C4graphGraph forms for C4 [ 288, 221 ] = BGCG({4,4}_12,0;K1;{9,13})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 288, 221 ] = BGCG({4,4}_12,0;K1;{9,13}).

(I) Following is a form readable by MAGMA:

g:=Graph<288|{ {138, 152}, {143, 157}, {139, 152}, {142, 157}, {132, 159}, {131, 161}, {143, 172}, {130, 166}, {132, 161}, {131, 165}, {130, 165}, {132, 163}, {129, 169}, {128, 169}, {129, 170}, {136, 167}, {130, 176}, {138, 190}, {134, 177}, {137, 190}, {137, 179}, {135, 188}, {144, 173}, {142, 176}, {137, 182}, {134, 196}, {134, 192}, {135, 192}, {133, 204}, {133, 207}, {131, 211}, {139, 219}, {136, 216}, {141, 220}, {139, 217}, {142, 220}, {138, 221}, {140, 219}, {128, 218}, {143, 211}, {135, 216}, {144, 207}, {133, 229}, {134, 229}, {143, 236}, {138, 227}, {132, 238}, {141, 231}, {140, 231}, {129, 240}, {136, 249}, {130, 240}, {131, 245}, {128, 251}, {133, 254}, {136, 244}, {144, 236}, {137, 244}, {144, 238}, {29, 157}, {76, 204}, {94, 222}, {25, 152}, {49, 176}, {28, 157}, {85, 212}, {95, 222}, {56, 186}, {119, 245}, {85, 215}, {103, 229}, {71, 196}, {121, 250}, {108, 239}, {36, 160}, {53, 177}, {50, 182}, {124, 249}, {45, 171}, {119, 241}, {112, 246}, {20, 147}, {121, 254}, {118, 241}, {47, 168}, {44, 171}, {37, 162}, {29, 149}, {116, 252}, {110, 230}, {62, 182}, {101, 236}, {102, 236}, {30, 149}, {35, 168}, {82, 217}, {64, 204}, {110, 226}, {77, 193}, {43, 166}, {61, 176}, {76, 193}, {88, 213}, {103, 234}, {104, 229}, {32, 174}, {45, 163}, {75, 197}, {96, 239}, {116, 251}, {115, 252}, {109, 226}, {62, 174}, {88, 200}, {55, 166}, {62, 172}, {67, 209}, {84, 198}, {87, 197}, {61, 174}, {94, 205}, {41, 189}, {83, 199}, {90, 206}, {99, 247}, {2, 151}, {117, 224}, {68, 209}, {82, 199}, {83, 198}, {44, 186}, {118, 224}, {60, 170}, {40, 191}, {109, 250}, {68, 211}, {83, 196}, {84, 195}, {69, 221}, {111, 247}, {14, 151}, {111, 246}, {91, 194}, {48, 170}, {61, 167}, {57, 163}, {46, 178}, {125, 225}, {122, 230}, {73, 212}, {92, 194}, {45, 178}, {126, 225}, {70, 217}, {82, 205}, {87, 200}, {29, 189}, {112, 208}, {12, 173}, {21, 180}, {22, 180}, {124, 222}, {80, 242}, {4, 167}, {126, 221}, {125, 222}, {28, 191}, {26, 185}, {20, 183}, {81, 242}, {96, 195}, {79, 235}, {111, 203}, {82, 246}, {127, 218}, {11, 172}, {117, 210}, {109, 202}, {81, 246}, {54, 158}, {75, 227}, {102, 206}, {53, 158}, {58, 145}, {75, 224}, {97, 202}, {3, 175}, {124, 208}, {76, 224}, {2, 175}, {21, 184}, {79, 226}, {120, 214}, {11, 187}, {123, 203}, {17, 161}, {91, 235}, {3, 178}, {105, 216}, {31, 174}, {10, 187}, {9, 184}, {91, 234}, {100, 213}, {80, 226}, {106, 216}, {18, 161}, {32, 147}, {114, 198}, {17, 164}, {73, 252}, {92, 233}, {4, 178}, {5, 179}, {74, 252}, {97, 215}, {14, 185}, {113, 198}, {44, 155}, {33, 150}, {24, 160}, {70, 254}, {42, 146}, {85, 237}, {100, 220}, {29, 164}, {43, 146}, {35, 154}, {80, 233}, {98, 219}, {67, 249}, {108, 214}, {97, 219}, {25, 162}, {105, 210}, {45, 150}, {32, 155}, {86, 237}, {36, 152}, {36, 154}, {3, 188}, {46, 145}, {8, 183}, {99, 220}, {3, 