[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 288, 219 ] =
BGCG(AMC(8,3,[0.1:1.2]);K2;{2,7}).
(I) Following is a form readable by MAGMA:
g:=Graph<288|{ {137, 153}, {131, 145}, {142, 155}, {133, 157}, {131, 159}, {136,
149}, {128, 162}, {143, 173}, {132, 166}, {135, 163}, {142, 168}, {129, 177},
{143, 190}, {141, 191}, {136, 187}, {129, 180}, {140, 186}, {141, 181}, {142,
180}, {132, 187}, {134, 196}, {135, 197}, {136, 204}, {138, 207}, {144, 217},
{131, 207}, {129, 209}, {143, 223}, {140, 220}, {133, 213}, {142, 221}, {134,
211}, {133, 220}, {132, 223}, {139, 215}, {131, 221}, {138, 213}, {144, 240},
{136, 233}, {138, 232}, {143, 236}, {139, 227}, {130, 237}, {134, 233}, {137,
249}, {130, 240}, {141, 255}, {140, 254}, {144, 230}, {128, 247}, {128, 252},
{139, 247}, {135, 249}, {60, 188}, {73, 201}, {78, 206}, {44, 173}, {107, 234},
{55, 182}, {45, 172}, {100, 229}, {98, 224}, {43, 168}, {95, 219}, {69, 192},
{27, 157}, {84, 210}, {20, 147}, {48, 184}, {111, 231}, {103, 239}, {22, 159},
{125, 244}, {124, 245}, {105, 224}, {24, 145}, {98, 235}, {57, 179}, {118, 252},
{57, 178}, {64, 203}, {76, 199}, {93, 214}, {38, 170}, {113, 253}, {107, 231},
{99, 239}, {16, 157}, {21, 152}, {79, 194}, {89, 212}, {93, 208}, {92, 210},
{96, 238}, {100, 235}, {126, 241}, {107, 228}, {117, 229}, {14, 159}, {53, 164},
{49, 160}, {48, 161}, {88, 201}, {10, 152}, {66, 208}, {44, 190}, {42, 184},
{72, 218}, {5, 150}, {127, 236}, {41, 186}, {66, 214}, {112, 228}, {77, 217},
{42, 191}, {116, 225}, {82, 199}, {108, 250}, {123, 237}, {50, 165}, {85, 194},
{50, 170}, {109, 245}, {70, 222}, {10, 147}, {60, 165}, {56, 161}, {41, 176},
{100, 253}, {6, 156}, {110, 244}, {33, 187}, {84, 206}, {89, 195}, {59, 160},
{122, 225}, {67, 216}, {63, 164}, {6, 154}, {46, 178}, {75, 215}, {90, 198},
{34, 191}, {81, 204}, {101, 248}, {36, 186}, {111, 241}, {14, 145}, {68, 219},
{51, 172}, {47, 176}, {30, 190}, {55, 151}, {83, 243}, {91, 251}, {99, 195},
{14, 175}, {51, 146}, {11, 169}, {111, 205}, {19, 177}, {55, 148}, {61, 158},
{80, 243}, {81, 242}, {82, 246}, {2, 167}, {109, 200}, {66, 231}, {84, 242},
{119, 209}, {109, 203}, {92, 250}, {94, 248}, {48, 151}, {108, 203}, {67, 228},
{71, 224}, {72, 239}, {97, 198}, {19, 187}, {112, 216}, {54, 158}, {83, 251},
{11, 162}, {59, 146}, {28, 181}, {15, 166}, {4, 174}, {106, 192}, {64, 234},
{30, 180}, {5, 169}, {71, 235}, {2, 175}, {25, 180}, {24, 181}, {6, 171}, {72,
229}, {73, 230}, {124, 211}, {117, 218}, {77, 226}, {9, 185}, {43, 155}, {37,
149}, {18, 163}, {121, 200}, {112, 193}, {106, 219}, {23, 166}, {91, 234}, {31,
173}, {114, 192}, {104, 218}, {80, 227}, {3, 183}, {29, 168}, {32, 149}, {74,
255}, {97, 212}, {104, 222}, {123, 205}, {21, 162}, {73, 254}, {15, 183}, {104,
208}, {33, 153}, {80, 232}, {18, 171}, {124, 197}, {115, 202}, {68, 253}, {26,
163}, {79, 246}, {33, 155}, {126, 196}, {47, 148}, {67, 248}, {65, 250}, {85,
238}, {89, 226}, {106, 214}, {118, 202}, {12, 177}, {124, 193}, {3, 189}, {102,
