C4graphGraph forms for C4 [ 288, 218 ] = BGCG(AMC(8,3,[0.1:1.2]);K2;{1,3,4,6})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 218 ] = BGCG(AMC(8,3,[0.1:1.2]);K2;{1,3,4,6}).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {138, 154}, {139, 155}, {133, 151}, {140, 159}, {128, 148}, {133, 146}, {134, 158}, {143, 149}, {129, 159}, {140, 146}, {137, 169}, {132, 166}, {142, 172}, {144, 185}, {130, 174}, {144, 188}, {129, 172}, {138, 177}, {144, 174}, {131, 199}, {132, 194}, {140, 202}, {134, 192}, {133, 195}, {142, 199}, {129, 207}, {131, 204}, {130, 210}, {138, 217}, {141, 216}, {130, 212}, {137, 223}, {135, 223}, {130, 219}, {135, 222}, {131, 217}, {141, 214}, {137, 212}, {134, 216}, {135, 231}, {136, 233}, {142, 237}, {128, 229}, {137, 239}, {139, 236}, {144, 250}, {135, 236}, {132, 233}, {139, 229}, {140, 253}, {142, 255}, {132, 241}, {131, 251}, {128, 250}, {139, 245}, {143, 241}, {23, 151}, {123, 251}, {115, 243}, {92, 220}, {49, 176}, {62, 191}, {92, 221}, {52, 182}, {98, 224}, {55, 180}, {73, 202}, {16, 148}, {48, 180}, {118, 243}, {24, 158}, {108, 234}, {29, 155}, {113, 246}, {26, 146}, {84, 220}, {89, 209}, {102, 238}, {54, 191}, {89, 208}, {105, 224}, {97, 235}, {20, 159}, {42, 161}, {40, 163}, {73, 197}, {114, 254}, {95, 211}, {33, 172}, {122, 247}, {107, 230}, {68, 201}, {48, 189}, {46, 163}, {37, 168}, {102, 235}, {28, 146}, {70, 200}, {39, 169}, {27, 148}, {82, 221}, {45, 189}, {69, 213}, {85, 197}, {8, 153}, {32, 177}, {104, 249}, {4, 150}, {69, 215}, {65, 211}, {57, 171}, {13, 158}, {114, 225}, {112, 227}, {37, 182}, {37, 177}, {106, 254}, {102, 242}, {44, 185}, {93, 203}, {94, 200}, {43, 188}, {58, 173}, {54, 161}, {50, 165}, {83, 196}, {15, 151}, {66, 218}, {47, 183}, {49, 168}, {120, 225}, {110, 247}, {60, 165}, {57, 160}, {79, 214}, {82, 203}, {88, 193}, {93, 196}, {84, 206}, {125, 231}, {116, 238}, {108, 246}, {43, 176}, {44, 183}, {108, 240}, {97, 252}, {109, 240}, {3, 156}, {124, 227}, {81, 206}, {2, 162}, {123, 219}, {79, 239}, {84, 244}, {14, 175}, {65, 224}, {29, 188}, {18, 179}, {124, 222}, {62, 157}, {98, 193}, {17, 181}, {93, 249}, {61, 152}, {112, 213}, {67, 230}, {80, 245}, {31, 185}, {90, 252}, {74, 237}, {15, 167}, {122, 210}, {70, 238}, {67, 235}, {26, 179}, {52, 157}, {64, 234}, {56, 147}, {6, 170}, {61, 145}, {8, 164}, {81, 253}, {2, 175}, {11, 166}, {79, 226}, {85, 248}, {95, 242}, {101, 200}, {9, 167}, {54, 152}, {11, 164}, {75, 228}, {102, 201}, {5, 181}, {82, 226}, {42, 155}, {107, 218}, {72, 249}, {65, 240}, {78, 255}, {97, 208}, {10, 184}, {28, 174}, {99, 209}, {101, 215}, {17, 162}, {117, 198}, {33, 149}, {94, 234}, {99, 215}, {11, 190}, {121, 204}, {71, 242}, {67, 246}, {19, 166}, {4, 178}, {31, 169}, {24, 174}, {94, 