}, {51, 161}, {39, 181}, {33, 179}, {91, 201}, {1, 146}, {50, 161}, {2, 145}, {85, 198}, {6, 146}, {54, 162}, {95, 203}, {4, 145}, {55, 162}, {52, 161}, {7, 146}, {81, 196}, {5, 147}, {53, 163}, {83, 197}, {5, 146}, {53, 162}, {93, 202}, {12, 148}, {103, 255}, {62, 166}, {60, 164}, {14, 150}, {10, 147}, {102, 255}, {61, 164}, {58, 163}, {13, 148}, {9, 147}, {100, 254}, {57, 163}, {45, 183}, {15, 149}, {63, 165}, {8, 147}, {101, 254}, {100, 255}, {62, 165}, {56, 163}, {14, 149}, {8, 148}, {98, 254}, {56, 164}, {42, 182}, {96, 252}, {96, 253}, {97, 252}, {11, 149}, {99, 253}, {59, 165}, {11, 148}, {98, 253}, {59, 164}, {12, 172}, {120, 216}, {119, 215}, {87, 247}, {88, 248}, {90, 250}, {86, 247}, {88, 249}, {89, 248}, {9, 171}, {122, 216}, {15, 173}, {84, 246}, {91, 249}, {94, 252}, {84, 247}, {117, 214}, {85, 246}, {90, 249}, {80, 244}, {82, 246}, {95, 251}, {80, 245}, {113, 212}, {81, 244}, {94, 251}, {83, 245}, {115, 213}, {92, 250}, {82, 245}, {92, 251}, {93, 250}, {24, 176}, {103, 207}, {70, 239}, {2, 168}, {27, 177}, {3, 169}, {69, 239}, {68, 239}, {101, 206}, {6, 170}, {30, 178}, {66, 238}, {64, 237}, {97, 204}, {67, 238}, {65, 239}, {99, 205}, {86, 248}, {65, 238}, {46, 159}, {45, 159}, {44, 159}, {42, 158}, {68, 240}, {40, 157}, {43, 158}, {41, 159}, {118, 192}, {41, 158}, {71, 240}, {36, 156}, {127, 199}, {126, 198}, {125, 197}, {124, 196}, {123, 195}, {121, 193}, {120, 192}, {38, 158}, {72, 240}, {73, 241}, {34, 155}, {127, 198}, {125, 196}, {123, 194}, {105, 208}, {37, 156}, {21, 175}, {107, 209}, {39, 157}, {33, 155}, {75, 241}, {78, 244}, {32, 155}, {126, 197}, {122, 193}, {121, 194}, {38, 157}, {73, 242}, {74, 241}, {18, 174}, {111, 211}, {32, 156}, {79, 243}, {78, 243}, {35, 157}, {76, 242}, {35, 156}, {124, 195}, {109, 210}, {76, 243}, {77, 242}, {22, 214}, {38, 230}, {36, 228}, {34, 227}, {37, 228}, {33, 227}, {39, 229}, {32, 227}, {38, 229}, {16, 212}, {44, 232}, {32, 228}, {28, 216}, {19, 213}, {47, 233}, {35, 229}, {35, 228}, {47, 232}, {119, 191}, {22, 223}, {118, 191}, {46, 231}, {21, 223}, {116, 190}, {45, 231}, {20, 223}, {117, 190}, {116, 191}, {44, 231}, {18, 222}, {114, 190}, {112, 188}, {42, 230}, {16, 221}, {113, 188}, {112, 189}, {43, 230}, {40, 229}, {19, 222}, {17, 223}, {115, 189}, {41, 231}, {25, 215}, {17, 222}, {114, 189}, {41, 230}, {12, 220}, {106, 186}, {104, 184}, {103, 183}, {60, 236}, {14, 222}, {62, 238}, {10, 219}, {105, 184}, {104, 185}, {102, 183}, {61, 236}, {58, 235}, {13, 220}, {9, 219}, {110, 188}, {107, 185}, {100, 182}, {57, 235}, {45, 255}, {15, 221}, {63, 237}, {8, 219}, {106, 185}, {101, 182}, {100, 183}, {56, 235}, {14, 221}, {62, 237}, {4, 208}, {111, 187}, {98, 182}, {56, 236}, {42, 254}, {8, 220}, {96, 