C4graphGraph forms for C4 [ 288, 217 ] = SDD(AMC(8,3,[0.1:1.2]))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 217 ] = SDD(AMC(8,3,[0.1:1.2])).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {142, 206}, {143, 207}, {140, 205}, {136, 203}, {144, 211}, {141, 206}, {137, 204}, {138, 204}, {139, 205}, {128, 199}, {129, 200}, {130, 200}, {131, 201}, {134, 202}, {135, 203}, {132, 201}, {133, 202}, {129, 211}, {132, 214}, {133, 209}, {135, 210}, {128, 215}, {131, 212}, {140, 212}, {137, 208}, {139, 210}, {130, 216}, {142, 213}, {138, 215}, {141, 208}, {134, 216}, {143, 209}, {136, 214}, {144, 207}, {22, 150}, {30, 158}, {20, 149}, {37, 164}, {23, 150}, {21, 150}, {38, 165}, {25, 154}, {16, 148}, {44, 168}, {39, 163}, {17, 149}, {29, 152}, {19, 149}, {55, 177}, {46, 168}, {30, 152}, {29, 155}, {18, 149}, {31, 152}, {26, 157}, {21, 156}, {47, 166}, {17, 155}, {41, 163}, {62, 180}, {28, 151}, {59, 176}, {56, 179}, {45, 166}, {27, 151}, {43, 167}, {26, 151}, {40, 165}, {24, 150}, {60, 178}, {58, 180}, {42, 164}, {25, 151}, {1, 145}, {61, 173}, {49, 160}, {63, 174}, {3, 145}, {51, 161}, {50, 160}, {2, 145}, {6, 146}, {55, 163}, {54, 162}, {4, 145}, {52, 161}, {7, 146}, {9, 159}, {57, 175}, {5, 146}, {53, 162}, {48, 167}, {13, 154}, {11, 147}, {62, 166}, {63, 167}, {92, 196}, {10, 147}, {60, 165}, {50, 171}, {13, 148}, {8, 146}, {51, 169}, {14, 148}, {9, 147}, {91, 193}, {5, 158}, {61, 166}, {56, 163}, {49, 170}, {15, 148}, {94, 197}, {1, 157}, {54, 170}, {53, 169}, {95, 195}, {57, 164}, {58, 164}, {59, 165}, {12, 147}, {96, 255}, {52, 171}, {93, 194}, {94, 254}, {102, 198}, {95, 255}, {92, 253}, {100, 197}, {2, 160}, {88, 251}, {93, 254}, {89, 253}, {89, 252}, {109, 200}, {101, 192}, {90, 252}, {98, 196}, {96, 198}, {91, 253}, {6, 161}, {110, 201}, {80, 247}, {10, 162}, {111, 199}, {106, 194}, {87, 255}, {81, 248}, {104, 193}, {82, 248}, {127, 213}, {83, 249}, {85, 254}, {107, 192}, {81, 253}, {86, 250}, {87, 251}, {83, 254}, {84, 249}, {14, 160}, {48, 159}, {108, 195}, {64, 239}, {85, 250}, {46, 158}, {126, 206}, {125, 205}, {47, 159}, {79, 255}, {44, 157}, {113, 192}, {65, 240}, {69, 244}, {66, 240}, {115, 193}, {114, 192}, {67, 241}, {71, 245}, {18, 161}, {124, 207}, {120, 203}, {45, 158}, {40, 155}, {22, 162}, {119, 195}, {118, 194}, {70, 242}, {71, 243}, {41, 156}, {122, 207}, {116, 193}, {65, 244}, {67, 246}, {68, 241}, {42, 156}, {123, 205}, {113, 199}, {43, 157}, {69, 242}, {121, 206}, {117, 194}, {32, 152}, {127, 199}, {126, 198}, {116, 204}, {115, 203}, {33, 153}, {78, 246}, {79, 247}, {66, 251}, {124, 197}, {112, 201}, {76, 245}, {35, 153}, {118, 204}, {114, 200}, {64, 250}, {34, 153}, {125, 198}, {120, 195}, {72, 243}, {77, 246}, {38, 154}, {39, 155}, {68, 248}, {33, 156}, {121, 196}, {119, 202}, {36, 153}, {34, 159}, {73, 244}, {74, 244}, {123, 197}, {122, 196}, {75, 245}, {37, 154}, {117, 202}, {70, 249}, {72, 247}, {32, 