232}, {79, 248}, {34, 154}, {119, 207}, {106, 211}, {112, 201}, {1, 187}, {119, 205}, {68, 254}, {78, 244}, {96, 218}, {5, 190}, {121, 194}, {36, 159}, {4, 184}, {113, 205}, {38, 154}, {46, 147}, {123, 198}, {91, 230}, {43, 149}, {126, 192}, {125, 195}, {107, 213}, {86, 232}, {90, 228}, {5, 186}, {19, 172}, {12, 205}, {56, 249}, {44, 237}, {24, 217}, {105, 171}, {17, 210}, {27, 216}, {23, 212}, {9, 205}, {26, 223}, {111, 170}, {29, 216}, {10, 204}, {120, 190}, {35, 229}, {1, 198}, {59, 252}, {95, 152}, {1, 201}, {115, 187}, {42, 226}, {11, 195}, {85, 157}, {27, 210}, {124, 181}, {100, 173}, {20, 222}, {109, 167}, {50, 248}, {37, 239}, {80, 154}, {13, 198}, {120, 179}, {117, 190}, {36, 239}, {88, 147}, {12, 192}, {127, 179}, {116, 184}, {108, 160}, {40, 228}, {36, 233}, {96, 173}, {103, 170}, {60, 242}, {116, 186}, {20, 219}, {119, 184}, {51, 252}, {87, 152}, {52, 228}, {114, 162}, {75, 155}, {22, 199}, {71, 150}, {36, 245}, {7, 213}, {118, 164}, {48, 226}, {45, 255}, {16, 194}, {19, 192}, {10, 222}, {112, 164}, {63, 235}, {30, 202}, {68, 145}, {21, 195}, {121, 175}, {60, 234}, {25, 207}, {98, 180}, {12, 219}, {63, 232}, {42, 253}, {26, 194}, {109, 181}, {21, 204}, {76, 149}, {29, 199}, {46, 244}, {32, 250}, {104, 178}, {66, 153}, {41, 245}, {126, 162}, {122, 166}, {115, 175}, {53, 232}, {103, 186}, {17, 207}, {121, 167}, {56, 230}, {38, 248}, {101, 187}, {32, 255}, {109, 178}, {67, 156}, {63, 224}, {43, 244}, {34, 253}, {3, 227}, {47, 206}, {59, 218}, {25, 251}, {124, 158}, {118, 148}, {63, 221}, {40, 202}, {50, 209}, {68, 160}, {91, 191}, {72, 173}, {115, 150}, {82, 183}, {7, 225}, {58, 220}, {23, 241}, {86, 176}, {41, 206}, {78, 169}, {45, 197}, {14, 231}, {126, 151}, {62, 215}, {58, 211}, {57, 208}, {52, 221}, {18, 251}, {10, 225}, {65, 170}, {58, 209}, {74, 161}, {84, 191}, {2, 238}, {70, 171}, {83, 189}, {114, 156}, {90, 180}, {21, 250}, {51, 220}, {30, 241}, {89, 182}, {7, 247}, {66, 178}, {59, 203}, {49, 193}, {77, 189}, {83, 163}, {91, 171}, {99, 147}, {18, 227}, {53, 196}, {22, 231}, {30, 236}, {72, 186}, {30, 237}, {106, 153}, {72, 187}, {59, 200}, {80, 163}, {98, 145}, {77, 185}, {6, 243}, {73, 188}, {35, 214}, {25, 236}, {100, 145}, {19, 229}, {51, 197}, {34, 212}, {83, 165}, {7, 240}, {110, 153}, {9, 254}, {89, 161}, {61, 196}, {81, 168}, {101, 156}, {13, 247}, {49, 203}, {35, 217}, {74, 176}, {76, 183}, {77, 182}, {92, 160}, {60, 193}, {76, 177}, {96, 157}, {8, 246}, {40, 214}, {33, 223}, {91, 165}, {12, 243}, {47, 208}, {22, 233}, {87, 168}, {105, 150}, {25, 281}, {15, 269}, {21, 273}, {28, 280}, {16, 277}, {6, 256}, {23, 272}, {5, 268}, {14, 260}, {14, 261}, {8, 260}, {16, 284}, {15, 258}, {45, 288}, {3, 269}, {18, 285}, {4, 277}, {22, 