[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 288, 220 ] =
BGCG({4,4}_12,0;K1;{2,10}).
(I) Following is a form readable by MAGMA:
g:=Graph<288|{ {133, 148}, {134, 148}, {134, 146}, {137, 146}, {128, 156}, {131,
156}, {134, 166}, {131, 166}, {144, 181}, {138, 162}, {139, 162}, {143, 166},
{135, 181}, {132, 183}, {131, 183}, {135, 176}, {135, 191}, {140, 180}, {136,
176}, {134, 191}, {130, 188}, {139, 180}, {132, 199}, {128, 208}, {129, 208},
{135, 212}, {140, 216}, {141, 216}, {138, 211}, {137, 211}, {131, 223}, {130,
223}, {138, 212}, {143, 237}, {132, 233}, {143, 226}, {140, 226}, {133, 245},
{139, 251}, {133, 247}, {142, 251}, {136, 240}, {130, 251}, {138, 243}, {137,
240}, {142, 245}, {130, 254}, {144, 237}, {141, 243}, {129, 254}, {136, 247},
{21, 149}, {113, 241}, {50, 178}, {39, 167}, {93, 221}, {47, 174}, {51, 178},
{80, 209}, {51, 177}, {84, 215}, {108, 239}, {72, 204}, {127, 251}, {40, 173},
{43, 173}, {69, 195}, {81, 215}, {18, 149}, {54, 177}, {90, 221}, {38, 174},
{113, 249}, {53, 189}, {81, 217}, {84, 220}, {48, 185}, {92, 214}, {93, 215},
{30, 149}, {124, 247}, {122, 241}, {64, 203}, {48, 187}, {72, 195}, {93, 214},
{39, 171}, {125, 241}, {82, 222}, {99, 239}, {100, 232}, {25, 148}, {116, 249},
{110, 227}, {42, 167}, {35, 174}, {26, 148}, {121, 247}, {109, 227}, {63, 177},
{39, 169}, {38, 169}, {50, 189}, {96, 239}, {103, 232}, {2, 146}, {121, 233},
{35, 179}, {14, 158}, {15, 158}, {34, 179}, {104, 249}, {89, 202}, {32, 180},
{47, 187}, {45, 185}, {41, 189}, {100, 240}, {73, 220}, {101, 240}, {5, 146},
{60, 171}, {73, 222}, {78, 217}, {33, 185}, {51, 171}, {70, 222}, {94, 198},
{52, 173}, {121, 224}, {95, 198}, {55, 173}, {125, 231}, {122, 224}, {38, 189},
{124, 231}, {66, 217}, {48, 171}, {69, 217}, {83, 207}, {86, 202}, {101, 249},
{36, 185}, {82, 207}, {62, 160}, {79, 209}, {110, 241}, {94, 254}, {109, 205},
{31, 190}, {116, 213}, {60, 157}, {57, 152}, {3, 161}, {28, 190}, {20, 182},
{98, 192}, {93, 254}, {61, 153}, {120, 220}, {4, 161}, {15, 170}, {55, 145},
{115, 213}, {84, 242}, {103, 193}, {17, 182}, {117, 210}, {62, 153}, {56, 159},
{12, 164}, {111, 199}, {98, 202}, {99, 203}, {3, 170}, {6, 175}, {83, 250},
{100, 205}, {3, 169}, {126, 212}, {120, 210}, {53, 159}, {5, 175}, {80, 250},
{2, 169}, {107, 192}, {106, 193}, {58, 145}, {31, 180}, {27, 176}, {6, 170},
{49, 157}, {28, 176}, {97, 205}, {9, 164}, {19, 190}, {16, 190}, {110, 192},
{54, 152}, {100, 203}, {123, 212}, {101, 202}, {88, 232}, {104, 216}, {21, 164},
{109, 220}, {105, 216}, {42, 152}, {119, 197}, {115, 193}, {5, 182}, {91, 232},
{26, 174}, {33, 149}, {90, 238}, {105, 221}, {45, 152}, {85, 224}, {91, 238},
{3, 181}, {32, 150}, {86, 224}, {33, 150}, {119, 192}, {118, 193}, {96, 215},
{18, 170}, {119, 207}, {87, 239}, {12, 181}, {118, 207}, {46, 151}, {30, 167},
{75, 242}, {45, 151}, {72, 242}, {102, 221}, {105, 210}, {24, 164}, {123, 199},
{27, 167}, {71, 250}, {120, 197}, {112, 205}, {73, 244}, {8, 182}, {108, 210},
{68, 250}, {66, 252}, {18, 172}, {74, 244}, {19, 172}, {120, 199}, {67, 252},