216}, {38, 153}, {97, 222}, {21, 213}, {56, 248}, {35, 227}, {12, 205}, {9,
203}, {52, 246}, {17, 211}, {10, 200}, {101, 167}, {56, 251}, {25, 221}, {54,
242}, {86, 146}, {20, 209}, {114, 183}, {63, 250}, {26, 223}, {82, 151}, {7,
193}, {53, 243}, {82, 148}, {88, 158}, {98, 164}, {7, 192}, {118, 177}, {110,
169}, {92, 148}, {113, 185}, {30, 215}, {116, 189}, {103, 174}, {25, 211}, {127,
181}, {35, 233}, {93, 151}, {1, 202}, {45, 230}, {40, 227}, {35, 232}, {23,
220}, {6, 205}, {4, 200}, {13, 193}, {44, 226}, {39, 232}, {120, 183}, {50,
226}, {123, 171}, {97, 179}, {100, 182}, {37, 246}, {122, 169}, {58, 238}, {115,
167}, {62, 234}, {17, 196}, {108, 185}, {105, 188}, {58, 239}, {46, 251}, {42,
255}, {39, 242}, {38, 243}, {78, 155}, {102, 179}, {64, 150}, {96, 182}, {18,
197}, {41, 254}, {78, 153}, {77, 149}, {119, 175}, {16, 202}, {120, 162}, {116,
174}, {70, 156}, {21, 207}, {3, 216}, {65, 154}, {102, 189}, {25, 197}, {122,
166}, {60, 224}, {55, 235}, {12, 209}, {51, 238}, {36, 249}, {113, 175}, {125,
163}, {117, 171}, {5, 218}, {27, 196}, {13, 237}, {120, 152}, {52, 212}, {22,
247}, {70, 167}, {76, 173}, {28, 254}, {43, 201}, {37, 199}, {29, 255}, {74,
168}, {78, 172}, {126, 157}, {1, 229}, {119, 147}, {5, 225}, {59, 222}, {61,
219}, {121, 159}, {84, 178}, {86, 176}, {46, 201}, {127, 152}, {77, 170}, {91,
188}, {36, 204}, {37, 204}, {39, 206}, {71, 174}, {91, 178}, {29, 247}, {123,
145}, {62, 212}, {40, 194}, {27, 240}, {61, 214}, {59, 208}, {57, 210}, {81,
186}, {8, 228}, {127, 147}, {20, 249}, {8, 231}, {115, 156}, {32, 207}, {31,
240}, {19, 252}, {87, 184}, {17, 225}, {28, 236}, {79, 191}, {7, 245}, {52,
198}, {83, 161}, {87, 165}, {96, 146}, {69, 182}, {105, 154}, {75, 184}, {45,
217}, {110, 154}, {24, 237}, {105, 156}, {54, 195}, {70, 179}, {75, 190}, {26,
236}, {52, 194}, {49, 199}, {86, 160}, {90, 172}, {11, 252}, {34, 213}, {9,
241}, {32, 217}, {63, 198}, {83, 170}, {19, 233}, {28, 230}, {71, 189}, {74,
176}, {95, 165}, {109, 150}, {1, 253}, {64, 188}, {8, 244}, {93, 161}, {12,
241}, {68, 185}, {62, 195}, {51, 206}, {47, 210}, {32, 221}, {99, 158}, {33,
223}, {104, 150}, {34, 220}, {90, 164}, {94, 160}, {10, 245}, {40, 215}, {11,
244}, {9, 265}, {4, 261}, {31, 286}, {17, 272}, {2, 256}, {15, 269}, {16, 275},
{24, 284}, {15, 265}, {26, 275}, {27, 274}, {20, 286}, {18, 281}, {4, 264}, {13,
258}, {29, 274}, {2, 272}, {30, 268}, {16, 261}, {23, 258}, {22, 259}, {1, 278},
{31, 263}, {3, 281}, {13, 278}, {23, 268}, {22, 269}, {7, 280}, {39, 263}, {47,
271}, {42, 266}, {53, 276}, {44, 271}, {62, 283}, {36, 259}, {58, 285}, {8,
288}, {56, 273}, {61, 276}, {48, 282}, {53, 287}, {43, 262}, {14, 288}, {38,
279}, {57, 267}, {60, 270}, {50, 257}, {34, 279}, {41, 287}, {45, 282}, {49,
262}, {46, 277}, {63, 260}, {58, 257}, {54, 266}, {40, 277}, {35, 284}, {49,
270}, {85, 277}, {90, 282}, {92, 285}, {69, 256}, {74, 271}, {67, 260}, {86,