258}, {2, 279}, {31, 266}, {31, 263}, {9, 275}, {6, 285}, {3, 287}, {27, 263}, {1, 284}, {24, 261}, {13, 272}, {20, 266}, {54, 278}, {46, 271}, {44, 270}, {39, 259}, {62, 282}, {55, 274}, {47, 262}, {33, 267}, {53, 286}, {38, 267}, {53, 283}, {51, 259}, {39, 278}, {55, 262}, {48, 257}, {41, 280}, {41, 283}, {34, 273}, {39, 276}, {61, 264}, {57, 271}, {35, 276}, {38, 286}, {32, 281}, {56, 257}, {28, 288}, {50, 270}, {55, 265}, {88, 283}, {90, 286}, {75, 270}, {81, 276}, {70, 256}, {77, 267}, {66, 264}, {64, 268}, {71, 265}, {88, 278}, {93, 274}, {78, 286}, {86, 262}, {95, 271}, {69, 279}, {73, 283}, {74, 280}, {64, 275}, {80, 259}, {86, 259}, {92, 265}, {87, 257}, {69, 274}, {71, 287}, {87, 270}, {64, 282}, {76, 278}, {85, 271}, {94, 257}, {125, 285}, {125, 284}, {110, 268}, {105, 268}, {96, 262}, {118, 272}, {113, 279}, {104, 256}, {117, 287}, {75, 288}, {126, 277}, {111, 260}, {99, 264}, {113, 284}, {103, 265}, {127, 273}, {103, 264}, {104, 282}, {119, 261}, {100, 279}, {110, 285}, {117, 256}, {127, 266}, {122, 269}, {106, 274}, {107, 275}, {116, 269}, {111, 277}, {127, 261}, {120, 258}, {97, 282}, {100, 287}, {111, 275}, {123, 260}, {128, 258}, {133, 263}, {136, 267}, {143, 266}, {138, 263}, {129, 272}, {136, 281}, {141, 280}, {136, 276}, {141, 273}, {134, 281}, {143, 288} }>;

(II) A more general form is to represent the graph as the orbit of {138, 154} under the group generated by the following permutations:

a: (2, 8, 3, 6)(4, 9, 7, 5)(10, 64)(11, 71, 12, 69)(13, 72, 16, 68)(14, 67, 18, 70)(15, 65, 17, 66)(19, 55)(20, 62, 21, 60)(22, 63, 25, 59)(23, 58, 27, 61)(24, 56, 26, 57)(28, 46)(29, 53, 30, 51)(31, 54, 34, 50)(32, 49, 36, 52)(33, 47, 35, 48)(38, 44, 39, 42)(40, 45, 43, 41)(74, 80, 75, 78)(76, 81, 79, 77)(82, 136)(83, 143, 84, 141)(85, 144, 88, 140)(86, 139, 90, 142)(87, 137, 89, 138)(91, 127)(92, 134, 93, 132)(94, 135, 97, 131)(95, 130, 99, 133)(96, 128, 98, 129)(100, 118)(101, 125, 102, 123)(103, 126, 106, 122)(104, 121, 108, 124)(105, 119, 107, 120)(110, 116, 111, 114)(112, 117, 115, 113)(145, 272, 173, 148)(146, 271, 174, 147)(149, 206, 214, 189)(150, 205, 213, 190)(151, 211, 210, 264)(152, 212, 209, 263)(153, 269, 170, 162)(154, 270, 169, 161)(155, 286, 237, 259)(156, 285, 238, 260)(157, 250, 193, 159)(158, 249, 194, 160)(163, 288, 244, 280)(164, 287, 243, 279)(165, 266, 191, 273)(166, 265, 192, 274)(167, 240, 181, 178)(168, 239, 182, 177)(171, 261, 230, 179)(172, 262, 229, 180)(175, 246, 227, 256)(176, 245, 228, 255)(183, 276, 226, 267)(184, 275, 225, 268)(185, 278, 253, 248)(186, 277, 254, 247)(187, 284, 201, 198)(188, 283, 202, 197)(195, 242, 219, 215)(196, 241, 220, 216)(199, 232, 236, 252)(200, 231, 235, 251)(203, 233, 221, 281)(204, 234, 222, 282)(207, 218, 258, 224)(208, 217, 257, 223)