195}, {13, 205}, {104, 168}, {8, 201}, {15, 206}, {85, 148}, {95, 158}, {22, 212}, {39, 228}, {58, 254}, {91, 159}, {90, 159}, {2, 196}, {84, 146}, {16, 215}, {125, 186}, {50, 245}, {48, 247}, {23, 223}, {124, 180}, {106, 162}, {34, 234}, {25, 209}, {12, 197}, {47, 230}, {22, 223}, {105, 160}, {89, 147}, {113, 187}, {26, 209}, {125, 182}, {122, 177}, {113, 186}, {112, 187}, {28, 215}, {1, 205}, {115, 191}, {40, 228}, {30, 210}, {25, 213}, {15, 195}, {104, 164}, {1, 204}, {27, 214}, {7, 201}, {55, 249}, {54, 248}, {53, 251}, {52, 250}, {33, 239}, {89, 151}, {48, 255}, {123, 180}, {55, 248}, {31, 207}, {118, 166}, {56, 232}, {47, 255}, {30, 207}, {63, 238}, {57, 232}, {44, 253}, {77, 156}, {40, 250}, {108, 190}, {107, 185}, {71, 149}, {41, 251}, {78, 156}, {36, 247}, {110, 189}, {38, 245}, {14, 218}, {118, 162}, {38, 242}, {27, 206}, {107, 190}, {56, 237}, {39, 242}, {34, 244}, {43, 253}, {13, 218}, {35, 244}, {13, 213}, {66, 154}, {103, 191}, {42, 243}, {41, 243}, {117, 175}, {55, 237}, {77, 151}, {65, 154}, {120, 163}, {116, 175}, {73, 146}, {63, 227}, {116, 168}, {24, 197}, {72, 149}, {59, 230}, {51, 238}, {7, 217}, {107, 181}, {71, 153}, {10, 212}, {70, 153}, {117, 170}, {106, 181}, {98, 189}, {16, 240}, {32, 192}, {24, 248}, {75, 171}, {33, 192}, {74, 171}, {49, 208}, {42, 203}, {11, 233}, {115, 145}, {90, 184}, {80, 179}, {46, 202}, {120, 156}, {114, 150}, {57, 221}, {83, 183}, {6, 227}, {14, 232}, {121, 159}, {74, 172}, {95, 185}, {15, 232}, {34, 202}, {69, 173}, {95, 183}, {53, 223}, {126, 148}, {52, 223}, {127, 148}, {119, 156}, {56, 211}, {37, 201}, {119, 155}, {9, 228}, {10, 228}, {127, 145}, {73, 167}, {47, 193}, {41, 199}, {4, 235}, {46, 193}, {40, 199}, {38, 201}, {50, 194}, {107, 155}, {65, 177}, {102, 150}, {39, 214}, {57, 200}, {58, 200}, {78, 188}, {49, 194}, {5, 241}, {65, 181}, {96, 148}, {4, 241}, {64, 181}, {37, 208}, {13, 248}, {23, 225}, {78, 184}, {101, 147}, {68, 179}, {11, 243}, {42, 210}, {92, 164}, {6, 255}, {24, 225}, {5, 255}, {21, 239}, {16, 235}, {1, 253}, {27, 231}, {22, 234}, {81, 173}, {89, 165}, {101, 153}, {26, 231}, {54, 203}, {88, 165}, {93, 160}, {100, 153}, {23, 233}, {66, 188}, {87, 169}, {96, 158}, {2, 253}, {15, 240}, {12, 243}, {86, 169}, {19, 274}, {17, 275}, {30, 282}, {20, 274}, {6, 270}, {31, 279}, {18, 282}, {7, 270}, {7, 269}, {28, 278}, {26, 273}, {8, 260}, {16, 284}, {9, 260}, {27, 278}, {17, 284}, {6, 264}, {18, 258}, {8, 281}, {23, 262}, {19, 258}, {10, 280}, {12, 286}, {31, 267}, {5, 275}, {9, 287}, {19, 267}, {18, 264}, {21, 271}, {20, 271}, {59, 288}, {60, 288}, {19, 269}, {1, 286}, {61, 285}, {52, 277}, {54, 276}, {51, 272}, {63, 283}, {35, 262}, {62, 283}, {37, 259}, {58, 284}, {59, 284}, {33, 265}, {34, 265}, {48, 259}, {52, 263}, {49, 258}, {51, 263}, {63, 265}, {38, 273}, {39, 272}, {60, 261}, {59, 257}, {43, 279}, {51, 271}, {50, 271}, {60, 258}, {76, 269}, {68, 256}, {69, 256}, {86, 275}, {71, 257}, {64, 265}, {84, 287}, {79, 259}, {72, 261}, {78, 259}, {87, 282}, {66, 268}, {67, 268}, {70, 