224}, {33, 225}, {47, 238}, {50, 243}, {35, 225}, {51, 241}, {41, 235}, {62, 252}, {19, 208}, {59, 248}, {56, 251}, {49, 242}, {45, 238}, {34, 225}, {28, 223}, {27, 223}, {54, 242}, {53, 241}, {43, 239}, {39, 227}, {38, 226}, {26, 223}, {40, 237}, {36, 225}, {34, 231}, {33, 228}, {23, 209}, {60, 250}, {58, 252}, {42, 236}, {25, 223}, {24, 222}, {16, 215}, {52, 243}, {37, 226}, {22, 222}, {47, 231}, {46, 230}, {61, 245}, {20, 221}, {44, 229}, {37, 236}, {28, 213}, {23, 222}, {63, 246}, {27, 209}, {21, 222}, {45, 230}, {40, 227}, {38, 237}, {16, 220}, {39, 235}, {20, 216}, {17, 221}, {31, 210}, {41, 228}, {19, 221}, {57, 247}, {55, 249}, {43, 229}, {42, 228}, {24, 214}, {18, 221}, {112, 191}, {11, 219}, {111, 191}, {110, 190}, {62, 238}, {63, 239}, {10, 219}, {108, 189}, {60, 237}, {13, 220}, {7, 213}, {14, 220}, {9, 219}, {8, 218}, {15, 220}, {109, 190}, {104, 187}, {56, 235}, {61, 238}, {57, 236}, {105, 188}, {58, 236}, {107, 189}, {106, 188}, {105, 191}, {59, 237}, {3, 212}, {96, 183}, {48, 231}, {12, 219}, {1, 217}, {11, 211}, {49, 232}, {103, 190}, {97, 184}, {3, 217}, {99, 185}, {98, 184}, {51, 233}, {50, 232}, {2, 217}, {12, 215}, {4, 216}, {103, 187}, {102, 186}, {99, 191}, {55, 235}, {54, 234}, {44, 240}, {6, 218}, {4, 217}, {100, 185}, {52, 233}, {15, 210}, {7, 218}, {8, 214}, {46, 240}, {5, 218}, {101, 186}, {97, 190}, {53, 234}, {48, 239}, {10, 234}, {78, 174}, {79, 175}, {87, 183}, {88, 184}, {76, 173}, {81, 176}, {82, 176}, {83, 177}, {5, 230}, {72, 171}, {77, 174}, {85, 182}, {90, 185}, {1, 229}, {81, 181}, {86, 178}, {87, 179}, {73, 172}, {83, 182}, {84, 177}, {14, 232}, {74, 172}, {75, 173}, {64, 167}, {72, 175}, {85, 178}, {94, 182}, {95, 183}, {65, 168}, {69, 172}, {92, 181}, {2, 232}, {66, 168}, {67, 169}, {71, 173}, {88, 179}, {93, 182}, {70, 170}, {71, 171}, {80, 188}, {86, 186}, {89, 181}, {65, 172}, {67, 174}, {68, 169}, {89, 180}, {9, 231}, {90, 180}, {91, 181}, {6, 233}, {13, 226}, {69, 170}, {82, 189}, {84, 187}, {36, 212}, {73, 185}, {21, 228}, {66, 179}, {75, 186}, {17, 227}, {64, 178}, {78, 188}, {32, 211}, {35, 208}, {68, 176}, {77, 184}, {70, 177}, {74, 189}, {76, 187}, {30, 230}, {79, 183}, {18, 233}, {25, 226}, {22, 234}, {29, 224}, {29, 227}, {30, 224}, {26, 229}, {31, 224}, {80, 175}, {28, 285}, {27, 281}, {31, 282}, {24, 286}, {19, 280}, {23, 281}, {16, 287}, {11, 283}, {12, 287}, {15, 282}, {8, 286}, {7, 285}, {3, 284}, {4, 288}, {20, 288}, {36, 284}, {32, 283}, {35, 280}, {73, 257}, {75, 258}, {78, 260}, {77, 256}, {74, 261}, {76, 259}, {92, 268}, {91, 265}, {94, 269}, {80, 260}, {86, 258}, {95, 267}, {82, 261}, {84, 259}, {93, 266}, {88, 256}, {90, 257}, {106, 266}, {116, 276}, {115, 275}, {111, 271}, {97, 256}, {112, 273}, {104, 265}, {103, 262}, {98, 256}, {127, 285}, {118, 276}, {114, 272}, {99, 257}, {107, 264}, {99, 263}, {103, 259}, {102, 258}, {100, 257}, {119, 274}, {97, 262}, {117, 274}, {108, 