287}, {66, 264}, {76, 262}, {76, 263}, {88, 276}, {68, 267}, {80, 287}, {94,
270}, {75, 282}, {113, 288}, {85, 257}, {95, 267}, {89, 271}, {79, 279}, {65,
280}, {72, 273}, {87, 270}, {94, 260}, {81, 266}, {65, 285}, {73, 277}, {87,
266}, {125, 288}, {69, 283}, {88, 262}, {95, 257}, {118, 278}, {120, 281}, {116,
272}, {101, 256}, {112, 278}, {111, 264}, {119, 272}, {108, 260}, {117, 281},
{102, 267}, {125, 275}, {103, 264}, {107, 283}, {99, 273}, {114, 256}, {106,
280}, {101, 273}, {121, 269}, {98, 276}, {115, 261}, {110, 280}, {126, 265},
{122, 258}, {103, 285}, {96, 283}, {114, 265}, {121, 261}, {130, 258}, {140,
268}, {144, 274}, {135, 259}, {139, 259}, {132, 269}, {129, 268}, {138, 263},
{141, 284}, {128, 274}, {133, 275}, {137, 286}, {134, 284}, {130, 286}, {137,
279} }>;
(II) A more general form is to represent the graph as the orbit of {137, 153}
under the group generated by the following permutations:
a: (2, 8, 3, 6)(4, 9, 7, 5)(10, 64)(11, 71, 12, 69)(13, 72, 16, 68)(14, 67, 18,
70)(15, 65, 17, 66)(19, 55)(20, 62, 21, 60)(22, 63, 25, 59)(23, 58, 27, 61)(24,
56, 26, 57)(28, 46)(29, 53, 30, 51)(31, 54, 34, 50)(32, 49, 36, 52)(33, 47, 35,
48)(38, 44, 39, 42)(40, 45, 43, 41)(74, 80, 75, 78)(76, 81, 79, 77)(82, 136)(83,
143, 84, 141)(85, 144, 88, 140)(86, 139, 90, 142)(87, 137, 89, 138)(91, 127)(92,
134, 93, 132)(94, 135, 97, 131)(95, 130, 99, 133)(96, 128, 98, 129)(100,
118)(101, 125, 102, 123)(103, 126, 106, 122)(104, 121, 108, 124)(105, 119, 107,
120)(110, 116, 111, 114)(112, 117, 115, 113)(145, 248, 163, 179)(146, 247, 164,
180)(147, 234, 152, 188)(148, 233, 151, 187)(149, 199, 204, 246)(150, 200, 203,
245)(153, 271, 232, 184)(154, 272, 231, 183)(155, 176, 227, 282)(156, 175, 228,
281)(157, 219, 258, 239)(158, 220, 257, 240)(159, 260, 197, 222)(160, 259, 198,
221)(161, 223, 210, 284)(162, 224, 209, 283)(165, 286, 195, 213)(166, 285, 196,
214)(167, 288, 216, 171)(168, 287, 215, 172)(169, 174, 241, 192)(170, 173, 242,
191)(177, 182, 252, 235)(178, 181, 251, 236)(185, 193, 218, 261)(186, 194, 217,
262)(189, 205, 256, 244)(190, 206, 255, 243)(201, 254, 277, 230)(202, 253, 278,
229)(207, 270, 249, 212)(208, 269, 250, 211)(225, 264, 265, 280)(226, 263, 266,
279)(237, 273, 275, 267)(238, 274, 276, 268) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 9, 8)(3, 4, 7, 6)(10, 65, 18, 71)(11, 72, 17, 64)(12, 67, 16, 69)(13,
70, 15, 66)(14, 68)(19, 56, 27, 62)(20, 63, 26, 55)(21, 58, 25, 60)(22, 61, 24,
57)(23, 59)(28, 47, 36, 53)(29, 54, 35, 46)(30, 49, 34, 51)(31, 52, 33, 48)(32,
50)(37, 38, 45, 44)(39, 40, 43, 42)(73, 74, 81, 80)(75, 76, 79, 78)(82, 137, 90,
143)(83, 144, 89, 136)(84, 139, 88, 141)(85, 142, 87, 138)(86, 140)(91, 128, 99,
134)(92, 135, 98, 127)(93, 130, 97, 132)(94, 133, 96, 129)(95, 131)(100, 119,
108, 125)(101, 126, 107, 118)(102, 121, 106, 123)(103, 124, 105, 120)(104,
122)(109, 110, 117, 116)(111, 112, 115, 114)(145, 267, 159, 219)(146, 268, 160,
220)(147, 250, 163, 235)(148, 249, 164, 236)(149, 170, 217, 226)(150, 169, 218,
