C4graphGraph forms for C4 [ 288, 215 ] = SDD(Pr_24(1,1,5,5))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 215 ] = SDD(Pr_24(1,1,5,5)).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {132, 199}, {144, 211}, {140, 207}, {136, 203}, {128, 196}, {129, 197}, {131, 198}, {139, 206}, {137, 204}, {130, 197}, {138, 205}, {131, 203}, {144, 216}, {135, 207}, {134, 206}, {133, 205}, {132, 204}, {129, 202}, {133, 200}, {135, 202}, {134, 201}, {128, 215}, {136, 208}, {143, 215}, {142, 214}, {141, 213}, {140, 212}, {139, 211}, {138, 210}, {137, 209}, {130, 216}, {141, 208}, {143, 210}, {142, 209}, {24, 152}, {26, 154}, {22, 151}, {58, 187}, {25, 152}, {61, 188}, {21, 151}, {27, 153}, {20, 151}, {57, 186}, {26, 153}, {63, 188}, {18, 150}, {30, 154}, {16, 149}, {31, 154}, {28, 153}, {19, 150}, {17, 151}, {29, 155}, {78, 200}, {17, 150}, {60, 187}, {48, 183}, {29, 154}, {72, 192}, {73, 193}, {49, 184}, {75, 194}, {51, 184}, {76, 199}, {79, 196}, {20, 152}, {44, 160}, {74, 198}, {52, 185}, {55, 186}, {23, 153}, {47, 161}, {77, 195}, {94, 208}, {23, 152}, {54, 185}, {47, 160}, {1, 145}, {50, 162}, {48, 160}, {89, 201}, {34, 179}, {49, 160}, {37, 180}, {91, 202}, {3, 145}, {51, 161}, {85, 199}, {1, 146}, {95, 204}, {50, 161}, {39, 180}, {33, 178}, {2, 145}, {92, 207}, {6, 146}, {54, 162}, {81, 197}, {90, 206}, {4, 145}, {55, 162}, {52, 161}, {7, 146}, {83, 198}, {88, 205}, {5, 147}, {53, 163}, {93, 203}, {5, 146}, {53, 162}, {36, 179}, {12, 148}, {60, 164}, {14, 150}, {62, 166}, {82, 202}, {10, 147}, {102, 255}, {58, 163}, {46, 183}, {13, 148}, {61, 164}, {80, 201}, {9, 147}, {101, 255}, {100, 254}, {57, 163}, {15, 149}, {63, 165}, {86, 204}, {8, 147}, {56, 163}, {45, 182}, {14, 149}, {62, 165}, {8, 148}, {97, 253}, {96, 252}, {56, 164}, {40, 181}, {99, 254}, {43, 182}, {11, 149}, {59, 165}, {11, 148}, {98, 253}, {59, 164}, {42, 181}, {84, 203}, {87, 200}, {88, 248}, {120, 216}, {89, 249}, {10, 171}, {118, 215}, {13, 172}, {86, 247}, {91, 250}, {84, 246}, {116, 214}, {85, 247}, {9, 170}, {95, 252}, {15, 172}, {90, 249}, {80, 244}, {112, 212}, {81, 245}, {83, 246}, {94, 251}, {92, 250}, {93, 251}, {12, 171}, {114, 213}, {82, 245}, {126, 214}, {25, 176}, {124, 213}, {70, 239}, {2, 168}, {101, 207}, {3, 169}, {69, 239}, {27, 176}, {68, 239}, {66, 238}, {97, 205}, {7, 170}, {99, 206}, {31, 178}, {28, 177}, {64, 237}, {67, 238}, {65, 239}, {122, 212}, {111, 193}, {6, 169}, {30, 177}, {65, 238}, {87, 248}, {98, 210}, {115, 195}, {46, 159}, {117, 196}, {96, 209}, {45, 159}, {119, 197}, {102, 212}, {44, 159}, {113, 194}, {42, 158}, {68, 240}, {40, 157}, {125, 200}, {43, 158}, {41, 159}, {127, 201}, {110, 216}, {24, 175}, {119, 192}, {103, 208}, {100, 211}, {41, 158}, {71, 240}, {36, 156}, {121, 193}, {120, 192}, {105, 209}, {38, 158}, {72, 240}, {73, 241}, {22, 175}, {123, 194}, {107, 210}, {37, 156}, {34, 155}, {75, 242}, {33, 155}, {39, 157}, {21, 174}, {127, 