267}, {101, 258}, {102, 270}, {126, 278}, {125, 277}, {111, 263}, {110, 262}, {100, 269}, {108, 261}, {104, 259}, {124, 279}, {120, 275}, {109, 262}, {101, 264}, {122, 279}, {105, 260}, {96, 270}, {123, 277}, {107, 261}, {106, 260}, {105, 263}, {98, 268}, {121, 278}, {126, 270}, {127, 271}, {124, 269}, {120, 267}, {125, 270}, {121, 268}, {122, 268}, {123, 269}, {112, 263}, {113, 264}, {114, 264}, {115, 265}, {118, 266}, {119, 267}, {109, 272}, {116, 265}, {113, 271}, {110, 273}, {117, 266}, {144, 279}, {144, 283}, {128, 271}, {140, 284}, {129, 272}, {139, 282}, {137, 280}, {130, 272}, {131, 273}, {142, 285}, {134, 274}, {135, 275}, {132, 273}, {141, 280}, {138, 287}, {136, 286}, {143, 281}, {133, 274}, {142, 278}, {143, 279}, {140, 277}, {129, 283}, {132, 286}, {136, 275}, {141, 278}, {133, 281}, {135, 282}, {137, 276}, {138, 276}, {139, 277}, {128, 287}, {131, 284}, {130, 288}, {134, 288} }>;

(II) A more general form is to represent the graph as the orbit of {142, 206} under the group generated by the following permutations:

a: (207, 279)
b: (187, 259)
c: (166, 238)
d: (203, 275)
e: (168, 240)
f: (216, 288)
g: (193, 265)
h: (185, 257)
m: (191, 263)
n1: (194, 266)
a1: (197, 269)
b1: (151, 223)
c1: (184, 256)
d1: (192, 264)
e1: (146, 218)
f1: (177, 249)
g1: (208, 280)
h1: (171, 243)
m1: (147, 219)
n2: (211, 283)
a2: (174, 246)
b2: (214, 286)
c2: (201, 273)
d2: (167, 239)
e2: (213, 285)
f2: (163, 235)
g2: (157, 229)
h2: (196, 268)
m2: (1, 3, 140, 125, 96, 87, 66, 44)(2, 36, 139, 126, 95, 88, 65, 43)(4, 131, 123, 102, 79, 56, 46, 26)(5, 27, 130, 112, 94, 75, 57, 39)(6, 23, 129, 111, 93, 76, 58, 40)(7, 133, 109, 99, 85, 71, 42, 29)(8, 143, 114, 105, 83, 61, 37, 17)(9, 16, 137, 115, 92, 82, 67, 54)(10, 12, 138, 116, 91, 81, 68, 53)(11, 128, 118, 104, 89, 59, 51, 22)(13, 19, 136, 122, 107, 78, 70, 47)(14, 35, 135, 121, 108, 77, 69, 48)(15, 141, 120, 98, 74, 63, 49, 34)(18, 24, 144, 113, 106, 84, 62, 38)(20, 132, 124, 101, 80, 55, 45, 25)(21, 32, 127, 117, 103, 90, 60, 52)(28, 134, 110, 100, 86, 72, 41, 30)(31, 142, 119, 97, 73, 64, 50, 33)(145, 212, 205, 198, 183, 179, 168, 157)(146, 209, 200, 191, 182, 173, 164, 155)(147, 215, 204, 193, 181, 176, 169, 162)(148, 208, 203, 196, 189, 174, 170, 159)(149, 214, 207, 192, 188, 177, 166, 154)(150, 211, 199, 194, 187, 180, 165, 161)(151, 216, 201, 197, 186, 175, 163, 158)(152, 213, 202, 190, 185, 178, 171, 156)(153, 210, 206, 195, 184, 172, 167, 160)(217, 284, 277, 270, 255, 251, 240, 229)(218, 281, 272, 263, 254, 245, 236, 227)(219, 287, 276, 265, 253, 248, 241, 234)(220, 280, 275, 268, 261, 246, 242, 231)(221, 286, 279, 264, 260, 249, 238, 226)(222, 283, 271, 266, 259, 252, 237, 233)(223, 288, 273, 269, 258, 247, 235, 230)(224, 285, 274, 262, 257, 250, 243, 228)(225, 282, 278, 267, 256, 244, 239, 232)
n3: (190, 262)
a3: (215, 287)
b3: (199, 271)
c3: (195, 267)
d3: (176, 248)
e3: (188, 260)
f3: (198, 270)