225)(151, 286, 198, 223)(152, 285, 197, 224)(153, 282, 173, 246)(154, 281, 174,
245)(155, 184, 263, 194)(156, 183, 264, 193)(157, 283, 177, 248)(158, 284, 178,
247)(161, 240, 212, 187)(162, 239, 211, 188)(165, 207, 257, 221)(166, 208, 258,
222)(167, 265, 231, 278)(168, 266, 232, 277)(171, 189, 200, 280)(172, 190, 199,
279)(175, 185, 288, 253)(176, 186, 287, 254)(179, 269, 214, 237)(180, 270, 213,
238)(181, 210, 259, 276)(182, 209, 260, 275)(191, 206, 215, 262)(192, 205, 216,
261)(195, 233, 251, 274)(196, 234, 252, 273)(201, 255, 242, 227)(202, 256, 241,
228)(203, 244, 229, 272)(204, 243, 230, 271)
c: (1, 73)(2, 74)(3, 75)(4, 76)(5, 77)(6, 78)(7, 79)(8, 80)(9, 81)(10, 82)(11,
83)(12, 84)(13, 85)(14, 86)(15, 87)(16, 88)(17, 89)(18, 90)(19, 91)(20, 92)(21,
93)(22, 94)(23, 95)(24, 96)(25, 97)(26, 98)(27, 99)(28, 100)(29, 101)(30,
102)(31, 103)(32, 104)(33, 105)(34, 106)(35, 107)(36, 108)(37, 109)(38, 110)(39,
111)(40, 112)(41, 113)(42, 114)(43, 115)(44, 116)(45, 117)(46, 118)(47, 119)(48,
120)(49, 121)(50, 122)(51, 123)(52, 124)(53, 125)(54, 126)(55, 127)(56, 128)(57,
129)(58, 130)(59, 131)(60, 132)(61, 133)(62, 134)(63, 135)(64, 136)(65, 137)(66,
138)(67, 139)(68, 140)(69, 141)(70, 142)(71, 143)(72, 144)(145, 146)(147,
148)(149, 150)(151, 152)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163,
164)(165, 166)(167, 168)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179,
180)(181, 182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)(193, 194)(195,
196)(197, 198)(199, 200)(201, 202)(203, 204)(205, 206)(207, 208)(209, 210)(211,
212)(213, 214)(215, 216)(217, 218)(219, 220)(221, 222)(223, 224)(225, 226)(227,
228)(229, 230)(231, 232)(233, 234)(235, 236)(237, 238)(239, 240)(241, 242)(243,
244)(245, 246)(247, 248)(249, 250)(251, 252)(253, 254)(255, 256)(257, 258)(259,
260)(261, 262)(263, 264)(265, 266)(267, 268)(269, 270)(271, 272)(273, 274)(275,
276)(277, 278)(279, 280)(281, 282)(283, 284)(285, 286)(287, 288)
d: (1, 10)(2, 18)(3, 14)(4, 13)(5, 12)(6, 17)(7, 16)(8, 15)(9, 11)(19, 64)(20,
72)(21, 68)(22, 67)(23, 66)(24, 71)(25, 70)(26, 69)(27, 65)(28, 55)(29, 63)(30,
59)(31, 58)(32, 57)(33, 62)(34, 61)(35, 60)(36, 56)(37, 46)(38, 54)(39, 50)(40,
49)(41, 48)(42, 53)(43, 52)(44, 51)(45, 47)(73, 82)(74, 90)(75, 86)(76, 85)(77,
84)(78, 89)(79, 88)(80, 87)(81, 83)(91, 136)(92, 144)(93, 140)(94, 139)(95,
138)(96, 143)(97, 142)(98, 141)(99, 137)(100, 127)(101, 135)(102, 131)(103,
130)(104, 129)(105, 134)(106, 133)(107, 132)(108, 128)(109, 118)(110, 126)(111,
122)(112, 121)(113, 120)(114, 125)(115, 124)(116, 123)(117, 119)(145, 189)(146,
190)(147, 229)(148, 230)(149, 178)(150, 177)(151, 254)(152, 253)(153, 195)(154,
196)(155, 212)(156, 211)(157, 280)(158, 279)(159, 216)(160, 215)(161, 186)(162,
185)(163, 256)(164, 255)(165, 232)(166, 231)(167, 197)(168, 198)(169, 241)(170,
242)(171, 272)(172, 271)(173, 238)(174, 237)(175, 281)(176, 282)(179, 221)(180,