b: (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)(22, 23, 24)(25, 26, 27)(28, 29, 30)(31, 32, 33)(34, 35, 36)(37, 38, 39)(40, 41, 42)(43, 44, 45)(46, 47, 48)(49, 50, 51)(52, 53, 54)(55, 56, 57)(58, 59, 60)(61, 62, 63)(64, 65, 66)(67, 68, 69)(70, 71, 72)(73, 74, 75)(76, 77, 78)(79, 80, 81)(82, 83, 84)(85, 86, 87)(88, 89, 90)(91, 92, 93)(94, 95, 96)(97, 98, 99)(100, 101, 102)(103, 104, 105)(106, 107, 108)(109, 110, 111)(112, 113, 114)(115, 116, 117)(118, 119, 120)(121, 122, 123)(124, 125, 126)(127, 128, 129)(130, 131, 132)(133, 134, 135)(136, 137, 138)(139, 140, 141)(142, 143, 144)(145, 215, 235)(146, 216, 236)(147, 208, 180)(148, 207, 179)(149, 185, 255)(150, 186, 256)(151, 158, 231)(152, 157, 232)(153, 275, 240)(154, 276, 239)(155, 202, 280)(156, 201, 279)(159, 273, 229)(160, 274, 230)(161, 228, 283)(162, 227, 284)(163, 206, 226)(164, 205, 225)(165, 220, 203)(166, 219, 204)(167, 247, 260)(168, 248, 259)(169, 177, 267)(170, 178, 268)(171, 265, 249)(172, 266, 250)(173, 200, 242)(174, 199, 241)(175, 269, 198)(176, 270, 197)(181, 285, 277)(182, 286, 278)(183, 189, 244)(184, 190, 243)(187, 238, 287)(188, 237, 288)(191, 221, 196)(192, 222, 195)(193, 209, 252)(194, 210, 251)(211, 218, 234)(212, 217, 233)(213, 246, 254)(214, 245, 253)(223, 263, 281)(224, 264, 282)(257, 271, 262)(258, 272, 261)
c: (1, 73)(2, 74)(3, 75)(4, 76)(5, 77)(6, 78)(7, 79)(8, 80)(9, 81)(10, 82)(11, 83)(12, 84)(13, 85)(14, 86)(15, 87)(16, 88)(17, 89)(18, 90)(19, 91)(20, 92)(21, 93)(22, 94)(23, 95)(24, 96)(25, 97)(26, 98)(27, 99)(28, 100)(29, 101)(30, 102)(31, 103)(32, 104)(33, 105)(34, 106)(35, 107)(36, 108)(37, 109)(38, 110)(39, 111)(40, 112)(41, 113)(42, 114)(43, 115)(44, 116)(45, 117)(46, 118)(47, 119)(48, 120)(49, 121)(50, 122)(51, 123)(52, 124)(53, 125)(54, 126)(55, 127)(56, 128)(57, 129)(58, 130)(59, 131)(60, 132)(61, 133)(62, 134)(63, 135)(64, 136)(65, 137)(66, 138)(67, 139)(68, 140)(69, 141)(70, 142)(71, 143)(72, 144)(145, 146)(147, 148)(149, 150)(151, 152)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163, 164)(165, 166)(167, 168)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179, 180)(181, 182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)(193, 194)(195, 196)(197, 198)(199, 200)(201, 202)(203, 204)(205, 206)(207, 208)(209, 210)(211, 212)(213, 214)(215, 216)(217, 218)(219, 220)(221, 222)(223, 224)(225, 226)(227, 228)(229, 230)(231, 232)(233, 234)(235, 236)(237, 238)(239, 240)(241, 242)(243, 244)(245, 246)(247, 248)(249, 250)(251, 252)(253, 254)(255, 256)(257, 258)(259, 260)(261, 262)(263, 264)(265, 266)(267, 268)(269, 270)(271, 272)(273, 274)(275, 276)(277, 278)(279, 280)(281, 282)(283, 284)(285, 286)(287, 288)