180}, {96, 181}, {110, 187}, {97, 180}, {7, 209}, {108, 186}, {99, 181}, {59, 237}, {11, 221}, {11, 220}, {109, 186}, {108, 187}, {98, 181}, {59, 236}, {1, 217}, {50, 234}, {48, 232}, {36, 252}, {10, 210}, {49, 232}, {3, 217}, {51, 233}, {39, 253}, {33, 251}, {1, 218}, {50, 233}, {2, 217}, {6, 218}, {54, 234}, {4, 217}, {55, 234}, {52, 233}, {7, 218}, {5, 219}, {102, 184}, {53, 235}, {31, 193}, {13, 211}, {5, 218}, {53, 234}, {24, 248}, {34, 194}, {72, 168}, {73, 169}, {70, 167}, {21, 247}, {27, 249}, {69, 167}, {75, 169}, {78, 172}, {68, 167}, {73, 170}, {74, 169}, {18, 246}, {30, 250}, {66, 166}, {79, 171}, {64, 165}, {67, 166}, {78, 171}, {37, 195}, {65, 167}, {76, 170}, {86, 176}, {65, 166}, {76, 171}, {77, 170}, {46, 198}, {88, 176}, {90, 178}, {88, 177}, {89, 176}, {91, 177}, {94, 180}, {90, 177}, {40, 196}, {68, 168}, {95, 179}, {94, 179}, {43, 197}, {92, 178}, {71, 168}, {92, 179}, {93, 178}, {58, 202}, {2, 240}, {3, 241}, {6, 242}, {20, 224}, {23, 225}, {61, 203}, {49, 199}, {23, 224}, {12, 244}, {26, 226}, {24, 224}, {87, 175}, {25, 224}, {86, 175}, {9, 243}, {27, 225}, {15, 245}, {69, 191}, {84, 174}, {26, 225}, {84, 175}, {85, 174}, {30, 226}, {52, 200}, {66, 190}, {80, 172}, {82, 174}, {28, 225}, {31, 226}, {80, 173}, {81, 172}, {29, 227}, {55, 201}, {83, 173}, {29, 226}, {82, 173}, {25, 287}, {22, 286}, {16, 284}, {19, 285}, {10, 282}, {13, 283}, {31, 265}, {4, 280}, {7, 281}, {46, 270}, {40, 268}, {52, 272}, {43, 269}, {55, 273}, {34, 266}, {58, 274}, {37, 267}, {61, 275}, {48, 256}, {51, 257}, {54, 258}, {60, 260}, {57, 259}, {63, 261}, {28, 288}, {49, 271}, {69, 263}, {74, 264}, {75, 265}, {66, 262}, {79, 267}, {77, 266}, {89, 272}, {91, 273}, {95, 275}, {71, 264}, {93, 274}, {70, 278}, {64, 276}, {67, 277}, {87, 271}, {120, 288}, {122, 288}, {85, 270}, {81, 268}, {83, 269}, {72, 279}, {102, 256}, {104, 256}, {119, 287}, {106, 258}, {104, 257}, {105, 256}, {107, 257}, {110, 260}, {106, 257}, {117, 286}, {111, 259}, {110, 259}, {113, 284}, {108, 258}, {115, 285}, {108, 259}, {109, 258}, {103, 279}, {127, 271}, {126, 270}, {125, 269}, {124, 268}, {123, 267}, {121, 265}, {120, 264}, {119, 263}, {105, 280}, {127, 270}, {125, 268}, {123, 266}, {118, 263}, {107, 281}, {116, 262}, {101, 278}, {126, 269}, {122, 265}, {121, 266}, {117, 262}, {116, 263}, {111, 283}, {114, 262}, {112, 260}, {97, 276}, {113, 260}, {112, 261}, {99, 277}, {115, 261}, {109, 282}, {124, 267}, {114, 261}, {118, 264}, {128, 271}, {144, 287}, {128, 272}, {143, 287}, {142, 286}, {141, 285}, {140, 284}, {139, 283}, {138, 282}, {137, 281}, {136, 280}, {135, 279}, {134, 278}, {133, 277}, {132, 276}, {131, 275}, {130, 274}, {129, 273}, {129, 272}, {143, 286}, {141, 284}, {139, 282}, {137, 280}, {135, 278}, {133, 276}, {131, 274}, {130, 273}, {142, 285}, {138, 281}, {134, 277}, {132, 275}, {140, 283}, {136, 279}, {144, 288} }>;