222)(181, 235)(182, 236)(183, 288)(184, 287)(187, 234)(188, 233)(191, 276)(192,
275)(193, 261)(194, 262)(199, 277)(200, 278)(201, 246)(202, 245)(203, 252)(204,
251)(205, 225)(206, 226)(207, 267)(208, 268)(209, 218)(210, 217)(213, 219)(214,
220)(223, 283)(224, 284)(227, 270)(228, 269)(239, 286)(240, 285)(243, 266)(244,
265)(247, 260)(248, 259)(249, 273)(250, 274)(257, 263)(258, 264)
C4[ 288, 219 ]
288
-1 253 278 202 229
-2 167 256 272 175
-3 189 281 183 216
-4 264 200 261 174
-5 169 225 150 218
-6 154 156 171 205
-7 245 192 280 193
-8 231 244 288 228
-9 265 203 185 241
-10 200 245 147 152
-11 244 169 162 252
-12 209 177 205 241
-13 278 258 193 237
-14 145 288 159 175
-15 166 265 269 183
-16 275 157 202 261
-17 211 225 272 196
-18 171 281 163 197
-19 187 177 233 252
-20 209 286 147 249
-21 213 162 152 207
-22 159 247 269 259
-23 220 166 268 258
-24 145 181 237 284
-25 221 211 180 197
-26 275 223 236 163
-27 157 196 240 274
-28 254 181 236 230
-29 255 168 247 274
-30 190 180 268 215
-31 286 173 240 263
-32 221 149 217 207
-33 187 155 223 153
-34 220 191 213 279
-35 232 233 227 284
-36 204 259 249 186
-37 199 246 149 204
-38 243 279 170 153
-39 242 232 206 263
-40 277 215 194 227
-41 176 254 287 186
-42 255 266 191 184
-43 155 168 201 262
-44 190 226 271 173
-45 172 282 217 230
-46 178 277 201 251
-47 176 210 148 271
-48 161 282 151 184
-49 199 160 270 262
-50 165 257 170 226
-51 146 172 238 206
-52 198 212 246 194
-53 243 276 287 164
-54 242 266 158 195
-55 235 148 182 151
-56 248 161 251 273
-57 210 178 179 267
-58 257 238 239 285
-59 222 146 160 208
-60 165 188 224 270
-61 276 158 214 219
-62 212 234 195 283
-63 198 260 250 164
-64 188 234 203 150
-65 154 280 250 285
-66 231 264 214 208
-67 248 216 260 228
-68 253 267 185 219
-69 256 192 182 283
-70 156 167 222 179
-71 189 224 235 174
-72 239 218 229 273
-73 254 277 201 230
-74 176 255 168 271
-75 190 215 282 184
-76 199 173 262 263
-77 170 149 226 217
-78 155 172 206 153
-79 191 246 279 194
-80 232 243 287 227
-81 242 266 204 186
-82 199 246 148 151
-83 243 170 161 251
-84 242 210 178 206
-85 277 257 194 238
-86 176 287 146 160
-87 165 266 270 184
-88 276 201 158 262
-89 212 226 271 195
-90 198 172 282 164
-91 188 178 234 251
-92 210 148 250 285
-93 214 161 151 208
-94 160 248 270 260
-95 165 267 257 219
-96 146 182 238 283
-97 198 222 179 212
-98 276 224 235 164
-99 158 195 239 273
-100 253 235 182 229
-101 167 256 248 273
-102 189 179 267 216
-103 264 239 174 285
-104 222 150 218 208
-105 154 188 156 224
-106 192 214 280 219
-107 231 234 228 283
-108 203 260 250 185
-109 200 245 203 150
-110 154 244 169 280
-111 231 264 205 241
-112 278 193 216 228
-113 253 288 185 175
-114 265 256 192 183
-115 156 167 202 261
-116 189 225 272 174
-117 171 281 218 229
-118 177 278 202 252
-119 209 147 272 175
-120 281 183 162 152
-121 200 159 269 261
-122 166 169 225 258
-123 145 171 237 205
-124 211 245 193 197
-125 275 244 288 163
-126 265 157 196 241
-127 147 181 236 152