196}, {122, 193}, {108, 215}, {38, 157}, {32, 155}, {74, 241}, {79, 244}, {32, 156}, {123, 199}, {106, 214}, {16, 173}, {126, 195}, {104, 213}, {19, 174}, {78, 243}, {35, 157}, {125, 195}, {124, 194}, {109, 211}, {76, 242}, {77, 243}, {18, 173}, {121, 198}, {35, 156}, {36, 228}, {38, 230}, {34, 227}, {37, 228}, {33, 227}, {39, 229}, {32, 227}, {38, 229}, {4, 192}, {44, 232}, {32, 228}, {35, 229}, {47, 233}, {35, 228}, {47, 232}, {22, 223}, {118, 191}, {46, 231}, {21, 223}, {117, 191}, {116, 190}, {45, 231}, {20, 223}, {44, 231}, {18, 222}, {113, 189}, {112, 188}, {42, 230}, {16, 221}, {115, 190}, {43, 230}, {40, 229}, {19, 222}, {17, 223}, {41, 231}, {17, 222}, {114, 189}, {48, 255}, {41, 230}, {12, 220}, {105, 185}, {104, 184}, {14, 222}, {60, 236}, {62, 238}, {10, 219}, {107, 186}, {102, 183}, {58, 235}, {46, 255}, {13, 220}, {61, 236}, {9, 219}, {101, 183}, {100, 182}, {57, 235}, {15, 221}, {63, 237}, {8, 219}, {111, 188}, {106, 185}, {56, 235}, {45, 254}, {14, 221}, {62, 237}, {8, 220}, {97, 181}, {96, 180}, {56, 236}, {40, 253}, {110, 187}, {99, 182}, {43, 254}, {11, 221}, {109, 187}, {108, 186}, {59, 237}, {11, 220}, {98, 181}, {59, 236}, {42, 253}, {1, 217}, {50, 234}, {48, 232}, {34, 251}, {49, 232}, {37, 252}, {3, 217}, {51, 233}, {1, 218}, {50, 233}, {39, 252}, {33, 250}, {2, 217}, {6, 218}, {54, 234}, {4, 217}, {55, 234}, {52, 233}, {7, 218}, {5, 219}, {53, 235}, {5, 218}, {103, 184}, {53, 234}, {36, 251}, {72, 168}, {73, 169}, {22, 247}, {25, 248}, {70, 167}, {75, 170}, {69, 167}, {21, 246}, {27, 248}, {68, 167}, {74, 169}, {79, 172}, {66, 166}, {16, 245}, {31, 250}, {28, 249}, {19, 246}, {64, 165}, {67, 166}, {78, 171}, {65, 167}, {76, 170}, {77, 171}, {18, 245}, {30, 249}, {65, 166}, {87, 176}, {88, 176}, {89, 177}, {91, 178}, {90, 177}, {95, 180}, {68, 168}, {94, 179}, {92, 178}, {93, 179}, {24, 247}, {71, 168}, {2, 240}, {3, 241}, {20, 224}, {7, 242}, {23, 225}, {6, 241}, {23, 224}, {24, 224}, {26, 226}, {71, 191}, {10, 243}, {25, 224}, {13, 244}, {70, 191}, {86, 175}, {27, 225}, {84, 174}, {85, 175}, {9, 242}, {26, 225}, {15, 244}, {69, 190}, {30, 226}, {80, 172}, {81, 173}, {28, 225}, {31, 226}, {64, 189}, {67, 190}, {83, 174}, {29, 227}, {12, 243}, {29, 226}, {66, 189}, {82, 173}, {4, 264}, {49, 256}, {51, 256}, {52, 257}, {55, 258}, {54, 257}, {58, 259}, {61, 260}, {57, 258}, {63, 260}, {60, 259}, {71, 263}, {72, 264}, {73, 265}, {82, 274}, {70, 263}, {75, 266}, {80, 273}, {86, 276}, {69, 262}, {76, 271}, {79, 268}, {74, 270}, {64, 261}, {67, 262}, {77, 267}, {94, 280}, {66, 261}, {84, 275}, {87, 272}, {89, 273}, {91, 274}, {92, 279}, {95, 276}, {90, 278}, {88, 277}, {93, 275}, {110, 288}, {120, 288}, {85, 271}, {81, 269}, {83, 270}, {78, 272}, {126, 286}, {124, 285}, {111, 265}, {122, 284}, {103, 256}, {104, 256}, {105, 257}, {107, 258}, {118, 287}, {116, 286}, {106, 257}, {111, 260}, {112, 284}, {110, 259}, {125, 272}, {108, 