{71, 248}, {42, 234}, {43, 234}, {25, 219}, {41, 235}, {89, 155}, {103, 165},
{40, 235}, {59, 248}, {20, 208}, {102, 162}, {21, 208}, {121, 188}, {82, 151},
{103, 162}, {8, 206}, {62, 248}, {34, 228}, {81, 151}, {9, 206}, {58, 253}, {28,
219}, {92, 155}, {23, 223}, {85, 157}, {12, 197}, {36, 237}, {22, 223}, {46,
228}, {118, 188}, {112, 186}, {50, 248}, {80, 155}, {113, 186}, {49, 253}, {95,
147}, {15, 194}, {63, 242}, {30, 211}, {23, 218}, {104, 165}, {11, 197}, {111,
161}, {47, 225}, {35, 237}, {29, 211}, {43, 228}, {48, 255}, {46, 225}, {92,
147}, {54, 230}, {60, 236}, {11, 218}, {112, 161}, {109, 188}, {37, 244}, {7,
213}, {126, 172}, {68, 150}, {67, 145}, {38, 244}, {46, 253}, {127, 172}, {69,
150}, {53, 230}, {14, 218}, {49, 229}, {25, 204}, {77, 155}, {50, 229}, {70,
145}, {59, 236}, {96, 183}, {2, 218}, {123, 163}, {66, 154}, {54, 238}, {37,
253}, {27, 194}, {55, 238}, {24, 194}, {37, 255}, {19, 200}, {68, 159}, {65,
154}, {20, 200}, {122, 166}, {99, 191}, {8, 213}, {114, 175}, {20, 201}, {98,
191}, {23, 201}, {113, 175}, {65, 159}, {26, 196}, {27, 196}, {124, 163}, {2,
227}, {68, 165}, {65, 160}, {73, 168}, {1, 227}, {44, 206}, {30, 252}, {90,
184}, {31, 252}, {61, 222}, {45, 206}, {13, 233}, {122, 158}, {76, 168}, {86,
178}, {87, 178}, {123, 158}, {16, 246}, {67, 165}, {36, 194}, {13, 229}, {116,
156}, {36, 204}, {83, 187}, {95, 183}, {11, 226}, {32, 201}, {8, 226}, {35,
201}, {11, 225}, {74, 160}, {10, 225}, {119, 156}, {14, 229}, {6, 234}, {7,
234}, {77, 160}, {5, 235}, {56, 214}, {4, 235}, {57, 214}, {84, 187}, {87, 184},
{56, 200}, {88, 168}, {24, 233}, {61, 204}, {4, 246}, {12, 255}, {66, 177}, {40,
219}, {75, 184}, {1, 245}, {63, 203}, {24, 236}, {18, 230}, {71, 179}, {87,
163}, {6, 243}, {70, 179}, {17, 231}, {76, 186}, {78, 184}, {1, 246}, {17, 230},
{16, 231}, {77, 186}, {97, 153}, {107, 147}, {9, 243}, {62, 196}, {57, 195},
{43, 209}, {13, 246}, {63, 196}, {31, 228}, {23, 236}, {88, 163}, {98, 153},
{104, 147}, {58, 198}, {102, 154}, {44, 209}, {59, 198}, {85, 168}, {96, 157},
{1, 255}, {37, 219}, {10, 245}, {60, 195}, {55, 200}, {101, 154}, {17, 273},
{22, 278}, {29, 287}, {7, 256}, {7, 270}, {4, 270}, {10, 256}, {26, 273}, {29,
273}, {15, 257}, {25, 278}, {16, 257}, {19, 256}, {22, 256}, {10, 274}, {29,
261}, {28, 261}, {9, 274}, {13, 278}, {21, 265}, {14, 273}, {22, 265}, {56,
280}, {59, 280}, {41, 269}, {61, 283}, {42, 269}, {49, 283}, {52, 283}, {57,
265}, {40, 282}, {51, 257}, {44, 287}, {58, 265}, {34, 278}, {44, 280}, {52,
257}, {41, 287}, {47, 280}, {34, 286}, {39, 282}, {53, 267}, {32, 287}, {52,
267}, {33, 286}, {77, 269}, {78, 269}, {65, 261}, {67, 263}, {64, 261}, {78,
264}, {64, 263}, {79, 264}, {79, 263}, {70, 271}, {69, 271}, {76, 263}, {74,
262}, {79, 259}, {86, 262}, {72, 281}, {75, 282}, {82, 259}, {89, 267}, {88,
267}, {116, 288}, {83, 262}, {117, 288}, {89, 268}, {76, 282}, {90, 268}, {85,
258}, {91, 259}, {92, 260}, {95, 262}, {74, 272}, {64, 283}, {75, 272}, {94,