d: (2, 3)(4, 7)(5, 9)(6, 8)(11, 12)(13, 16)(14, 18)(15, 17)(20, 21)(22, 25)(23, 27)(24, 26)(29, 30)(31, 34)(32, 36)(33, 35)(38, 39)(40, 43)(41, 45)(42, 44)(47, 48)(49, 52)(50, 54)(51, 53)(56, 57)(58, 61)(59, 63)(60, 62)(65, 66)(67, 70)(68, 72)(69, 71)(74, 75)(76, 79)(77, 81)(78, 80)(83, 84)(85, 88)(86, 90)(87, 89)(92, 93)(94, 97)(95, 99)(96, 98)(101, 102)(103, 106)(104, 108)(105, 107)(110, 111)(112, 115)(113, 117)(114, 116)(119, 120)(121, 124)(122, 126)(123, 125)(128, 129)(130, 133)(131, 135)(132, 134)(137, 138)(139, 142)(140, 144)(141, 143)(145, 173)(146, 174)(147, 271)(148, 272)(149, 214)(150, 213)(151, 210)(152, 209)(153, 170)(154, 169)(155, 237)(156, 238)(157, 193)(158, 194)(159, 250)(160, 249)(161, 270)(162, 269)(163, 244)(164, 243)(165, 191)(166, 192)(167, 181)(168, 182)(171, 230)(172, 229)(175, 227)(176, 228)(177, 239)(178, 240)(179, 261)(180, 262)(183, 226)(184, 225)(185, 253)(186, 254)(187, 201)(188, 202)(189, 206)(190, 205)(195, 219)(196, 220)(197, 283)(198, 284)(199, 236)(200, 235)(203, 221)(204, 222)(207, 258)(208, 257)(211, 264)(212, 263)(215, 242)(216, 241)(217, 223)(218, 224)(231, 251)(232, 252)(233, 281)(234, 282)(245, 255)(246, 256)(247, 277)(248, 278)(259, 286)(260, 285)(265, 274)(266, 273)(267, 276)(268, 275)(279, 287)(280, 288)
e: (1, 10)(2, 14)(3, 18)(4, 16)(5, 11)(6, 15)(7, 13)(8, 17)(9, 12)(19, 64)(20, 68)(21, 72)(22, 70)(23, 65)(24, 69)(25, 67)(26, 71)(27, 66)(28, 55)(29, 59)(30, 63)(31, 61)(32, 56)(33, 60)(34, 58)(35, 62)(36, 57)(37, 46)(38, 50)(39, 54)(40, 52)(41, 47)(42, 51)(43, 49)(44, 53)(45, 48)(73, 82)(74, 86)(75, 90)(76, 88)(77, 83)(78, 87)(79, 85)(80, 89)(81, 84)(91, 136)(92, 140)(93, 144)(94, 142)(95, 137)(96, 141)(97, 139)(98, 143)(99, 138)(100, 127)(101, 131)(102, 135)(103, 133)(104, 128)(105, 132)(106, 130)(107, 134)(108, 129)(109, 118)(110, 122)(111, 126)(112, 124)(113, 119)(114, 123)(115, 121)(116, 125)(117, 120)(145, 266)(146, 265)(147, 177)(148, 178)(149, 193)(150, 194)(151, 170)(152, 169)(153, 210)(154, 209)(155, 252)(156, 251)(157, 214)(158, 213)(159, 160)(161, 259)(162, 260)(163, 182)(164, 181)(165, 267)(166, 268)(167, 243)(168, 244)(171, 233)(172, 234)(173, 273)(174, 274)(179, 287)(180, 288)(183, 283)(184, 284)(185, 196)(186, 195)(187, 204)(188, 203)(191, 276)(192, 275)(197, 226)(198, 225)(199, 200)(201, 222)(202, 221)(207, 246)(208, 245)(211, 212)(215, 217)(216, 218)(219, 254)(220, 253)(223, 242)(224, 241)(229, 282)(230, 281)(231, 238)(232, 237)(235, 236)(239, 271)(240, 272)(249, 250)(255, 257)(256, 258)(261, 279)(262, 280)(263, 264)(269, 285)(270, 286)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 218 ]
288
-1 187 198 201 284
-2 279 238 162 175
-3 287 156 269 227
-4 178 277 150 184
-5 190 268 181 186
-6 243 256 170 285