(II) A more general form is to represent the graph as the orbit of {128, 199} under the group generated by the following permutations:

a: (207, 279)
b: (187, 259)
c: (166, 238)
d: (203, 275)
e: (168, 240)
f: (216, 288)
g: (193, 265)
h: (185, 257)
m: (191, 263)
n1: (194, 266)
a1: (197, 269)
b1: (184, 256)
c1: (192, 264)
d1: (151, 223)
e1: (177, 249)
f1: (146, 218)
g1: (208, 280)
h1: (171, 243)
m1: (180, 252)
n2: (147, 219)
a2: (211, 283)
b2: (174, 246)
c2: (214, 286)
d2: (201, 273)
e2: (167, 239)
f2: (213, 285)
g2: (163, 235)
h2: (157, 229)
m2: (196, 268)
n3: (1, 3)(2, 4)(5, 75)(6, 73)(7, 74)(8, 31)(9, 121)(10, 122)(11, 30)(12, 29)(13, 26)(14, 93)(15, 92)(16, 90)(17, 58)(18, 131)(19, 130)(20, 57)(21, 56)(22, 53)(23, 111)(24, 110)(25, 108)(27, 140)(28, 139)(32, 81)(33, 80)(34, 78)(35, 40)(36, 125)(37, 124)(38, 39)(41, 99)(42, 98)(43, 96)(44, 67)(45, 134)(46, 133)(47, 66)(48, 65)(49, 62)(50, 117)(51, 116)(52, 114)(54, 143)(55, 142)(59, 87)(60, 86)(61, 84)(63, 128)(64, 127)(68, 105)(69, 104)(70, 102)(71, 137)(72, 136)(76, 77)(79, 123)(82, 95)(83, 94)(85, 132)(88, 113)(89, 112)(91, 141)(97, 126)(100, 101)(103, 135)(106, 119)(107, 118)(109, 144)(115, 129)(120, 138)(146, 169)(147, 193)(148, 154)(149, 178)(150, 202)(151, 163)(152, 187)(153, 211)(155, 172)(156, 196)(158, 181)(159, 205)(160, 166)(161, 190)(162, 214)(164, 175)(165, 199)(167, 184)(168, 208)(171, 194)(173, 179)(174, 203)(176, 188)(177, 212)(180, 197)(183, 206)(185, 191)(186, 215)(189, 200)(192, 209)(198, 204)(201, 213)(210, 216)(218, 241)(219, 265)(220, 226)(221, 250)(222, 274)(223, 235)(224, 259)(225, 283)(227, 244)(228, 268)(230, 253)(231, 277)(232, 238)(233, 262)(234, 286)(236, 247)(237, 271)(239, 256)(240, 280)(243, 266)(245, 251)(246, 275)(248, 260)(249, 284)(252, 269)(255, 278)(257, 263)(258, 287)(261, 272)(264, 281)(270, 276)(273, 285)(282, 288)
a3: (190, 262)
b3: (215, 287)
c3: (199, 271)
d3: (195, 267)
e3: (176, 248)
f3: (188, 260)
g3: (198, 270)
h3: (204, 276)
m3: (210, 282)
n4: (149, 221)
a4: (182, 254)
b4: (169, 241)
c4: (2, 5)(3, 7)(4, 6)(8, 68)(9, 72)(10, 71)(11, 65)(12, 70)(13, 69)(14, 62)(15, 67)(16, 66)(17, 59)(18, 64)(19, 63)(20, 56)(21, 61)(22, 60)(23, 53)(24, 58)(25, 57)(26, 50)(27, 55)(28, 54)(29, 47)(30, 52)(31, 51)(32, 44)(33, 49)(34, 48)(35, 41)(36, 46)(37, 45)(39, 43)(40, 42)(73, 137)(74, 138)(75, 107)(76, 136)(77, 105)(78, 135)(79, 103)(80, 134)(81, 101)(82, 133)(83, 99)(84, 132)(85, 97)(86, 131)(87, 95)(88, 130)(89, 93)(90, 129)(92, 128)(94, 127)(96, 126)(98, 125)(100, 124)(102, 123)(104, 121)(106, 122)(108, 144)(109, 120)(110, 143)(111, 