278}, {86, 262}, {69, 278}, {77, 281}, {64, 277}, {72, 285}, {88, 269}, {93, 264}, {94, 267}, {66, 276}, {92, 266}, {72, 287}, {79, 280}, {93, 266}, {65, 281}, {74, 275}, {81, 264}, {94, 263}, {93, 263}, {67, 280}, {108, 268}, {113, 273}, {106, 267}, {98, 256}, {114, 272}, {99, 256}, {109, 270}, {98, 262}, {112, 279}, {122, 274}, {110, 260}, {127, 277}, {111, 260}, {121, 274}, {114, 286}, {97, 268}, {115, 286}, {126, 272}, {122, 266}, {123, 266}, {105, 283}, {100, 279}, {104, 283}, {101, 273}, {120, 270}, {89, 288}, {99, 282}, {90, 288}, {103, 285}, {102, 285}, {123, 261}, {128, 257}, {135, 261}, {140, 257}, {141, 287}, {129, 276}, {140, 281}, {142, 280}, {141, 276}, {139, 277} }>;

(II) A more general form is to represent the graph as the orbit of {138, 152} under the group generated by the following permutations:

a: (1, 2)(3, 12)(4, 11)(5, 10)(6, 9)(7, 8)(13, 14)(15, 24)(16, 23)(17, 22)(18, 21)(19, 20)(25, 26)(27, 36)(28, 35)(29, 34)(30, 33)(31, 32)(37, 38)(39, 48)(40, 47)(41, 46)(42, 45)(43, 44)(49, 50)(51, 60)(52, 59)(53, 58)(54, 57)(55, 56)(61, 62)(63, 72)(64, 71)(65, 70)(66, 69)(67, 68)(73, 74)(75, 84)(76, 83)(77, 82)(78, 81)(79, 80)(85, 86)(87, 96)(88, 95)(89, 94)(90, 93)(91, 92)(97, 98)(99, 108)(100, 107)(101, 106)(102, 105)(103, 104)(109, 110)(111, 120)(112, 119)(113, 118)(114, 117)(115, 116)(121, 122)(123, 132)(124, 131)(125, 130)(126, 129)(127, 128)(133, 134)(135, 144)(136, 143)(137, 142)(138, 141)(139, 140)(145, 251)(146, 171)(147, 267)(148, 169)(149, 265)(150, 210)(151, 205)(152, 231)(153, 181)(154, 278)(155, 279)(156, 246)(157, 244)(158, 200)(159, 266)(160, 206)(161, 180)(162, 273)(163, 203)(164, 234)(165, 222)(166, 186)(167, 172)(168, 191)(170, 272)(173, 188)(175, 286)(176, 182)(177, 254)(178, 243)(179, 280)(183, 269)(184, 264)(185, 213)(187, 241)(189, 202)(190, 220)(192, 207)(193, 199)(195, 197)(196, 204)(198, 224)(208, 245)(211, 249)(212, 275)(214, 247)(215, 262)(216, 236)(217, 281)(221, 276)(223, 284)(225, 240)(227, 287)(228, 255)(230, 250)(232, 248)(233, 235)(238, 261)(239, 282)(242, 259)(256, 268)(257, 277)(258, 271)(260, 270)(263, 288)(283, 285)
b: (2, 13, 12, 133)(3, 25, 11, 121)(4, 37, 10, 109)(5, 49, 9, 97)(6, 61, 8, 85)(7, 73)(14, 24, 144, 134)(15, 36, 143, 122)(16, 48, 142, 110)(17, 60, 141, 98)(18, 72, 140, 86)(19, 84, 139, 74)(20, 96, 138, 62)(21, 108, 137, 50)(22, 120, 136, 38)(23, 132, 135, 26)(27, 35, 131, 123)(28, 47, 130, 111)(29, 59, 129, 99)(30, 71, 128, 87)(31, 83, 127, 75)(32, 95, 126, 63)(33, 107, 125, 51)(34, 119, 124, 39)(40, 46, 118, 112)(41, 58, 117, 100)(42, 70, 116, 88)(43, 82, 115, 76)(44, 94, 114, 64)(45, 106, 113, 52)(53, 57, 105, 101)(54, 69, 104, 89)(55, 81, 103, 77)(56, 93, 102, 65)(66, 68, 92, 90)(67, 80, 91, 78)(145, 224, 279, 199)(146, 217, 252, 269)(147, 158, 221, 283)(148, 227, 174, 183)(149, 257, 169, 282)(150, 181, 186, 263)(151, 248, 173, 229)(152, 172, 274, 195)(153, 251, 200, 210)(154, 211, 266, 206)(155, 222, 272, 265)(156, 249, 242, 234)(157, 230, 240, 247)(159, 188, 209, 233)(160, 236, 177, 