258}, {127, 273}, {109, 259}, {114, 285}, {105, 281}, {121, 265}, {120, 264}, {107, 282}, {123, 266}, {118, 263}, {101, 279}, {117, 263}, {116, 262}, {108, 287}, {127, 268}, {122, 265}, {97, 277}, {123, 271}, {113, 261}, {112, 260}, {106, 286}, {99, 278}, {126, 267}, {115, 262}, {104, 285}, {109, 283}, {125, 267}, {124, 266}, {114, 261}, {121, 270}, {98, 282}, {115, 267}, {96, 281}, {117, 268}, {102, 284}, {119, 269}, {113, 266}, {100, 283}, {119, 264}, {103, 280}, {132, 271}, {144, 283}, {128, 268}, {129, 269}, {131, 270}, {130, 269}, {131, 275}, {143, 287}, {142, 286}, {141, 285}, {140, 284}, {139, 283}, {138, 282}, {137, 281}, {136, 280}, {135, 279}, {134, 278}, {133, 277}, {132, 276}, {129, 274}, {133, 272}, {143, 282}, {141, 280}, {135, 274}, {134, 273}, {142, 281}, {136, 275}, {140, 279}, {137, 276}, {139, 278}, {128, 287}, {138, 277}, {130, 288}, {144, 288} }>;

(II) A more general form is to represent the graph as the orbit of {132, 199} under the group generated by the following permutations:

a: (207, 279)
b: (187, 259)
c: (166, 238)
d: (203, 275)
e: (168, 240)
f: (216, 288)
g: (193, 265)
h: (185, 257)
m: (191, 263)
n1: (194, 266)
a1: (197, 269)
b1: (151, 223)
c1: (192, 264)
d1: (184, 256)
e1: (177, 249)
f1: (146, 218)
g1: (208, 280)
h1: (171, 243)
m1: (180, 252)
n2: (147, 219)
a2: (211, 283)
b2: (174, 246)
c2: (214, 286)
d2: (201, 273)
e2: (167, 239)
f2: (213, 285)
g2: (163, 235)
h2: (157, 229)
m2: (196, 268)
n3: (190, 262)
a3: (1, 2, 68, 65, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11, 8, 5)(3, 72, 70, 67, 64, 61, 58, 55, 52, 49, 46, 43, 40, 37, 34, 31, 28, 25, 22, 19, 16, 13, 10, 7)(4, 71, 69, 66, 63, 60, 57, 54, 51, 48, 45, 42, 39, 36, 33, 30, 27, 24, 21, 18, 15, 12, 9, 6)(73, 120, 118, 116, 114, 112, 109, 107, 105, 103, 101, 99, 97, 95, 93, 91, 89, 87, 85, 83, 81, 79, 77, 75)(74, 119, 117, 115, 113, 111, 110, 108, 106, 104, 102, 100, 98, 96, 94, 92, 90, 88, 86, 84, 82, 80, 78, 76)(121, 130, 128, 126, 124, 122, 144, 143, 142, 141, 140, 139, 138, 137, 136, 135, 134, 133, 132, 131, 129, 127, 125, 123)(145, 168, 167, 166, 165, 164, 163, 162, 161, 160, 159, 158, 157, 156, 155, 154, 153, 152, 151, 150, 149, 148, 147, 146)(169, 192, 191, 190, 189, 188, 187, 186, 185, 184, 183, 182, 181, 180, 179, 178, 177, 176, 175, 174, 173, 172, 171, 170)(193, 216, 215, 214, 213, 212, 211, 210, 209, 208, 207, 206, 205, 204, 203, 202, 201, 200, 199, 198, 197, 196, 195, 194)(217, 240, 239, 238, 237, 236, 235, 234, 233, 232, 231, 230, 229, 228, 227, 226, 225, 224, 223, 222, 221, 220, 219, 218)(241, 264, 263, 262, 261, 260, 259, 258, 257, 256, 255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242)(265, 288, 287, 286, 285, 284, 283, 282, 281, 280, 279, 278, 277, 276, 275, 274, 273, 272, 271, 270, 269, 268, 267, 266)