g3: (2, 26)(3, 43)(4, 44)(5, 18)(7, 52)(8, 51)(9, 33)(10, 21)(11, 41)(12, 42)(14, 25)(15, 38)(16, 37)(17, 30)(19, 45)(20, 46)(23, 54)(24, 53)(27, 49)(28, 50)(31, 40)(32, 39)(35, 47)(36, 48)(55, 144)(56, 129)(57, 128)(58, 138)(59, 135)(60, 139)(61, 141)(62, 137)(63, 131)(64, 140)(65, 134)(66, 130)(67, 132)(68, 136)(69, 133)(70, 143)(71, 142)(72, 127)(73, 117)(74, 119)(75, 126)(76, 121)(77, 110)(78, 112)(79, 113)(80, 111)(81, 115)(82, 120)(83, 124)(84, 122)(85, 123)(86, 125)(87, 114)(88, 109)(89, 116)(90, 118)(92, 104)(93, 100)(95, 107)(96, 101)(98, 103)(99, 106)(145, 157)(146, 161)(147, 156)(148, 154)(149, 158)(150, 162)(151, 160)(152, 155)(153, 159)(163, 211)(164, 215)(165, 210)(166, 208)(167, 212)(168, 216)(169, 214)(170, 209)(171, 213)(172, 202)(173, 206)(174, 201)(175, 199)(176, 203)(177, 207)(178, 205)(179, 200)(180, 204)(181, 193)(182, 197)(183, 192)(184, 190)(185, 194)(186, 198)(187, 196)(188, 191)(189, 195)(217, 229)(218, 233)(219, 228)(220, 226)(221, 230)(222, 234)(223, 232)(224, 227)(225, 231)(235, 283)(236, 287)(237, 282)(238, 280)(239, 284)(240, 288)(241, 286)(242, 281)(243, 285)(244, 274)(245, 278)(246, 273)(247, 271)(248, 275)(249, 279)(250, 277)(251, 272)(252, 276)(253, 265)(254, 269)(255, 264)(256, 262)(257, 266)(258, 270)(259, 268)(260, 263)(261, 267)
h3: (204, 276)
m3: (210, 282)
n4: (149, 221)
a4: (182, 254)
b4: (169, 241)
c4: (162, 234)
d4: (205, 277)
e4: (206, 278)
f4: (200, 272)
g4: (158, 230)
h4: (156, 228)
m4: (179, 251)
n5: (148, 220)
a5: (209, 281)
b5: (150, 222)
c5: (181, 253)
d5: (153, 225)
e5: (154, 226)
f5: (159, 231)
g5: (186, 258)
h5: (173, 245)
m5: (152, 224)
n6: (183, 255)
a6: (160, 232)
b6: (1, 2)(3, 4)(5, 10)(6, 9)(7, 12)(8, 11)(13, 25)(14, 26)(15, 27)(16, 28)(17, 33)(18, 34)(19, 35)(20, 36)(21, 29)(22, 30)(23, 31)(24, 32)(37, 38)(39, 41)(40, 42)(43, 50)(44, 49)(45, 53)(46, 54)(47, 51)(48, 52)(55, 56)(57, 60)(58, 59)(61, 67)(62, 68)(63, 71)(64, 72)(65, 69)(66, 70)(73, 74)(75, 78)(76, 77)(79, 85)(80, 86)(81, 89)(82, 90)(83, 87)(84, 88)(91, 92)(93, 96)(94, 95)(97, 103)(98, 104)(99, 107)(100, 108)(101, 105)(102, 106)(109, 110)(111, 113)(112, 114)(115, 122)(116, 121)(117, 125)(118, 126)(119, 123)(120, 124)(127, 128)(129, 132)(130, 131)(133, 139)(134, 140)(135, 143)(136, 144)(137, 141)(138, 142)(146, 147)(148, 151)(149, 153)(150, 152)(155, 156)(157, 160)(158, 162)(159, 161)(164, 165)(166, 169)(167, 171)(168, 170)(173, 174)(175, 178)(176, 180)(177, 179)(182, 183)(184, 187)(185, 189)(186, 188)(191, 192)(193, 196)(194, 198)(195, 197)(200, 201)(202, 205)(203, 207)(204, 206)(209, 210)(211, 214)(212, 216)(213, 215)(218, 219)(220, 223)(221, 225)(222, 224)(227, 228)(229, 232)(230, 234)(231, 233)(236, 237)(238, 241)(239, 243)(240, 242)(245, 246)(247, 250)(248, 252)(249, 251)(254, 255)(256, 259)(257, 261)(258, 260)(263, 264)(265, 268)(266, 270)(267, 269)(272, 273)(274, 277)(275, 279)(276, 278)(281, 282)(283, 286)(284, 288)(285, 287)