232)(161, 261, 231, 262)(162, 187, 250, 178)(163, 216, 273, 223)(164, 288, 276, 256)(165, 203, 278, 168)(166, 246, 191, 193)(167, 201, 212, 270)(170, 220, 189, 284)(171, 267, 198, 277)(175, 213, 243, 254)(176, 260, 215, 255)(179, 194, 184, 268)(180, 214, 244, 245)(182, 271, 239, 190)(185, 225, 238, 192)(196, 218, 197, 207)(202, 241, 208, 228)(204, 253, 205, 286)(219, 275, 258, 287)(226, 235, 259, 280)(237, 264, 285, 281)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 288, 221 ]
288
-1 253 286 204 205
-2 253 151 196 175
-3 188 178 195 175
-4 167 178 235 241
-5 275 255 179 241
-6 264 255 270 227
-7 201 269 270 217
-8 201 281 183 260
-9 287 260 184 228
-10 187 212 280 228
-11 187 243 233 172
-12 286 243 173 197
-13 213 248 205 218
-14 232 151 185 218
-15 232 195 206 240
-16 235 215 240 284
-17 275 161 284 164
-18 264 258 161 282
-19 267 258 269 274
-20 147 183 271 274
-21 180 271 184 239
-22 212 223 234 180
-23 233 223 225 262
-24 225 160 248 197
-25 209 213 162 152
-26 209 231 185 273
-27 231 278 214 206
-28 157 278 191 215
-29 189 157 149 164
-30 210 149 282 207
-31 267 279 174 207
-32 155 147 192 174
-33 265 192 150 239
-34 265 244 234 202
-35 154 244 168 262
-36 154 247 160 152
-37 201 259 162 208
-38 242 201 245 273
-39 242 214 228 272
-40 199 191 228 250
-41 199 243 189 251
-42 210 243 146 203
-43 253 166 146 279
-44 253 155 171 186
-45 178 171 150 163
-46 145 178 202 193
-47 255 168 193 230
-48 255 170 247 259
-49 176 258 194 208
-50 245 182 194 271
-51 238 271 272 263
-52 277 223 250 263
-53 177 223 158 251
-54 276 158 203 248
-55 166 237 248 249
-56 232 211 237 186
-57 221 232 200 163
-58 254 145 200 284
-59 288 257 284 230
-60 288 170 258 261
-61 176 167 174 285
-62 182 172 283 174
-63 265 227 238 283
-64 265 277 181 204
-65 154 177 181 281
-66 154 188 276 268
-67 209 268 280 249
-68 209 211 179 256
-69 221 256 278 173
-70 254 278 217 153
-71 257 149 196 153
-72 287 149 261 285
-73 167 146 212 252
-74 275 171 172 252
-75 224 171 227 197
-76 224 269 193 204
-77 156 193 281 151
-78 188 156 259 184
-79 235 280 226 259
-80 242 233 179 226
-81 242 264 246 173
-82 199 246 205 217
-83 198 199 183 196
-84 198 287 146 195
-85 212 148 215 237
-86 275 169 237 262
-87 200 169 282 197
-88 165 200 213 269
-89 165 288 147 151
-90 288 159 184 206
-91 234 235 159 194
-92 233 266 194 164
-93 264 266 160 263
-94 222 267 205 263
-95 222 158 183 185
-96 158 148 195 239
-97 202 268 215 219
-98 189 256 262 219
-99 220 256 247 282
-100 220 213 279 153
-101 147 236 273 153
-102 236 150 206 285
-103 234 191 229 285
-104 168 283 229 164
-105 210 160 216 283
-106 267 181 216 162
-107 155 190 181 185
-108 190 268 214 239
-109 202 226 270 250
-110 189 226 260 230
-111 246 203 247 260
-112 187 246 279 208
-113 187 198 273 186
-114 198 286 150 272
-115 286 145 191 252
-116 168 251 175 252
-117 210 224 170 175
-118 166 224 162 241
-119 155 156 245 241
-120 156 214 270 163
-121 254 159 250 274
-122 177 266 230 274
-123 266 180 203 261
-124 222 180 249 208
-125 222 225 182 186