119)(112, 142)(113, 117)(114, 141)(116, 140)(118, 139)(145, 146)(147, 168)(148, 167)(149, 166)(150, 165)(151, 164)(152, 163)(153, 162)(154, 161)(155, 160)(156, 159)(157, 158)(169, 209)(170, 208)(171, 207)(172, 206)(173, 205)(174, 204)(175, 203)(176, 202)(177, 201)(178, 200)(179, 199)(180, 198)(181, 197)(182, 196)(183, 195)(184, 194)(185, 193)(186, 216)(187, 215)(188, 214)(189, 213)(190, 212)(191, 211)(192, 210)(217, 218)(219, 240)(220, 239)(221, 238)(222, 237)(223, 236)(224, 235)(225, 234)(226, 233)(227, 232)(228, 231)(229, 230)(241, 281)(242, 280)(243, 279)(244, 278)(245, 277)(246, 276)(247, 275)(248, 274)(249, 273)(250, 272)(251, 271)(252, 270)(253, 269)(254, 268)(255, 267)(256, 266)(257, 265)(258, 288)(259, 287)(260, 286)(261, 285)(262, 284)(263, 283)(264, 282)
d4: (162, 234)
e4: (205, 277)
f4: (206, 278)
g4: (200, 272)
h4: (156, 228)
m4: (158, 230)
n5: (148, 220)
a5: (179, 251)
b5: (209, 281)
c5: (150, 222)
d5: (153, 225)
e5: (154, 226)
f5: (1, 2, 68, 65, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11, 8, 5)(3, 71, 69, 66, 63, 60, 57, 54, 51, 48, 45, 42, 39, 36, 33, 30, 27, 24, 21, 18, 15, 12, 9, 6)(4, 72, 70, 67, 64, 61, 58, 55, 52, 49, 46, 43, 40, 37, 34, 31, 28, 25, 22, 19, 16, 13, 10, 7)(73, 74, 118, 116, 114, 112, 110, 108, 106, 104, 102, 100, 98, 96, 94, 92, 90, 88, 86, 84, 82, 80, 78, 76)(75, 120, 119, 117, 115, 113, 111, 109, 107, 105, 103, 101, 99, 97, 95, 93, 91, 89, 87, 85, 83, 81, 79, 77)(121, 122, 144, 143, 142, 141, 140, 139, 138, 137, 136, 135, 134, 133, 132, 131, 130, 129, 128, 127, 126, 125, 124, 123)(145, 168, 167, 166, 165, 164, 163, 162, 161, 160, 159, 158, 157, 156, 155, 154, 153, 152, 151, 150, 149, 148, 147, 146)(169, 192, 191, 190, 189, 188, 187, 186, 185, 184, 183, 182, 181, 180, 179, 178, 177, 176, 175, 174, 173, 172, 171, 170)(193, 216, 215, 214, 213, 212, 211, 210, 209, 208, 207, 206, 205, 204, 203, 202, 201, 200, 199, 198, 197, 196, 195, 194)(217, 240, 239, 238, 237, 236, 235, 234, 233, 232, 231, 230, 229, 228, 227, 226, 225, 224, 223, 222, 221, 220, 219, 218)(241, 264, 263, 262, 261, 260, 259, 258, 257, 256, 255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242)(265, 288, 287, 286, 285, 284, 283, 282, 281, 280, 279, 278, 277, 276, 275, 274, 273, 272, 271, 270, 269, 268, 267, 266)
g5: (159, 231)
h5: (186, 258)
m5: (173, 245)
n6: (183, 255)
a6: (152, 224)
b6: (160, 232)
c6: (161, 233)
d6: (170, 242)
e6: (165, 237)
f6: (178, 250)
g6: (145, 217)
h6: (164, 236)
m6: (172, 244)
n7: (175, 247)
a7: (155, 227)
b7: (212, 284)
c7: (202, 274)
d7: (189, 261)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 210 ]
288
-1 145 146 217 218
-2 145 168 217 240
-3 145 169 217 241
-4 145 280 217 208
-5 146 147 218 219
-6 242 146 170 218