b3: (1, 3, 6)(2, 73, 7)(4, 74, 5)(8, 119, 83)(9, 72, 121)(10, 120, 131)(11, 81, 19)(12, 130, 84)(13, 129, 21)(14, 16, 18)(15, 82, 17)(20, 80, 91)(22, 79, 135)(23, 89, 31)(24, 127, 92)(25, 134, 33)(26, 28, 30)(27, 90, 29)(32, 88, 99)(34, 87, 139)(35, 97, 43)(36, 133, 100)(37, 138, 45)(38, 40, 42)(39, 98, 41)(44, 96, 107)(46, 95, 143)(47, 105, 55)(48, 137, 108)(49, 142, 57)(50, 52, 54)(51, 106, 53)(56, 104, 116)(58, 103, 126)(59, 114, 67)(60, 141, 115)(61, 124, 69)(62, 64, 66)(63, 113, 65)(68, 111, 75)(70, 112, 123)(71, 122, 76)(77, 110, 136)(78, 144, 93)(85, 117, 140)(86, 128, 101)(94, 125, 109)(102, 132, 118)(145, 169, 146)(147, 192, 198)(148, 197, 174)(149, 173, 150)(151, 172, 202)(152, 201, 178)(153, 177, 154)(155, 176, 206)(156, 205, 182)(157, 181, 158)(159, 180, 210)(160, 209, 186)(161, 185, 162)(163, 184, 214)(164, 213, 190)(165, 189, 166)(167, 188, 194)(168, 193, 170)(171, 216, 203)(175, 196, 207)(179, 200, 211)(183, 204, 215)(187, 208, 195)(191, 212, 199)(217, 241, 218)(219, 264, 270)(220, 269, 246)(221, 245, 222)(223, 244, 274)(224, 273, 250)(225, 249, 226)(227, 248, 278)(228, 277, 254)(229, 253, 230)(231, 252, 282)(232, 281, 258)(233, 257, 234)(235, 256, 286)(236, 285, 262)(237, 261, 238)(239, 260, 266)(240, 265, 242)(243, 288, 275)(247, 268, 279)(251, 272, 283)(255, 276, 287)(259, 280, 267)(263, 284, 271)
c3: (215, 287)
d3: (199, 271)
e3: (195, 267)
f3: (176, 248)
g3: (188, 260)
h3: (198, 270)
m3: (204, 276)
n4: (210, 282)
a4: (2, 5)(3, 6)(4, 7)(8, 68)(9, 72)(10, 71)(11, 65)(12, 70)(13, 69)(14, 62)(15, 67)(16, 66)(17, 59)(18, 64)(19, 63)(20, 56)(21, 61)(22, 60)(23, 53)(24, 58)(25, 57)(26, 50)(27, 55)(28, 54)(29, 47)(30, 52)(31, 51)(32, 44)(33, 49)(34, 48)(35, 41)(36, 46)(37, 45)(39, 43)(40, 42)(73, 74)(75, 119)(76, 120)(77, 117)(78, 118)(79, 115)(80, 116)(81, 113)(82, 114)(83, 111)(84, 112)(85, 110)(86, 109)(87, 108)(88, 107)(89, 106)(90, 105)(91, 104)(92, 103)(93, 102)(94, 101)(95, 100)(96, 99)(97, 98)(122, 131)(123, 130)(124, 129)(125, 128)(126, 127)(132, 144)(133, 143)(134, 142)(135, 141)(136, 140)(137, 139)(145, 146)(147, 168)(148, 167)(149, 166)(150, 165)(151, 164)(152, 163)(153, 162)(154, 161)(155, 160)(156, 159)(157, 158)(170, 192)(171, 191)(172, 190)(173, 189)(174, 188)(175, 187)(176, 186)(177, 185)(178, 184)(179, 183)(180, 182)(193, 198)(194, 197)(195, 196)(199, 216)(200, 215)(201, 214)(202, 213)(203, 212)(204, 211)(205, 210)(206, 209)(207, 208)(217, 218)(219, 240)(220, 239)(221, 238)(222, 237)(223, 236)(224, 235)(225, 234)(226, 233)(227, 232)(228, 231)(229, 230)(242, 264)(243, 263)(244, 262)(245, 261)(246, 260)(247, 259)(248, 258)(249, 257)(250, 256)(251, 255)(252, 254)(265, 270)(266, 269)(267, 268)(271, 288)(272, 287)(273, 286)(274, 285)(275, 284)(276, 283)(277, 282)(278, 281)(279, 280)
b4: (149, 221)
c4: (182, 254)
d4: (169, 241)
e4: (162, 234)
f4: (205, 277)
g4: (206, 278)
h4: (200, 272)
m4: (158, 230)
n5: (156, 228)
a5: (148, 220)
b5: (179, 251)
c5: (209, 281)
d5: (181, 253)
e5: (150, 222)
f5: (153, 225)
g5: (154, 226)
h5: (159, 231)
m5: (186, 258)
n6: (173, 245)