258}, {94, 259}, {71, 281}, {91, 260}, {115, 275}, {97, 258}, {112, 275}, {118,
274}, {106, 271}, {105, 271}, {114, 276}, {117, 274}, {106, 258}, {125, 279},
{127, 275}, {124, 275}, {80, 288}, {81, 288}, {125, 268}, {108, 285}, {102,
276}, {126, 268}, {107, 281}, {126, 266}, {108, 281}, {99, 276}, {114, 266},
{114, 264}, {111, 276}, {127, 260}, {115, 264}, {97, 285}, {107, 277}, {110,
272}, {106, 277}, {117, 266}, {111, 272}, {128, 260}, {139, 270}, {136, 270},
{129, 266}, {144, 284}, {144, 285}, {142, 286}, {141, 284}, {141, 286}, {128,
279}, {132, 284}, {133, 285}, {143, 277}, {140, 279}, {142, 277}, {129, 284},
{137, 279} }>;
(II) A more general form is to represent the graph as the orbit of {133, 148}
under the group generated by the following permutations:
a: (1, 2, 14, 15, 27, 28, 40, 41, 53, 54, 66, 67, 79, 80, 92, 93, 105, 106, 118,
119, 131, 132, 144, 133)(3, 26, 16, 39, 29, 52, 42, 65, 55, 78, 68, 91, 81, 104,
94, 117, 107, 130, 120, 143, 121, 12, 134, 13)(4, 38, 17, 51, 30, 64, 43, 77,
56, 90, 69, 103, 82, 116, 95, 129, 108, 142, 109, 11, 122, 24, 135, 25)(5, 50,
18, 63, 31, 76, 44, 89, 57, 102, 70, 115, 83, 128, 96, 141, 97, 10, 110, 23,
123, 36, 136, 37)(6, 62, 19, 75, 32, 88, 45, 101, 58, 114, 71, 127, 84, 140, 85,
9, 98, 22, 111, 35, 124, 48, 137, 49)(7, 74, 20, 87, 33, 100, 46, 113, 59, 126,
72, 139, 73, 8, 86, 21, 99, 34, 112, 47, 125, 60, 138, 61)(145, 264, 250, 260,
215, 216, 258, 274, 192, 223, 199, 237, 247, 255, 146, 229, 170, 196, 190, 282,
287, 267, 152, 154)(147, 254, 210, 277, 188, 197, 166, 233, 181, 148, 246, 169,
273, 257, 167, 261, 173, 269, 159, 238, 217, 165, 259, 288)(149, 203, 228, 186,
280, 268, 195, 162, 222, 213, 262, 208, 239, 286, 205, 225, 241, 236, 212, 204,
270, 244, 182, 178)(150, 232, 151, 249, 198, 266, 281, 251, 220, 226, 224, 164,
191, 278, 161, 174, 231, 171, 211, 283, 234, 160, 200, 184)(153, 256, 272, 201,
163, 185, 240, 253, 175, 248, 172, 242, 180, 168, 206, 202, 265, 276, 179, 275,
187, 279, 157, 243)(155, 214, 221, 271, 193, 207, 156, 183, 284, 285, 245, 227,
218, 158, 194, 176, 219, 235, 189, 230, 177, 252, 263, 209) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 13, 12, 133)(3, 25, 11, 121)(4, 37, 10, 109)(5, 49, 9, 97)(6, 61, 8,
85)(7, 73)(14, 24, 144, 134)(15, 36, 143, 122)(16, 48, 142, 110)(17, 60, 141,
98)(18, 72, 140, 86)(19, 84, 139, 74)(20, 96, 138, 62)(21, 108, 137, 50)(22,
120, 136, 38)(23, 132, 135, 26)(27, 35, 131, 123)(28, 47, 130, 111)(29, 59, 129,
99)(30, 71, 128, 87)(31, 83, 127, 75)(32, 95, 126, 63)(33, 107, 125, 51)(34,
119, 124, 39)(40, 46, 118, 112)(41, 58, 117, 100)(42, 70, 116, 88)(43, 82, 115,
76)(44, 94, 114, 64)(45, 106, 113, 52)(53, 57, 105, 101)(54, 69, 104, 89)(55,
81, 103, 77)(56, 93, 102, 65)(66, 68, 92, 90)(67, 80, 91, 78)(145, 288, 232,
269)(146, 229, 164, 285)(147, 268, 177, 150)(148, 218, 233, 181)(149, 281, 279,
178)(151, 193, 186, 173)(152, 271, 249, 267)(153, 182, 157, 243)(154, 159, 214,
221)(155, 238, 217, 165)(156, 163, 167, 179)(158, 194, 237, 166)(160, 200, 215,