-7 209 146 281 218
-8 220 147 148 219
-9 243 147 171 219
-10 210 147 282 219
-11 220 221 148 149
-12 220 244 148 172
-13 220 211 148 283
-14 221 222 149 150
-15 221 245 149 173
-16 221 212 149 284
-17 222 223 150 151
-18 222 246 150 174
-19 222 213 150 285
-20 223 224 151 152
-21 223 247 151 175
-22 286 223 214 151
-23 224 225 152 153
-24 176 224 248 152
-25 287 224 215 152
-26 154 225 226 153
-27 177 225 249 153
-28 288 225 216 153
-29 154 155 226 227
-30 154 178 226 250
-31 154 265 193 226
-32 155 156 227 228
-33 155 179 227 251
-34 155 266 194 227
-35 156 157 228 229
-36 156 180 228 252
-37 156 267 195 228
-38 157 158 229 230
-39 253 157 181 229
-40 157 268 196 229
-41 231 158 159 230
-42 254 158 182 230
-43 158 269 197 230
-44 231 232 159 160
-45 231 255 159 183
-46 198 231 159 270
-47 232 233 160 161
-48 232 256 160 184
-49 199 232 160 271
-50 233 234 161 162
-51 233 257 161 185
-52 200 233 161 272
-53 234 235 162 163
-54 234 258 162 186
-55 201 234 162 273
-56 235 236 163 164
-57 187 235 259 163
-58 202 235 163 274
-59 165 236 237 164
-60 188 236 260 164
-61 275 203 236 164
-62 165 166 237 238
-63 165 189 237 261
-64 165 276 204 237
-65 166 167 238 239
-66 166 190 238 262
-67 166 277 205 238
-68 167 168 239 240
-69 167 191 239 263
-70 167 278 206 239
-71 264 168 192 240
-72 168 279 207 240
-73 242 169 170 241
-74 264 169 192 241
-75 265 169 193 241
-76 242 243 170 171
-77 242 266 170 194
-78 243 244 171 172
-79 243 267 171 195
-80 244 245 172 173
-81 244 268 172 196
-82 245 246 173 174
-83 245 269 173 197
-84 246 247 174 175
-85 198 246 270 174
-86 176 247 248 175
-87 199 247 271 175
-88 176 177 248 249
-89 176 200 248 272
-90 177 178 249 250
-91 177 201 249 273
-92 178 179 250 251
-93 178 202 250 274
-94 179 180 251 252
-95 275 179 203 251
-96 253 180 181 252
-97 276 180 204 252
-98 253 254 181 182
-99 253 277 181 205
-100 254 255 182 183
-101 254 278 182 206
-102 255 256 183 184
-103 255 279 183 207
-104 256 257 184 185
-105 256 280 184 208
-106 257 258 185 186
-107 209 257 281 185
-108 187 258 259 186
-109 210 258 282 186
-110 187 188 259 260
-111 187 211 259 283
-112 188 189 260 261
-113 188 212 260 284
-114 189 190 261 262
-115 189 213 261 285
-116 190 191 262 263
-117 286 190 214 262
-118 264 191 192 263
-119 287 191 215 263
-120 264 288 192 216
-121 265 266 193 194
-122 265 288 193 216
-123 266 267 194 195
-124 267 268 195 196
-125 268 269 196 197
-126 198 269 270 197
-127 198 199 270 271
-128 199 200 271 272
-129 200 201 272 273
-130 201 202 273 274
-131 275 202 203 274
-132 275 276 203 204
-133 276 277 204 205
-134 277 278 205 206
-135 278 279 206 207
-136 279 280 207 208
-137 209 280 281 208
-138 209 210 281 282
-139 210 211 282 283