a6: (152, 224)
b6: (183, 255)
c6: (160, 232)
d6: (161, 233)
e6: (170, 242)
f6: (165, 237)
g6: (178, 250)
h6: (145, 217)
m6: (164, 236)
n7: (172, 244)
a7: (175, 247)
b7: (202, 274)
c7: (212, 284)
d7: (189, 261)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 215 ]
288
-1 145 146 217 218
-2 145 168 217 240
-3 145 169 217 241
-4 264 145 192 217
-5 146 147 218 219
-6 146 169 218 241
-7 242 146 170 218
-8 220 147 148 219
-9 242 147 170 219
-10 243 147 171 219
-11 220 221 148 149
-12 220 243 148 171
-13 220 244 148 172
-14 221 222 149 150
-15 221 244 149 172
-16 221 245 149 173
-17 222 223 150 151
-18 222 245 150 173
-19 222 246 150 174
-20 223 224 151 152
-21 223 246 151 174
-22 223 247 151 175
-23 224 225 152 153
-24 224 247 152 175
-25 176 224 248 152
-26 154 225 226 153
-27 176 225 248 153
-28 177 225 249 153
-29 154 155 226 227
-30 154 177 226 249
-31 154 178 226 250
-32 155 156 227 228
-33 155 178 227 250
-34 155 179 227 251
-35 156 157 228 229
-36 156 179 228 251
-37 156 180 228 252
-38 157 158 229 230
-39 157 180 229 252
-40 253 157 181 229
-41 231 158 159 230
-42 253 158 181 230
-43 254 158 182 230
-44 231 232 159 160
-45 231 254 159 182
-46 231 255 159 183
-47 232 233 160 161
-48 232 255 160 183
-49 232 256 160 184
-50 233 234 161 162
-51 233 256 161 184
-52 233 257 161 185
-53 234 235 162 163
-54 234 257 162 185
-55 234 258 162 186
-56 235 236 163 164
-57 235 258 163 186
-58 187 235 259 163
-59 165 236 237 164
-60 187 236 259 164
-61 188 236 260 164
-62 165 166 237 238
-63 165 188 237 260
-64 165 189 237 261
-65 166 167 238 239
-66 166 189 238 261
-67 166 190 238 262
-68 167 168 239 240
-69 167 190 239 262
-70 167 191 239 263
-71 168 191 240 263
-72 264 168 192 240
-73 265 169 193 241
-74 198 169 270 241
-75 242 266 170 194
-76 242 199 170 271
-77 243 267 171 195
-78 243 200 171 272
-79 244 268 172 196
-80 244 201 172 273
-81 245 269 173 197
-82 245 202 173 274
-83 198 246 270 174
-84 275 246 203 174
-85 199 247 271 175
-86 276 247 204 175
-87 176 200 248 272
-88 176 277 248 205
-89 177 201 249 273
-90 177 278 249 206
-91 178 202 250 274
-92 178 279 250 207
-93 275 179 203 251
-94 179 280 251 208
-95 276 180 204 252
-96 209 180 281 252
-97 253 277 181 205
-98 253 210 181 282
-99 254 278 182 206
-100 254 211 182 283
-101 255 279 183 207
-102 255 212 183 284
-103 256 280 184 208
-104 256 213 184 285
-105 209 257 281 185
-106 286 257 214 185
-107 210 258 282 186
-108 287 258 215 186
-109 187 211 259 283
-110 187 288 259 216
-111 188 265 193 260
-112 188 212 260 284
-113 189 266 194 261
-114 189 213 261 285
-115 190 267 195 262
-116 286 190 214 262
-117 191 268 196 263
-118 287 191 215 263
-119 264 192 269 197
-120 264 288 192 216
-121 198 265 193 270
-122 265 212 193 284
-123 199 266 194 271
-124 266 213 194 285
-125 200 267 195 272
-126 286 267 214 195
-127 201 268 196 273
-128 287 268 215 196
-129 202 269 197 274
-130 288 269 216 197