-128 247 162 252 274
-129 209 177 180 268
-130 286 258 237 240
-131 221 145 159 207
-132 187 166 223 269
-133 220 275 157 213
-134 211 233 196 284
-135 259 249 163 197
-136 187 233 149 204
-137 286 279 249 153
-138 232 213 207 263
-139 247 215 259 227
-140 220 254 268 186
-141 255 191 181 284
-142 155 221 168 180
-143 190 223 236 173
-144 217 240 230 274
-145 24 123 14 131
-146 59 51 96 86
-147 127 20 119 10
-148 55 47 92 82
-149 77 37 136 32
-150 5 104 64 109
-151 55 48 82 93
-152 127 10 21 120
-153 33 78 38 137
-154 110 6 105 65
-155 33 78 43 142
-156 70 115 6 105
-157 133 16 27 126
-158 88 99 61 54
-159 22 121 14 131
-160 59 49 94 86
-161 56 48 93 83
-162 11 128 21 120
-163 135 26 125 18
-164 90 63 53 98
-165 60 50 95 87
-166 132 23 122 15
-167 2 101 70 115
-168 29 74 43 142
-169 11 110 122 5
-170 77 38 50 83
-171 123 6 18 117
-172 45 78 90 51
-173 44 143 31 76
-174 4 103 71 116
-175 2 14 113 119
-176 47 41 74 86
-177 12 19 118 129
-178 46 57 91 84
-179 57 102 70 97
-180 25 30 129 142
-181 24 28 127 141
-182 55 100 69 96
-183 3 15 114 120
-184 48 42 75 87
-185 68 113 9 108
-186 36 81 41 140
-187 33 132 136 19
-188 91 60 105 64
-189 3 102 71 116
-190 44 143 30 75
-191 34 79 42 141
-192 69 114 7 106
-193 13 112 124 7
-194 79 40 52 85
-195 99 89 62 54
-196 134 27 126 17
-197 25 124 135 18
-198 90 52 63 97
-199 37 49 82 76
-200 121 4 10 109
-201 88 46 73 43
-202 1 16 115 118
-203 9 64 108 109
-204 36 37 81 136
-205 12 111 123 6
-206 78 39 51 84
-207 138 21 32 131
-208 66 59 93 104
-209 12 129 20 119
-210 57 47 92 84
-211 134 25 124 17
-212 89 62 52 97
-213 34 133 138 21
-214 66 93 61 106
-215 40 139 30 75
-216 67 112 3 102
-217 77 45 144 32
-218 5 104 72 117
-219 68 61 95 106
-220 23 34 133 140
-221 25 32 131 142
-222 59 70 104 97
-223 33 132 143 26
-224 60 71 105 98
-225 122 5 17 116
-226 44 77 89 50
-227 35 80 40 139
-228 67 112 8 107
-229 1 100 72 117
-230 45 144 28 73
-231 66 111 8 107
-232 35 80 39 138
-233 35 134 136 19
-234 91 62 107 64
-235 55 100 71 98
-236 143 26 28 127
-237 13 24 123 130
-238 58 51 85 96
-239 99 58 103 72
-240 144 27 31 130
-241 12 111 126 9
-242 81 39 84 54
-243 80 38 83 53
-244 11 110 125 8
-245 124 7 10 109
-246 79 37 82 52
-247 22 29 128 139
-248 56 67 101 94
-249 36 135 137 20
-250 92 63 108 65
-251 56 46 91 83
-252 11 128 19 118
-253 1 100 68 113
-254 28 73 41 140
-255 29 74 42 141
-256 2 101 69 114
-257 58 50 95 85
-258 23 122 13 130
-259 22 36 135 139
-260 67 94 63 108
-261 121 4 16 115
-262 88 49 43 76
-263 39 138 31 76
-264 66 111 4 103
-265 15 114 126 9
-266 81 42 54 87
-267 57 68 102 95
-268 23 30 129 140
-269 22 121 132 15
-270 49 60 94 87
-271 44 89 47 74
-272 2 17 116 119
-273 99 56 101 72
-274 144 27 29 128
-275 133 26 125 16
-276 88 61 53 98
-277 46 40 73 85
-278 1 13 112 118
-279 34 79 38 137
-280 110 7 106 65
-281 3 18 117 120
-282 45 90 48 75
-283 69 62 96 107
-284 24 35 134 141
-285 58 92 103 65
-286 137 20 31 130
-287 80 41 53 86
-288 14 113 125 8
0