162)(161, 219, 225, 188)(168, 234, 222, 213)(169, 278, 197, 247)(170, 204, 226,
224)(171, 286, 192, 231)(172, 242, 180, 262)(174, 223, 199, 176)(175, 283, 206,
258)(183, 212, 196, 201)(184, 252, 250, 260)(185, 277, 241, 257)(187, 251, 272,
190)(189, 265, 210, 240)(191, 273, 236, 284)(195, 216, 202, 230)(198, 266, 203,
287)(205, 235, 253, 274)(207, 275, 282, 228)(208, 239, 211, 248)(209, 259, 264,
263)(220, 270, 244, 256)(227, 246, 255, 245)(254, 276, 261, 280)
C4[ 288, 220 ]
288
-1 255 245 246 227
-2 146 169 227 218
-3 169 170 181 161
-4 235 246 270 161
-5 146 235 182 175
-6 243 234 170 175
-7 234 256 213 270
-8 213 182 226 206
-9 243 206 164 274
-10 245 256 225 274
-11 225 226 218 197
-12 255 181 164 197
-13 233 278 246 229
-14 158 218 229 273
-15 158 257 170 194
-16 231 190 246 257
-17 231 182 273 230
-18 170 149 172 230
-19 200 190 256 172
-20 200 201 182 208
-21 265 149 164 208
-22 265 223 256 278
-23 201 223 236 218
-24 233 236 194 164
-25 278 148 204 219
-26 148 174 196 273
-27 176 167 194 196
-28 176 190 261 219
-29 287 211 261 273
-30 167 211 149 252
-31 190 180 228 252
-32 287 201 180 150
-33 286 149 150 185
-34 286 179 278 228
-35 179 201 237 174
-36 204 237 194 185
-37 253 244 255 219
-38 189 244 169 174
-39 167 169 171 282
-40 235 282 173 219
-41 287 189 235 269
-42 167 234 269 152
-43 209 234 173 228
-44 209 287 280 206
-45 151 206 152 185
-46 253 225 151 228
-47 187 225 280 174
-48 187 255 171 185
-49 253 157 283 229
-50 178 189 248 229
-51 177 178 257 171
-52 267 257 173 283
-53 189 267 159 230
-54 177 238 152 230
-55 145 200 238 173
-56 200 159 214 280
-57 265 214 195 152
-58 198 253 265 145
-59 198 236 280 248
-60 157 236 171 195
-61 222 204 283 153
-62 160 248 196 153
-63 242 177 203 196
-64 203 261 283 263
-65 154 159 160 261
-66 154 177 217 252
-67 165 145 252 263
-68 165 159 150 250
-69 150 271 195 217
-70 145 222 179 271
-71 179 248 281 250
-72 242 204 281 195
-73 220 222 244 168
-74 244 160 272 262
-75 242 282 184 272
-76 168 282 186 263
-77 155 269 160 186
-78 264 269 184 217
-79 209 264 259 263
-80 209 155 288 250
-81 288 215 151 217
-82 222 259 151 207
-83 187 250 207 262
-84 187 220 242 215
-85 157 168 224 258
-86 178 202 224 262
-87 178 184 239 163
-88 232 168 267 163
-89 155 267 202 268
-90 221 268 238 184
-91 232 259 238 260
-92 155 147 214 260
-93 221 254 214 215
-94 198 254 258 259
-95 198 147 183 262
-96 157 215 183 239
-97 258 205 153 285
-98 191 202 192 153
-99 276 191 203 239
-100 232 203 205 240
-101 154 202 249 240
-102 154 221 276 162
-103 165 232 193 162
-104 165 147 216 249
-105 210 221 216 271
-106 277 258 193 271
-107 277 147 192 281
-108 210 281 239 285
-109 220 188 205 227
-110 192 227 272 241
-111 199 276 161 272
-112 275 161 205 186
-113 249 175 186 241
-114 264 276 266 175
-115 264 275 213 193
-116 156 288 213 249
-117 210 266 288 274
-118 188 193 207 274
-119 156 192 207 197
-120 220 199 210 197
-121 188 233 224 247
-122 166 158 224 241
-123 199 212 158 163
-124 231 275 247 163
-125 231 268 279 241