-131 198 275 203 270
-132 199 276 204 271
-133 200 277 205 272
-134 201 278 206 273
-135 202 279 207 274
-136 275 203 280 208
-137 209 276 204 281
-138 210 277 205 282
-139 211 278 206 283
-140 212 279 207 284
-141 213 280 208 285
-142 209 286 214 281
-143 210 287 215 282
-144 211 288 216 283
-145 1 2 3 4
-146 1 5 6 7
-147 5 8 9 10
-148 11 12 13 8
-149 11 14 15 16
-150 14 17 18 19
-151 22 17 20 21
-152 23 24 25 20
-153 23 26 27 28
-154 26 29 30 31
-155 33 34 29 32
-156 35 36 37 32
-157 35 38 39 40
-158 38 41 42 43
-159 44 45 46 41
-160 44 47 48 49
-161 47 50 51 52
-162 55 50 53 54
-163 56 57 58 53
-164 56 59 60 61
-165 59 62 63 64
-166 66 67 62 65
-167 68 69 70 65
-168 2 68 71 72
-169 3 6 73 74
-170 7 9 75 76
-171 77 12 78 10
-172 13 79 80 15
-173 81 16 82 18
-174 83 84 19 21
-175 22 24 85 86
-176 88 25 27 87
-177 89 90 28 30
-178 33 91 92 31
-179 34 36 93 94
-180 37 39 95 96
-181 40 42 97 98
-182 99 45 100 43
-183 46 101 102 48
-184 103 49 104 51
-185 105 106 52 54
-186 55 57 107 108
-187 110 58 60 109
-188 111 112 61 63
-189 66 113 114 64
-190 67 69 115 116
-191 70 71 117 118
-192 4 72 119 120
-193 121 111 122 73
-194 123 113 124 75
-195 77 125 115 126
-196 79 127 117 128
-197 81 129 119 130
-198 121 83 74 131
-199 132 123 85 76
-200 78 133 125 87
-201 89 134 80 127
-202 91 135 82 129
-203 136 93 84 131
-204 132 137 95 86
-205 88 133 138 97
-206 99 90 134 139
-207 101 135 92 140
-208 103 136 94 141
-209 137 105 96 142
-210 143 138 107 98
-211 100 144 139 109
-212 122 112 102 140
-213 124 114 104 141
-214 126 116 106 142
-215 143 128 118 108
-216 110 144 130 120
-217 1 2 3 4
-218 1 5 6 7
-219 5 8 9 10
-220 11 12 13 8
-221 11 14 15 16
-222 14 17 18 19
-223 22 17 20 21
-224 23 24 25 20
-225 23 26 27 28
-226 26 29 30 31
-227 33 34 29 32
-228 35 36 37 32
-229 35 38 39 40
-230 38 41 42 43
-231 44 45 46 41
-232 44 47 48 49
-233 47 50 51 52
-234 55 50 53 54
-235 56 57 58 53
-236 56 59 60 61
-237 59 62 63 64
-238 66 67 62 65
-239 68 69 70 65
-240 2 68 71 72
-241 3 6 73 74
-242 7 9 75 76
-243 77 12 78 10
-244 13 79 80 15
-245 81 16 82 18
-246 83 84 19 21
-247 22 24 85 86
-248 88 25 27 87
-249 89 90 28 30
-250 33 91 92 31
-251 34 36 93 94
-252 37 39 95 96
-253 40 42 97 98
-254 99 45 100 43
-255 46 101 102 48
-256 103 49 104 51
-257 105 106 52 54
-258 55 57 107 108
-259 110 58 60 109
-260 111 112 61 63
-261 66 113 114 64
-262 67 69 115 116
-263 70 71 117 118
-264 4 72 119 120
-265 121 111 122 73
-266 123 113 124 75
-267 77 125 115 126
-268 79 127 117 128
-269 81 129 119 130
-270 121 83 74 131
-271 132 123 85 76
-272 78 133 125 87
-273 89 134 80 127
-274 91 135 82 129
-275 136 93 84 131
-276 132 137 95 86
-277 88 133 138 97
-278 99 90 134 139
-279 101 135 92 140
-280 103 136 94 141
-281 137 105 96 142
-282 143 138 107 98
-283 100 144 139 109
-284 122 112 102 140
-285 124 114 104 141
-286 126 116 106 142
-287 143 128 118 108
-288 110 144 130 120
0

**************