c6: (161, 233)
d6: (170, 242)
e6: (165, 237)
f6: (178, 250)
g6: (145, 217)
h6: (164, 236)
m6: (172, 244)
n7: (175, 247)
a7: (155, 227)
b7: (202, 274)
c7: (212, 284)
d7: (189, 261)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 217 ]
288
-1 145 157 217 229
-2 232 145 160 217
-3 145 212 217 284
-4 145 288 216 217
-5 146 158 218 230
-6 233 146 161 218
-7 146 213 218 285
-8 286 146 214 218
-9 231 147 159 219
-10 234 147 162 219
-11 211 147 283 219
-12 287 147 215 219
-13 154 220 148 226
-14 220 232 148 160
-15 220 210 148 282
-16 220 287 148 215
-17 155 221 149 227
-18 221 233 149 161
-19 221 280 149 208
-20 221 288 149 216
-21 156 222 150 228
-22 222 234 150 162
-23 209 222 281 150
-24 286 222 214 150
-25 154 223 226 151
-26 157 223 151 229
-27 209 223 281 151
-28 223 213 151 285
-29 155 224 227 152
-30 158 224 152 230
-31 210 224 282 152
-32 211 224 283 152
-33 156 225 228 153
-34 231 159 225 153
-35 225 280 153 208
-36 212 225 284 153
-37 154 236 226 164
-38 154 165 226 237
-39 155 235 227 163
-40 165 155 237 227
-41 156 235 228 163
-42 156 236 228 164
-43 167 157 239 229
-44 157 168 229 240
-45 166 158 238 230
-46 168 158 240 230
-47 231 166 159 238
-48 231 167 159 239
-49 242 232 170 160
-50 232 243 160 171
-51 233 169 161 241
-52 243 233 171 161
-53 234 169 162 241
-54 242 234 170 162
-55 177 235 249 163
-56 179 235 163 251
-57 236 247 164 175
-58 180 236 164 252
-59 165 176 237 248
-60 165 178 237 250
-61 166 245 238 173
-62 166 180 238 252
-63 167 246 239 174
-64 167 178 239 250
-65 244 168 172 240
-66 168 179 240 251
-67 169 246 174 241
-68 176 169 248 241
-69 242 244 170 172
-70 242 177 170 249
-71 243 245 171 173
-72 243 247 171 175
-73 244 257 172 185
-74 189 244 172 261
-75 245 258 173 186
-76 187 245 259 173
-77 256 246 184 174
-78 188 246 260 174
-79 255 247 183 175
-80 188 247 260 175
-81 176 253 181 248
-82 176 189 248 261
-83 177 254 182 249
-84 187 177 259 249
-85 254 178 182 250
-86 178 258 250 186
-87 255 179 183 251
-88 179 256 184 251
-89 253 180 181 252
-90 180 257 185 252
-91 253 265 181 193
-92 253 268 181 196
-93 254 266 182 194
-94 254 269 182 197
-95 255 267 183 195
-96 198 255 270 183
-97 190 256 184 262
-98 256 268 184 196
-99 191 257 185 263
-100 257 269 185 197
-101 264 192 258 186
-102 198 258 270 186
-103 187 190 259 262
-104 187 265 193 259
-105 188 191 260 263
-106 188 266 194 260
-107 264 189 192 261
-108 189 267 195 261
-109 200 190 272 262
-110 190 201 262 273
-111 199 191 271 263
-112 201 191 273 263
-113 264 199 192 271
-114 264 200 192 272
-115 275 265 203 193
-116 265 276 193 204
-117 266 202 194 274
-118 276 266 204 194
-119 267 202 195 274
-120 275 267 203 195
-121 278 268 206 196
-122 268 279 196 207
-123 277 269 205 197
-124 279 269 207 197
-125 198 277 270 205
-126 198 278 270 206
-127 199 213 271 285
-128 199 287 215 271
-129 200 211 272 283
-130 200 288 216 272
-131 201 212 273 284