-7 213 225 247 240
-8 246 260 153 164
-9 275 254 167 205
-10 222 225 204 184
-11 166 190 195 164
-12 243 192 205 219
-13 198 158 247 272
-14 231 260 261 175
-15 167 258 269 151
-16 277 148 194 284
-17 210 181 162 207
-18 179 227 251 285
-19 166 192 172 229
-20 222 266 159 219
-21 204 195 250 273
-22 231 199 233 258
-23 212 151 272 241
-24 158 217 261 174
-25 236 281 207 251
-26 146 179 223 194
-27 210 148 216 263
-28 288 146 280 174
-29 155 188 199 216
-30 202 236 237 241
-31 266 169 185 263
-32 177 255 281 250
-33 223 267 149 172
-34 154 253 212 273
-35 276 214 217 229
-36 233 245 159 239
-37 177 168 182 239
-38 154 286 267 248
-39 276 278 169 259
-40 202 214 228 163
-41 245 280 206 283
-42 253 155 226 161
-43 176 188 244 149
-44 237 270 183 185
-45 189 255 288 197
-46 244 147 271 163
-47 183 206 262 208
-48 189 180 257 226
-49 176 168 203 193
-50 165 209 248 270
-51 220 259 197 252
-52 221 157 182 228
-53 286 232 283 196
-54 278 191 161 152
-55 265 180 262 274
-56 147 257 249 230
-57 160 171 271 208
-58 209 220 211 173
-59 200 203 218 252
-60 165 242 234 193
-61 264 145 152 196
-62 157 191 215 282
-63 221 232 224 235
-64 275 234 268 282
-65 211 224 170 240
-66 264 178 218 153
-67 156 235 246 230
-68 254 145 201 160
-69 213 279 215 274
-70 200 256 171 238
-71 242 265 287 150
-72 187 249 173 186
-73 188 202 283 197
-74 176 280 237 161
-75 155 288 270 228
-76 177 278 149 183
-77 189 267 182 185
-78 286 244 255 169
-79 214 226 248 239
-80 154 245 259 163
-81 253 276 168 206
-82 221 203 226 183
-83 165 189 163 196
-84 220 244 191 206
-85 157 248 271 197
-86 176 232 259 262
-87 168 257 270 152
-88 278 147 193 283
-89 209 182 161 208
-90 286 180 228 252
-91 165 191 171 230
-92 220 221 265 160
-93 203 249 196 274
-94 232 200 234 257
-95 242 211 271 152
-96 157 173 218 262
-97 235 282 208 252
-98 145 180 224 193
-99 209 264 147 215
-100 287 145 279 173
-101 187 156 200 215
-102 242 201 235 238
-103 264 265 170 186
-104 178 256 249 282
-105 224 268 171 150
-106 254 211 153 274
-107 275 213 218 230
-108 234 246 160 240
-109 167 178 181 240
-110 268 247 153 285
-111 275 277 170 260
-112 201 213 227 164
-113 246 279 205 284
-114 254 156 225 162
-115 187 243 150 175
-116 269 238 184 186
-117 198 287 190 256
-118 243 148 272 164
-119 205 184 261 207
-120 179 190 225 258
-121 167 204 194 175
-122 166 210 247 269
-123 198 260 251 219
-124 222 158 181 227
-125 231 195 284 285
-126 277 192 151 162
-127 266 179 261 273
-128 148 258 250 229
-129 159 172 272 207
-130 210 212 174 219
-131 199 204 217 251
-132 166 233 194 241
-133 146 151 195 263
-134 158 192 281 216
-135 231 222 223 236
-136 276 233 267 281
-137 212 223 169 239
-138 154 177 217 263
-139 155 245 236 229