-126 266 212 268 172
-127 275 172 260 251
-128 156 279 260 208
-129 254 266 284 208
-130 188 254 223 251
-131 166 156 223 183
-132 199 233 183 284
-133 245 148 247 285
-134 166 146 191 148
-135 176 212 191 181
-136 176 247 270 240
-137 211 146 279 240
-138 243 211 212 162
-139 180 270 162 251
-140 180 279 226 216
-141 286 243 216 284
-142 286 277 245 251
-143 166 277 226 237
-144 181 237 284 285
-145 55 67 58 70
-146 2 134 5 137
-147 92 104 95 107
-148 133 134 25 26
-149 33 18 30 21
-150 33 68 69 32
-151 45 46 81 82
-152 45 57 42 54
-153 61 62 97 98
-154 66 101 102 65
-155 77 89 80 92
-156 116 128 119 131
-157 49 60 85 96
-158 122 123 14 15
-159 56 68 53 65
-160 77 62 74 65
-161 111 112 3 4
-162 102 103 138 139
-163 88 123 124 87
-164 12 24 9 21
-165 67 68 103 104
-166 143 122 134 131
-167 27 39 30 42
-168 88 73 85 76
-169 2 3 38 39
-170 3 15 6 18
-171 48 60 39 51
-172 126 127 18 19
-173 55 40 52 43
-174 35 47 26 38
-175 113 114 5 6
-176 135 136 27 28
-177 66 51 63 54
-178 50 51 86 87
-179 34 35 70 71
-180 139 140 31 32
-181 12 144 3 135
-182 5 17 8 20
-183 132 95 96 131
-184 78 90 75 87
-185 33 45 36 48
-186 77 112 113 76
-187 47 48 83 84
-188 121 118 130 109
-189 38 50 41 53
-190 16 28 19 31
-191 99 134 135 98
-192 110 107 119 98
-193 103 115 106 118
-194 24 36 15 27
-195 57 69 60 72
-196 26 27 62 63
-197 11 12 119 120
-198 58 59 94 95
-199 132 111 123 120
-200 55 56 19 20
-201 23 35 20 32
-202 89 101 86 98
-203 99 100 63 64
-204 25 36 61 72
-205 100 112 97 109
-206 44 45 8 9
-207 82 83 118 119
-208 128 129 20 21
-209 44 79 80 43
-210 105 117 108 120
-211 137 138 29 30
-212 123 135 126 138
-213 115 116 7 8
-214 56 57 92 93
-215 81 93 84 96
-216 104 105 140 141
-217 66 78 69 81
-218 11 23 2 14
-219 25 37 28 40
-220 73 84 109 120
-221 90 102 93 105
-222 70 82 61 73
-223 22 23 130 131
-224 121 122 85 86
-225 11 46 47 10
-226 11 143 8 140
-227 110 1 2 109
-228 34 46 31 43
-229 13 14 49 50
-230 17 18 53 54
-231 124 125 16 17
-232 88 100 91 103
-233 121 132 13 24
-234 6 7 42 43
-235 4 5 40 41
-236 23 24 59 60
-237 143 144 35 36
-238 55 90 91 54
-239 99 96 108 87
-240 100 101 136 137
-241 110 122 113 125
-242 72 84 63 75
-243 6 138 9 141
-244 37 38 73 74
-245 1 133 10 142
-246 1 13 4 16
-247 121 133 124 136
-248 59 71 50 62
-249 101 113 104 116
-250 68 80 71 83
-251 127 139 130 142
-252 66 67 30 31
-253 46 58 37 49
-254 93 94 129 130
-255 1 12 37 48
-256 22 7 19 10
-257 15 16 51 52
-258 94 106 85 97
-259 79 91 82 94
-260 91 92 127 128
-261 28 29 64 65
-262 83 95 74 86
-263 67 79 64 76
-264 78 79 114 115
-265 22 57 58 21
-266 114 126 117 129
-267 88 89 52 53
-268 89 90 125 126
-269 77 78 41 42
-270 4 136 7 139
-271 69 70 105 106
-272 110 111 74 75
-273 14 26 17 29
-274 117 118 9 10
-275 112 124 115 127
-276 99 111 102 114
-277 143 106 107 142
-278 22 34 13 25
-279 125 137 128 140
-280 44 56 47 59
-281 71 72 107 108
-282 39 40 75 76
-283 49 61 52 64
-284 132 144 129 141
-285 133 144 97 108
-286 33 34 141 142
-287 44 29 41 32
-288 80 81 116 117
0