-140 211 212 283 284
-141 212 213 284 285
-142 286 213 214 285
-143 286 287 214 215
-144 287 288 215 216
-145 1 2 3 4
-146 1 5 6 7
-147 5 8 9 10
-148 11 12 13 8
-149 11 14 15 16
-150 14 17 18 19
-151 22 17 20 21
-152 23 24 25 20
-153 23 26 27 28
-154 26 29 30 31
-155 33 34 29 32
-156 35 36 37 32
-157 35 38 39 40
-158 38 41 42 43
-159 44 45 46 41
-160 44 47 48 49
-161 47 50 51 52
-162 55 50 53 54
-163 56 57 58 53
-164 56 59 60 61
-165 59 62 63 64
-166 66 67 62 65
-167 68 69 70 65
-168 2 68 71 72
-169 3 73 74 75
-170 77 6 73 76
-171 78 79 9 76
-172 12 78 80 81
-173 80 15 82 83
-174 82 18 84 85
-175 84 86 21 87
-176 88 89 24 86
-177 88 90 91 27
-178 90 92 93 30
-179 33 92 94 95
-180 36 94 96 97
-181 99 39 96 98
-182 100 101 42 98
-183 45 100 102 103
-184 102 48 104 105
-185 104 51 106 107
-186 106 108 54 109
-187 110 111 57 108
-188 110 112 113 60
-189 112 114 115 63
-190 66 114 116 117
-191 69 116 118 119
-192 71 74 118 120
-193 121 122 31 75
-194 77 121 34 123
-195 79 123 124 37
-196 124 81 125 40
-197 125 126 83 43
-198 46 126 127 85
-199 49 127 128 87
-200 89 128 52 129
-201 55 91 129 130
-202 58 93 130 131
-203 132 61 95 131
-204 132 133 64 97
-205 99 67 133 134
-206 101 134 135 70
-207 135 103 136 72
-208 4 136 137 105
-209 137 138 7 107
-210 138 139 10 109
-211 111 13 139 140
-212 113 16 140 141
-213 115 19 141 142
-214 22 143 117 142
-215 143 144 25 119
-216 122 144 28 120
-217 1 2 3 4
-218 1 5 6 7
-219 5 8 9 10
-220 11 12 13 8
-221 11 14 15 16
-222 14 17 18 19
-223 22 17 20 21
-224 23 24 25 20
-225 23 26 27 28
-226 26 29 30 31
-227 33 34 29 32
-228 35 36 37 32
-229 35 38 39 40
-230 38 41 42 43
-231 44 45 46 41
-232 44 47 48 49
-233 47 50 51 52
-234 55 50 53 54
-235 56 57 58 53
-236 56 59 60 61
-237 59 62 63 64
-238 66 67 62 65
-239 68 69 70 65
-240 2 68 71 72
-241 3 73 74 75
-242 77 6 73 76
-243 78 79 9 76
-244 12 78 80 81
-245 80 15 82 83
-246 82 18 84 85
-247 84 86 21 87
-248 88 89 24 86
-249 88 90 91 27
-250 90 92 93 30
-251 33 92 94 95
-252 36 94 96 97
-253 99 39 96 98
-254 100 101 42 98
-255 45 100 102 103
-256 102 48 104 105
-257 104 51 106 107
-258 106 108 54 109
-259 110 111 57 108
-260 110 112 113 60
-261 112 114 115 63
-262 66 114 116 117
-263 69 116 118 119
-264 71 74 118 120
-265 121 122 31 75
-266 77 121 34 123
-267 79 123 124 37
-268 124 81 125 40
-269 125 126 83 43
-270 46 126 127 85
-271 49 127 128 87
-272 89 128 52 129
-273 55 91 129 130
-274 58 93 130 131
-275 132 61 95 131
-276 132 133 64 97
-277 99 67 133 134
-278 101 134 135 70
-279 135 103 136 72
-280 4 136 137 105
-281 137 138 7 107
-282 138 139 10 109
-283 111 13 139 140
-284 113 16 140 141
-285 115 19 141 142
-286 22 143 117 142
-287 143 144 25 119
-288 122 144 28 120
0

**************