-140 253 146 202 159
-141 214 280 216 273
-142 199 255 237 172
-143 266 288 149 241
-144 188 250 174 185
-145 100 68 61 98
-146 133 26 28 140
-147 88 99 56 46
-148 16 27 128 118
-149 33 143 43 76
-150 4 71 115 105
-151 23 133 15 126
-152 61 95 54 87
-153 66 110 106 8
-154 34 80 38 138
-155 29 139 42 75
-156 67 101 3 114
-157 62 52 85 96
-158 13 24 134 124
-159 36 129 140 20
-160 57 68 92 108
-161 89 74 42 54
-162 2 114 126 17
-163 46 80 83 40
-164 11 112 8 118
-165 91 60 50 83
-166 11 132 122 19
-167 121 15 9 109
-168 37 81 49 87
-169 78 137 39 31
-170 111 103 6 65
-171 57 91 70 105
-172 33 19 129 142
-173 100 58 72 96
-174 144 24 28 130
-175 121 2 14 115
-176 49 74 86 43
-177 37 138 32 76
-178 66 4 104 109
-179 26 127 18 120
-180 55 90 48 98
-181 124 5 17 109
-182 77 89 37 52
-183 44 47 82 76
-184 4 116 119 10
-185 44 77 144 31
-186 103 5 72 116
-187 1 101 115 72
-188 144 29 73 43
-189 77 45 48 83
-190 11 5 117 120
-191 91 62 84 54
-192 12 134 126 19
-193 88 49 60 98
-194 121 132 26 16
-195 11 133 125 21
-196 93 61 83 53
-197 45 51 73 85
-198 1 13 123 117
-199 22 29 131 142
-200 101 59 70 94
-201 1 68 112 102
-202 40 73 30 140
-203 59 49 82 93
-204 121 10 21 131
-205 12 113 9 119
-206 47 81 84 41
-207 25 17 129 119
-208 89 57 47 97
-209 99 89 58 50
-210 122 27 17 130
-211 58 95 106 65
-212 23 34 137 130
-213 112 69 7 107
-214 35 79 40 141
-215 99 101 69 62
-216 134 27 29 141
-217 24 35 138 131
-218 66 59 96 107
-219 12 123 20 130
-220 58 92 51 84
-221 92 82 52 63
-222 124 135 20 10
-223 33 135 26 137
-224 105 63 65 98
-225 114 7 10 120
-226 79 48 82 42
-227 112 3 124 18
-228 90 40 52 75
-229 35 128 139 19
-230 56 67 91 107
-231 22 14 135 125
-232 94 63 53 86
-233 22 132 36 136
-234 60 94 64 108
-235 67 102 63 97
-236 25 135 139 30
-237 44 30 74 142
-238 2 102 70 116
-239 79 36 37 137
-240 7 108 65 109
-241 132 143 23 30
-242 102 60 71 95
-243 12 115 6 118
-244 78 46 84 43
-245 36 80 139 41
-246 67 113 8 108
-247 110 122 13 7
-248 79 38 50 85
-249 56 93 104 72
-250 144 128 21 32
-251 123 25 18 131
-252 90 59 51 97
-253 34 81 140 42
-254 68 114 106 9
-255 45 78 32 142
-256 70 104 6 117
-257 56 48 94 87
-258 22 15 128 120
-259 80 39 51 86
-260 111 123 14 8
-261 24 14 127 119
-262 55 47 96 86
-263 133 27 138 31
-264 66 99 103 61
-265 55 92 103 71
-266 143 127 20 31
-267 33 77 136 38
-268 110 5 105 64
-269 122 3 15 116
-270 44 50 75 87
-271 46 57 95 85
-272 23 13 118 129
-273 34 127 141 21
-274 55 69 93 106
-275 111 107 9 64
-276 35 81 136 39
-277 111 4 16 126
-278 88 39 54 76
-279 100 2 69 113
-280 28 41 74 141
-281 134 25 136 32
-282 104 62 64 97
-283 88 73 41 53
-284 1 113 125 16
-285 110 125 6 18
-286 78 90 38 53
-287 100 3 71 117
-288 143 45 28 75
0

**************