-126 221 148 225 272
-127 145 277 148 218
-128 169 257 218 251
-129 276 169 170 240
-130 165 176 166 240
-131 165 211 245 161
-132 159 161 238 163
-133 254 204 207 229
-134 177 192 196 229
-135 188 192 216 261
-136 167 244 216 249
-137 244 179 190 182
-138 221 190 227 152
-139 277 217 152 219
-140 231 257 281 219
-141 220 231 276 287
-142 176 220 157 280
-143 211 157 236 172
-144 236 238 173 207
-145 46 58 115 127
-146 73 84 42 43
-147 89 101 20 32
-148 126 127 85 96
-149 71 72 29 30
-150 33 45 102 114
-151 77 89 2 14
-152 25 36 138 139
-153 100 101 70 71
-154 66 35 36 65
-155 44 107 119 32
-156 77 78 119 120
-157 143 28 29 142
-158 95 96 53 54
-159 121 132 90 91
-160 24 36 93 105
-161 132 17 18 131
-162 25 37 106 118
-163 132 45 57 120
-164 92 104 17 29
-165 88 89 130 131
-166 55 118 130 43
-167 4 136 61 73
-168 35 47 104 116
-169 128 129 86 87
-170 48 60 117 129
-171 44 45 74 75
-172 11 143 62 74
-173 12 144 69 81
-174 61 62 31 32
-175 2 3 116 117
-176 49 61 130 142
-177 122 134 53 65
-178 45 46 3 4
-179 68 80 5 137
-180 22 123 124 21
-181 106 107 64 65
-182 125 137 50 62
-183 83 95 8 20
-184 78 90 9 21
-185 14 26 95 107
-186 44 56 113 125
-187 11 112 113 10
-188 66 78 3 135
-189 110 29 41 98
-190 137 138 107 108
-191 103 115 28 40
-192 33 134 135 32
-193 77 46 47 76
-194 91 92 49 50
-195 3 15 84 96
-196 2 134 71 83
-197 12 24 75 87
-198 113 114 83 84
-199 82 83 40 41
-200 88 57 58 87
-201 37 38 7 8
-202 34 46 97 109
-203 111 123 42 54
-204 1 133 64 76
-205 1 13 82 94
-206 90 102 15 27
-207 133 144 30 31
-208 112 124 37 49
-209 67 68 25 26
-210 105 117 30 42
-211 143 56 68 131
-212 22 73 85 10
-213 88 100 13 25
-214 27 39 108 120
-215 16 28 85 97
-216 135 136 105 106
-217 70 82 7 139
-218 13 14 127 128
-219 139 140 97 98
-220 99 100 141 142
-221 57 69 126 138
-222 124 125 94 95
-223 22 23 52 53
-224 117 118 75 76
-225 23 24 125 126
-226 110 79 80 109
-227 6 138 63 75
-228 39 40 9 10
-229 133 134 103 104
-230 110 122 47 59
-231 26 27 140 141
-232 56 57 14 15
-233 11 23 80 92
-234 22 34 91 103
-235 79 91 4 16
-236 143 144 101 102
-237 55 56 85 86
-238 132 144 51 63
-239 33 96 108 21
-240 15 16 129 130
-241 4 5 118 119
-242 80 81 38 39
-243 11 12 41 42
-244 34 35 136 137
-245 38 50 119 131
-246 111 112 81 82
-247 99 111 36 48
-248 55 13 24 54
-249 55 67 124 136
-250 121 40 52 109
-251 116 128 41 53
-252 115 116 73 74
-253 44 1 2 43
-254 121 133 58 70
-255 47 48 5 6
-256 99 68 69 98
-257 59 71 128 140
-258 49 60 18 19
-259 78 79 37 48
-260 110 111 8 9
-261 123 135 60 72
-262 23 35 86 98
-263 93 94 51 52
-264 81 93 6 18
-265 33 34 63 64
-266 122 123 92 93
-267 94 106 19 31
-268 66 67 97 108
-269 88 7 19 76
-270 6 7 109 120
-271 50 51 20 21
-272 114 126 39 51
-273 101 113 26 38
-274 121 122 19 20
-275 5 17 74 86
-276 66 129 141 54
-277 127 139 52 64
-278 69 70 27 28
-279 100 112 31 43
-280 67 79 10 142
-281 77 8 140 65
-282 99 18 30 87
-283 104 105 62 63
-284 58 59 16 17
-285 102 103 61 72
-286 1 12 114 115
-287 72 84 9 141
-288 89 90 59 60
0

**************