-132 286 201 214 273
-133 209 202 281 274
-134 288 202 216 274
-135 275 210 203 282
-136 275 286 203 214
-137 276 280 204 208
-138 276 287 204 215
-139 210 277 205 282
-140 277 212 205 284
-141 278 280 206 208
-142 278 213 206 285
-143 209 279 281 207
-144 211 279 283 207
-145 1 2 3 4
-146 5 6 7 8
-147 11 12 9 10
-148 13 14 15 16
-149 17 18 19 20
-150 22 23 24 21
-151 25 26 27 28
-152 29 30 31 32
-153 33 34 35 36
-154 13 25 37 38
-155 17 39 29 40
-156 33 41 42 21
-157 44 1 26 43
-158 45 46 5 30
-159 34 47 48 9
-160 2 14 49 50
-161 6 18 51 52
-162 22 53 10 54
-163 55 56 39 41
-164 57 58 37 42
-165 59 38 60 40
-166 45 47 61 62
-167 48 63 64 43
-168 44 66 46 65
-169 67 68 51 53
-170 69 70 49 54
-171 71 50 72 52
-172 69 73 74 65
-173 71 61 75 76
-174 77 67 78 63
-175 57 79 80 72
-176 68 59 81 82
-177 55 70 83 84
-178 60 85 64 86
-179 66 88 56 87
-180 89 90 58 62
-181 89 91 81 92
-182 93 83 94 85
-183 79 95 96 87
-184 77 88 97 98
-185 99 100 90 73
-186 101 102 75 86
-187 103 104 84 76
-188 78 80 105 106
-189 82 74 107 108
-190 110 103 97 109
-191 99 111 112 105
-192 101 113 114 107
-193 91 104 115 116
-194 93 106 117 118
-195 95 108 119 120
-196 121 122 92 98
-197 100 123 124 94
-198 102 125 126 96
-199 111 113 127 128
-200 114 129 130 109
-201 110 132 112 131
-202 133 134 117 119
-203 135 136 115 120
-204 137 116 138 118
-205 123 125 139 140
-206 121 126 141 142
-207 143 122 144 124
-208 35 137 19 141
-209 143 23 133 27
-210 135 15 139 31
-211 11 144 129 32
-212 3 36 140 131
-213 28 127 7 142
-214 132 24 136 8
-215 12 16 138 128
-216 134 4 20 130
-217 1 2 3 4
-218 5 6 7 8
-219 11 12 9 10
-220 13 14 15 16
-221 17 18 19 20
-222 22 23 24 21
-223 25 26 27 28
-224 29 30 31 32
-225 33 34 35 36
-226 13 25 37 38
-227 17 39 29 40
-228 33 41 42 21
-229 44 1 26 43
-230 45 46 5 30
-231 34 47 48 9
-232 2 14 49 50
-233 6 18 51 52
-234 22 53 10 54
-235 55 56 39 41
-236 57 58 37 42
-237 59 38 60 40
-238 45 47 61 62
-239 48 63 64 43
-240 44 66 46 65
-241 67 68 51 53
-242 69 70 49 54
-243 71 50 72 52
-244 69 73 74 65
-245 71 61 75 76
-246 77 67 78 63
-247 57 79 80 72
-248 68 59 81 82
-249 55 70 83 84
-250 60 85 64 86
-251 66 88 56 87
-252 89 90 58 62
-253 89 91 81 92
-254 93 83 94 85
-255 79 95 96 87
-256 77 88 97 98
-257 99 100 90 73
-258 101 102 75 86
-259 103 104 84 76
-260 78 80 105 106
-261 82 74 107 108
-262 110 103 97 109
-263 99 111 112 105
-264 101 113 114 107
-265 91 104 115 116
-266 93 106 117 118
-267 95 108 119 120
-268 121 122 92 98
-269 100 123 124 94
-270 102 125 126 96
-271 111 113 127 128
-272 114 129 130 109
-273 110 132 112 131
-274 133 134 117 119
-275 135 136 115 120
-276 137 116 138 118
-277 123 125 139 140
-278 121 126 141 142
-279 143 122 144 124
-280 35 137 19 141
-281 143 23 133 27
-282 135 15 139 31
-283 11 144 129 32
-284 3 36 140 131
-285 28 127 7 142
-286 132 24 136 8
-287 12 16 138 128
-288 134 4 20 130
0

**************